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1. Een intuitionistisch lichaam zoals geintroduceerd door Heyting
is een (intuitionistische) lokale ring waarvoor geldt:

Vx(ﬂEx-1+ x=0). De theorie van intuitionistische lichamen is
conservatief over het meetkundige fragment van de theorie van

de nilpotentvrije lokale ringen, d.w.z.. lokale ringen waarvoor
geldt Vx(x2= 0+x=0).

(Dit proefschrift 2.6.2, 2.9.5)

2. Zij A een commutatieve ring in een topos E, eventueel zonder
verwijderingsrelatie. Beschouw de constructie van de lokale
ring Spec(A) over de complete Heyting algebra /A van radikale
idealen. Als A nilpotentvrij is dan-is Spec(A) een lichaam met
verwijderingsrelatie gedefinieerd door inverteerbaarheid: x#y+

- E(x—y)_l. Indien voor A axioma C, of axioma C2 geldt dan vol-

d
doet ook Spec(A) daaraan. Indien A beslisbare gelijkheid heeft,
d.w.z. als voor A geldt V¥x(x=0v ax=0) dan heeft ook Spec(A)
beslisbare gelijkheid.

C([Fa 2], blz2375)

3. o Oys+++50_  €en groep verwijderde automorfismen van L met
vast lichaam K. Dan heeft (L/K) een normale basis cl(x),..,cn(x)
voor een xX€ L.

(Dit proefschrift 4.11.10)

4. De axioma's 01 en C2 blijven behouden onder deellichamen, in

tegenstelling tot het axioma D.

(Dit proefschrift 5.2)
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5. Zij A en B mxn-matrices over een ring R. A en B heten equiva-
lent als er een inverteerbare mxm-matrix S is en een inverteer-
bare nxn-matrix T zodat SA = BT.
Zij K een lichaam waarvoor axioma D geldt. Laat K uit K verkre-
gen worden door uitdelen naar de equivalentierelatie d~ e+
«+dleaeld. Voor iedere mxn-matrix A met m<n is er een unieke
rij objecten 51
d

s Ly "

R o
m

equivalent dan en slechts dan als ze dezelfde rij d

se++5d uit K zodat A equivalent is met de diago-
m

naalmatrix , en zd dat dil Twee mxn=-matrices zijn

1,...,dm
hebben.

(Dit proefschrift 5.2.2)

6. Zij R een klassieke unieke factorisatie domein waarvoor de
volgende operaties berekenbaar zijn:

(1) de ring operaties +,+,-,=,

(2) een operatie d: RxR+ RUN met voor alle x,y€ R &f d(x,y) is

een getal zodat x ten hoogste d(x,y) maal deelbaar is op y, 6f xﬁl

bestaat en d(x,y) = x~1

s :BE y =70 con idbx iy ialie R,
(3) een operatie g: RxR+ R’ die voor ieder paar x,y€ R een drietal
g(x,y) = (h,xl,yl) levert met hx, = x, hy,=y en h is de ggd van x,y.

Als er een algoritme is voor het oplossen van lineaire vergelij-

kingen over R, dan is er ook een algoritme voor R[X].

7. Zij ¢(p) een propositielogische formule in p, mogelijk met

+

extra parameters. Definieer wo(p)= p en @ 1(p)= w9 (p)) voor

alle n. Dan is er een m zodat

m+2

= wm(p)» ) 50 B

8. Zij Q een complete Heyting algebra in een topos E en zij
J: Q2+ Q een afbeelding in E waarvoor geldt: J(paq) = JpaAJq

en p<Jp. Dan is er een w: Q-+ Q waarvoor geldt:



s —— e ——— .

(1) w is een nucleus ( W(pA Q)= WpAWQ, PSWpP, WD= WWp),

(2) w is de "kleinste vaste punt" operator: Jwp= wp en voor

alle q=2p met Jg= g geldt gq=2wp.

Zij e: Q'+ Q de gelijkmaker van J en id: @+ Q. Dan is

(1) Q' is een complete Heyting algebra,

(2) w= em voor een unieke m: Q> Q'.

Voor het object m in de topos E/Q' geldt nu:

m is een tralie zodat voor iedere bewoonde SC m een kleinste

bovengrens bestaat en zo dat de volgende distributieve wet geldt:

PAV s=V pas. Op 7 kunnen we dan een implicatie definiéren,
g€S sE€S

d.w.z. een afbeelding =+ : wxT—+ 7 waarvoor geldt pagqSrep<sqg-+r1r.

Voor de geinduceerde J: m+ 1 geldt nu:

J is een Ldb-operator op 1 (J(paAq)=Jdpadg, p<Jp, Jp>p<p).

9. Zij K een priemlichaam IFP of het klassieke lichaam der com=-
plexe getallen C. Dan geldt het volgende schema van "totale in-
ductie": voor iedere eerste=-orde uitspraak @w(x) over K geldt:

Vx(@(x) » @(x+1)) > (Ixe(x) » ¥Vxe(x)).

10. Bij het damspel met twintig schijven tegen één en bij het
damspel met twintig schijven tegen twee met als doel het eerst
de eigen schijven van het speelbord te krijgen is er een winnen-

de strategie voor de speler met de twintig schijven.

8 juni 1982
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0. INTRODUCTION

In some parts of constructive algebra there is a routine of
providing new proofs of old results by carefully and almost
literally constructivizing classical proofs. In this thesis

we direct our attention to those parts where this does not hold.
The following kinds of problems cccur. In the first place we
have to formulate an adequate theory which generalizes the clas-
sical version. A good intuitionistic theory must be sufficiently
general such that it includes a fair number of interesting exam-
ples which are overlooked by the classical theory. On the other
hand a good intuitionistic theory must be strong enough to
enable us to derive the basic structural properties. In this
thesis we only consider intuitionistic theorems that hold clas-
sically. So we are not concerned with the problem of handling
essentially new principles (e.g. uniformity or continuity).

Our task is to find new ways and means to circumvent the ob-
stacles presented by the nature of non-classical logic. This
includes that we have to work with more generalized notions such
as relative primality modulo ¢ (4.4.2). In other cases we have
to give detailed proofs for (parts of) theorems which classi-
cally follow from some general observations (like the existence
of dimension, see 4.1.2). Peculiar to our intuitionistic alge-
bra is the presence of an apartness relation. The additional
structure we get provides us with a good intuitionistic theory
in the above sense.

Intuitionistic algebra as presented here differs from versions
like Seidenberg's, cf. [Se 1], in that it is more general and

in that it allows for a considerably wider class of models. We

do not use the traditionally constructive strong conditions on
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fields like: for all x x=0 or x is invertible. To put it in
ancther way, intuitionistic algebra is not designed for dis-
crete structures and phenomena as e.g. in recursive algebra
but it also covers continuous algebra. A theorem usually re-
mains true after small deformations of the input. This can be
illustrated by the sheaf models. In short cur algebra is more
in the spirit of Brouwer than of Kronecker.
We interpret our intuitionistic statements in sheaf models
over topological spaces. Sheaf models have the pleasant uni-
fying virtue that they cover also the well-known topological
models, Kripke-models and Beth-models. Topos theory provides
even more general model notions, but we shall not have occa-
sion to use them here. Interpretations of theorems of intui-
tionistic algebra in sheaves provide a connection with clas-
sical algebra via the stalk structures. Therefore it is con-
venient to have a class of formulas for which the interpreta-
tion is easy. Such a class is that of the geometric formulas.
They are true in a sheaf model if and only if they hold under
the classical interpretation in the stalk structures. We found
it more convenient to work with the more general syntactic no-
tion N plus P for formulas, although this class is logically
equivalent to that of the geometric formulas.
The hard core of (intuitionistiec) algebra is the solving of
linear equations. It turns out that many proofs in constructive
algebra basically use, at least partially, the reduction of
problems to related problems in linear algebra. Most results
in chapter 3, hence also those that can be reduced to questions
in linear algebra, are finitistic in nature. Given some elemen-

tary properties of e.g. apartness we proceed almost entirely
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finitistically, be it that the model theoretic considerations
may be more general. In particular no higher-order non-classi-
cal principles are involved. We will, just as Heyting, use a
good deal of determinant theory. The constructive aspects of
determinant theory are more important in constructive algebra,
because we do not have a powerful dimension theory as in clas-
sical linear algebra. Another aspect of determinant theory is
that it enables us to reduce quantifier complexity, see 3.7.
There is a striking resemblance between the linear algebra of
fields and the linear algebra of local rings. This is not so
surprising since local ring theory is geometric and many state-
ments of linear algebra one is traditionally interested in are
also geometric. Moreover, an intuitionistic field (with apart-
ness) is a local ring with one extra axiom: -x# 0~ x= 0 (and

- in the stalks of the field models - we find that there are

no nilpotents in the local rings, cf. 2.9.5).

In the development of Galois theory the construction of field
extensions is considerably more complicated than in classical
field theory. We follow Scott in using coideals instead of
ideals to define an apartness relation on extensions. Intuitio-
nistic Galois theory not only differs from the classical one

in method but also in form and content, e.g. for relative pri-
mality and for separability we have to introduce syntactically
more complicated notions. One has to generalize relative pri-
mality beyond the classical framework to relative primality
modulo ¢ (cf. 4.4.2). For our purpose the most suitable approach
to Galois connections is via subfields and cogroups instead of
subfields and subgroups. Our strengthened form of the fundamen-

tal theorem of Galois theory (4.13.3) required that the image
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of an element o of the field under an automorphism is apart from
o or is identical with a.
In intuitionistic algebra the question of invertibility of ele-
ments in algebraic extensions K[o] is considerably more com-
plicated than in the classical case. There is a great variety
of conditions that ensure invertibility. The conditions we give
in chapter 5 are of a mixed logical and algebraic nature. They
stress the importance of considering fields and local rings
simultaneously.
The development of intuitionistic algebra in the presence of
apartness was started by Heyting, cf. [He 1]. In his paper
[He 2] Heyting has given the theory a firm basis. It is fair
to say that we have continued in his tradition. In our notation
and presentation we follow D. Scott, cf. [Sc 1] or [Sc 2].
There are parallels with the work of A. Kock ([Ko 1]). See also
the papers by J. Kennison, C. Mulvey, G. Reyes and G. Wraith

([Ke 21, [Mu 11, [Re 11, [Wr 11).



1. PRELIMINARIES

1.1 The presence 04§ a natural numbern obfect

In this chapter we present some basic facts about intuitionis-
tic logic and model theory. Although we shall not formalize all
our intuitionistic statements, it is helpful to keep some formal
system in mind. In this chapter as well as in the other chapters
we shall use a higher order logic as presented in [Fo 1], p.1060
or [Se 2], p.685. In many statements we use the presence of a
natural number object N ([Fo 1], p.1086, [Sc 2], p634), but we
shall not mention that explicitly.

The formal system of [Fo 1] and [Sc 2] has several features and
is more complicated than first-order intuitionistic logic. For
first-order logic there is an axiomatization which is simpler to
present. The quantifiers V¥ and 3 range over a fixed domain A.

The derivability relation F will be defined as follows.

1.1.1. Definition. (1) A sequent is an expression of the form
¢F ¢ where ¢ and ¢ are first-order formulas.

(2) The set of derivable sequents is the smallest set of sequents,

closed under all substitution instances of the following schemas
(a single line means that if all sequents above the line are de-
rivable, then so are the sequents below the line. A double line

means the same as a single line, but in both directions).

ok ¢
o v YHO
ok 8
o T 1+ ¢
ok v ok 6 pE ¢ 6k ¢

bF wab Yvek ¢



dapk 6
ok Y20

+ x g
ok $x) x not free in ¢, t contains no free

¢F ¥ (t) variables bound by ¥¢.

$§=£é;£ééi x not free Eééiééii:i x not free
oF vxy(x) in ¢ Ixp(x)F ¢ in ¢

Tk x=x

x=yk ¢ (x)+¢(y)

The axiom system of 1.1.1 is motivated by the interpretation of
Lawvere of the logical connectives as adjunctions. Observe that
in 1.1.1 we use the equivalence = instead of the strict equality
=. We define x=y as ExA EyA x=y. We also use partial functions.
In the higher order case we prefer the eguivalence = in the pre-
sence of partial elements. There is an axiom system equivalent

to that of [Fo 1] and [Sec 2] but which uses total and strict
functions and relations (see definition 1.1.2 and [Bo 1]). Other

sources for intuitionistic logic are [Du 1] and [Tr 1].

Instead of Tk ¢ we also write F ¢. Let T' be a set of sentences
(i.e. formulas without free variables) and let ¢ be a sentence.
Then ¢ follows from I if and only if there is a finite set
{¢1,...,¢n}C I' so that ¢1A...A¢nF ¢ is a derivable sequent. Thus

for first-order statements we may use 1.1.1 to check provability.

The presence of a natural number object makes it possible to
introduce the following kind of abbreviations, which have a
straightforward interpretation. The definitions will not be made
formal, because they do not play an essential role, but will
merely be illustrated in examples. The description operator

makes it possible to define new terms by "finitely iterated"



composition using IN -variables.

Let G be a group object with multiplication operator -, then we

may define for x of type GN :

x;= Ig€ G(are 6N (£(0) = 14 £(n) = ga

Xi®eeoes"X =
% 1

n

n =3

i
AVME N (m<n-»> f(s(m)) = x(s(m))-flm)))).

Similarly we may do such things for "finite" quantification, e.g.

Vx .an A W (w{xi)+'w(xi+1)) may be seen as abbreviation

& 1<i<n
for
vxe AN 3ie N (1<iai<na (@x(i))» p(x(s(i))))).
Or Hxl...x EA M ¢(x.) as abbreviation for
N 1<isn
IXEAT VIE N (1<iailisn->@(x(i))).

When we substitute for n a standard natural number we get, up to
provable equivalence, the common finitely iterated quantifica-
tions. The following definitions present examples of such abbre-

viations.

1.1.2. Definition. Let @ be an n-ary formula and T an n-ary term.
(1) ¢ is strict if we have
w(xl,...,xn)*-ExlA «ve A Ex
(2) 1 is strict if we have
ET{XI""’XH)+ ExiA S 3 Exn.
(3) 1 is total if we have

ExlA i A Exn*—ET(xi,...,xn).

It is an easy task to show the following preservations.
Strictness is preserved under substitution of strict terms.
Moreover, strictness of formulas is preserved under conjunction
and - in the case the components have the same free variables -
under disjunction of striet formulas. Finally, totality is pre-

served under composition.
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1.2 Apartness

The structures that will be treated in more detail, are provi-

ded with an apartness relation.

1.2.1. Definition. An apartness relation on an object A is a

binary relation # satisfying

(1) x##*y~+ExAEy,

(2) ~AxFF x,

(3) x#FHy->yFx,

(4) xFzAEy> xFyvyFz.
The apartness is tight if we have

(5) Vx,y(axFy+x=y).

Originally an apartness relation was tight by definition ([He 11,

[He 3]). In the definition above we follow [Sc 2]. We prefer the

notation x#¥y since notations like x¥y and x#y are often used

as abbreviations for ax=y and ax=y.

An apartness relation gives rise to a strict equivalence relation

=~ (do not confuse this with the relation =) defined by x® y+

+ ExA Ey A ax# y. The apartness # is tight, just when = and = are

the same. = satisfies the axioms, introduced in [Da 1]. That

implies that = now is stable, i.e. = satisfies Vx,y(~-x®y+ x®y).

The existence of an apartness on a structure often gives rise to

a canonical apartness relation on another structure. Let A have

a (tight) apartness relation and let X be an arbitrary object,

then the following relation on A% is a (tight) apartness:
f#ge+ Ef A Ega IxE X(£(xX)F g(x)).

Similarly, we can extend (tight) apartness of structures A and

B to (tight) apartness on AxB:



(a,b)#¥* (a',b')* EanEbaEa'AEb'A (a##a'vb#Db').

There is an equivalence relation = so that we have

VX,y(axFye x=y).
In mathematics we are used to consider terms 1 and formulas o
preserving equivalence: x~y -~ 1(x) = 1(y) and x~y A ©(x) > @oly).
So in the presence of apartness it is natural to look for comple-
mentary axiom schemas like T(x)# 1(y) » x#y and @(y) A Ex~
+ x#y v @(x). Therefore we introduce the notion "strongly exten-

sional".

1.2.2. Definition. A subobject X of an object A with apartness is

said to be strongly extensicnal if we have

a€ XA Eb»a®#bvbeE X.

Let ¢ be a formula and let T be a term. Let ¢ and T be strict.
Then {x|@(x)} is a strongly extensional subobject of {x|T} if and
only if the following formula holds: @©(y) A Ex—+ x#Fyv ©(x). And
{(x,2) |1(x)# 2z} is a strongly extensional subobject of {(x,z)]|T}
if and only if we have T(y)#* 1(x) > y# x. This connects the defi-

nitions 1.2.2 and 1.2.3.

1.2.3. Definition. Let ¢ be an n-ary formula and T an n-ary term.

(1) ¢ is strongly extensional if we have

w(yl,..,yn)AExlA...AExnﬂ-ylﬁﬁxlv eV yn##xnvw{xl,..,xn).

(2) 1™ is strongly extensional if we have

T(yl,..,yn)##T(xi,..,xn}ﬂ-yl#ﬁxl G s B yn##xn

H ; 3
Observe that the subcategory E of a topos E, with as objects
structures with (tight) apartness and with morphisms the strongly

extensional ones, is a cartesian closed category which is more-



10
over separated: i.e., the composition on hom-sets is strongly
extensional (due to Scott. See [Gr 1], p.15).
If we want to prove that a formula ¢ is strongly extensional,
it is enough to show this coordinatewise. That means: change

each variable separately and verify the statement.

1.2.4. Proposition. Let ¢ be an n-ary formula satisfying
B RO 5 60 58 5 5 0 5 0 R B SR IO s e swwg¥ Y
1< < 1 1 n i 1 1 4 1 n
Then ¢ is strongly extensional. If ¢ is strict, then the converse

is also true.

For terms T the reduction to one variable cases does not work
in full generality as it does for formulas. We have to add some

assumptions.

1.2.5. Proposition. Let T be a total strict n-ary term, satis-
fying
B Crly, seaa¥ess o sV IFETUY, 50 s o na s oV My FFx: D
1< < 1 g n 1 1 n i i
Then T is strongly extensional.

Proof: by induction on m= n-s we shall prove: if there is a sub-

Sequence y. ...,y such that Y;. =% for all j<s, then from

1 lS lj

J

T(yl,...,yn)#?T(xi,...,xn) it follows that yi##xjv i lai N yn##xn
holds. The case m= 1 has been given. Induction: without loss of
generality we may assume that the property holds for the case
m=n-1. Now let T(yi,...,yn)¢#r(xl,...,xn). To prove: y1%¢x1v
V oew s ¥ yn##xn. T and # are strict, thus we have

n EyiA N Exi.

1sisn 1sisn

T is total, so ET(Xl’ygs"’yn)' Then we may apply (4) of the
definition of #: we get

T(yi,...,yn)#*T(xl,yz,..,yn)v T(xl,yz,..,yn)##T(xl,...,xn}.



yiﬁﬁxlv T(xl,yz,..,yﬂ)##T(x ,xn).

TR

Induction: yl#x Voi..V yn#x .

il n

Using the above propositieons it is simple to prove that # and
E are strongly extensional. Strong extensionality of a formula
is preserved under conjunction, disjunction and existential
quantification. Strong extensionality of a formula is also pre-
served under substitution of a total, strongly extensional term.

Strong extensionality of terms is preserved under composition.
1.3 Shea$ models

We want to interpret our formal language in sheaves over a topo-
logical space, cf. [Go 1], p.359-p.374. We restrict ourselves

to the interpretation of the first-order fragment of our lan-
guage. There are two reasons for this restriction. The first
reason is: the insiders in intuitionistic logic and model theory
only need to know some conventions on notation and for that pur-
pose the first-order part suffices. The second reason is: if

one is not used to working with intuitionistic logic and model
theory or if one is only interested in intuitionistic algebra,
then the first-order fragment is adequate for understanding
almost all aspects of the models that we shall give. For the
remaining details we can refer to [Go 1] and [Te 2]. For a more
detailed account of sheaves, see [Te 1]. Some models we shall
construct are in fact Kripke models ([Kr 1]1,[Sm 1]1). Kripke mo-
dels may be considered as special (pre)sheaves over a topologi-
cal space ([Go 1]1,[Fo 2]1,p.310, p.3ub).

Let X be a topological space. Convention: we use U,V as symbols

for open subsets of X and a,R as symbols for elements of X. Let
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Sh(X) be the topos of sheaves over X and let S€ Sh(X). Following
the notation of [Te 1] we write S(U) for the set of sections
a€ 5 with Ea=U and we write S, for the stalk in a.
Let L be a first-order language. Without loss of generality we
may assume that the atomic relations and functions are strict
and total. Interpretations: as domain we take a sheaf 5. To an
n-ary relation symbol r we assign a subsheaf Bg;gn and to an
n-ary function symbol f we assign a sheaf morphism T : §n4—§. The
equality symbol = will be assigned to the diagonal Ag,gz, i.e.
to the real equality on S in the topos Sh(X). The symbol E will
be assigned to S itself.
We extend our language to a new language L(S) by introducing con-
stant symbols & for all a€ S. Then the interpretation of our
terms is as follows: we define [a] = a for new constant symbols
and [fl=F: 1+ S for O-ary function symbols, i.e. constant sym-
bols of L. Composed terms will be interpreted by ﬂf(tl,...,tn)ﬂ:
= F(ﬂtlﬂ,...,ﬂtnﬂ).
Let a€ S be a section with Ea=U , i.e. a€ S(U) (observe that we
use E for two different purposes. But see below). Let o€ U. Then
we write a, for the germ of a in S,+ Now sentences of L(S) will
be interpreted as follows. We interpret [Tl = X and [L] = ¢. Let r

be an n-ary relation symbol and let t "’tn be terms. Then

1%°
[r{tl,...,tn)ﬁz {a€ X|(ﬂtiﬂa,...,ﬂtnﬂm)6 Ra}°

For the symbols = and E of L this implies
[a=5l={a€ X|a€ Ean Eb and a,=b,}

and [E&] = Ea.

These special cases relate the symbols = and E of the language

L with the relations = and E of the sheaves. The interpretation
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of connectives and quantifiers is given by

[le]ﬂllwlla
[elvlwl,

loavyl

lov vl

Lo+ pl = Int(ﬂwﬂcklﬂwﬂ), where © and Int mean complement and

interior,

[ -l = Int(ﬁmﬂc)= (Clllt.p]l)C where Cl means closure,

[3xp(x)] = U [Eaawladl,

a€s S
[vxe(x)] = Int( N [Ea~» @(ad]).
a€s

In the following chapters we shall work with the equivalence =
instead of with the equality =. The equivalence = can be defined
in terms of E and = as follows (see [Sc 2]):

x=y+v (ExvEy»x=vy).

With the rules above this gives as interpretation for =:

la=b] = Int{a€ X|if ¢€ Ea or if a€ Eb then o€ Ean Eb and a, = ba}'

A sheaf 3 together with morphisms F and relations R for all func-
tion symbols f and all relation symbols r is called a structure.
We usually write § for the whole structure. We define Tk ¢ (T
satisfies @) for sets of sentences TU {g} as:
for all topological spaces X and for all structures S we
have N [ylClel.

YET
@ is true in a structure S if l¢l = X, denoted by SF wo.

¢ is true if ¢ is true in all structures S5, 1.e. oE .
The completeness theorem for first-order intuitionistic logic
states that

'k @we TE @.
Remark: it is easy to generalize the first-order theory above
to a many-sorted first-order version. Then we write (S,58',...)

for structures over that language.
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The interpretation [¢] of a formula ¢ may become a complicated
statement for the structure. But some formulas give easy inter-
pretations. Example: let f,g,h,k be function symbols with inter-
pretations F: S+ S and G,H,K: §24—§. Let ¢ be the formula
¥x,y (g (F(x),f(y)) = k(h(x,y),k(x,y))). Then SF ¢ is equiyalent

to the commutativity of the following diagram.

sxs —E 5545
(H,K) G
K

Similar equivalences hold for other formulas Vx.¢@ where ¢ is

an equation.

Let 5 be a structure with relations Bg;ﬁn and morphisms F: Ena-g.
For each open UC X this gives us a set S(U) and relations
R(U)Q_S(U)n and functions F(U) : S(U)" > S(U). This is a structure
with classical logic. We usually write 3(U) for the whole struc-
ture. In the same way we get for each a€ X a structure Sa with
relations Rag_sg and functions Fa: SZ@-Su. Observe that S, S(U)
and Sa have the same similarity type, i.e. the language L has

an interpretation in S, S(U) and Sa simultaneously. S, S(U) and
Sa need not satisfy the same properties ¢ of the language L, e.g.
S(U) and Sa satisfy the excluded middle @v a¢@ while for S this
need not be true. Therefore we search for formulas ¢ whose vali-
dity can be transported from the Sa and the S(U) to S and vice
versa.

Let S(U)ch and Sakcm mean S(U) satisfies @ under classical

interpretation and Sa satisfies ¢ under classical interpretation.

1.3.1. Definition. Let ¢ be a sentence. We define:
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@ is pos if (S(U)i=ctp=>U£|[LP]]),

¢ is neg if (uc ﬂk:)]]-#S(U)FC(D ),

@ is p if (Sabcw = 0€ [¢l),

@ is n if (otEIILD]]#Sakcw),

o s P if (for all a Sal:Cw =X= [ol),
@ is N if (X=[@l= for all o Sul=ct_o ).

These definitions can be extended to formulas ¢ in a canonical
way, although they become more lengthy. For instance, @(x) is P
means: [for all a€ S and for all a€ Ea Sot|=c ola)]=

= [for all a€ S Eacle(a)ll.

It is easy to check that (in abbreviated form):

POs A pos C pos PAPED
pos v pos C pos pvpeEpP
dx.pos C pos Ix.pCp
neg A neg C neg nAancn
nvnEn
-pos C neg ap £n
pos * neg C neg p>*nln
Vx.neg Cneg ¥x.n€n
dx.nEn
n>pCP ncn
PAPCP
Vx.PCP

Strict atomic sentences satisfy all conditions pos, neg, p, n,
P and N. Thus T, 1, E and = satisfy these conditions.

Remark: formulas of both type N and type P are up to logical
equivalence the well-known geometric formulas (cf. [Jo 2],

[Ma 2]). We will return to that notion below. We use the name
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"of type N and of type P" for our present purposes.

1.3.2. Example. We give the interpretation of the axioms of an
apartness relation (see 1.2.1). By axiom (1) # is strict and
so it is assigned to a subsheaf ffg;gz. Axiom (2) is of both
type N and type P. Thus it is equivalent to the same condition
in the stalk structures Sa: for all Xae Sa we have that not
xa%ﬁxxu holds. Axioms (3) and (4) are also of form N as well as
of form P. They are equivalent to the following conditions for
the stalk structures Su'

(3) ##u is symmetric,

(4) for all Xy 1Y y2, 1E Xa#a z, then Xa#u Y, Or y(x#a zZ-

The complement of the relation #%a in Si is called ~u Thus

~

x =~ y if and only if not x # _ y . Note that = need not cor-
o o a oo o

o
respond to a subsheaf of §2. The axioms (2), (3) and (4) Jjust
tell us that . is an equivalence relation on Su' Axiom (5)
for a tight apartness is of type P and not of type N. Thus we
do not get an equivalence as above. A direct interpretation
gives:

for all aa’bue Su (with a,b€ s(U) for some U) we have

(a b, and a #Db )= o€ Cl{ge Ula #, b }.

oo Po B BB

Let f be a function symbol with interpretation F: f is total
and strict. The axiom for strong extensionality is of type N
and of type P. That implies that strong extensionality for f
is equivalent to saying that F, preserves equivalence ~, for
all a. In the same way one shows that strong extensiocnality

of a strict relation R is equivalent to saying that the R are

~

closed with respect to e

Let FC mean classical derivability. From definition 1.3.1 it
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follows that

1.3.3. Proposition. Let T'U {p} be a set of first-order sentences.
Let the sentences of T be of type N and let ¢ be of type P. Then

we have FFctp= il R
Proof: straightforward.

This proposition often presents us with a convenient test for
intuiticonistic derivability. Nevertheless we prefer to give in-
tuitionistic proofs for the sake of a uniform treatment of the
theory.

We do not want to underestimate the value of geometric logic.
Therefore we shall say a few things about it. Let E,F be topoi
(see [Jo 1. It may help to think of topoi as categories like
Sh(X)). A geometric morphism f: E+ F consists of an adjunction
of functors f,: E>~ F and f*: F+ E such that f*df, and f* is
left exact. The advantage of geometric formulas ¢ is that they
are preserved by the functor f*, the "inverse image functor" of
the geometric morphism f: if a structure S in F satisfies ¢
then so does f*S.

Example of a geometric morphism: let Sh(X) and Sh(Y) be sheaf
categories, f: X+ Y a continuous function. Then we construct a
geometric morphism, also denoted by f, f: Sh(X)+ Sh(Y) such that
for SE Sh(X) and open VCY (£,(5)) (V)= S(£ 1(V)). Let BE BhiY)

correspond to the local homeomorphism s: G+ Y. Form the pullback

Then f*(S) is the sheaf corresponding to the local homeomorphism
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t: H» X. Literature: [Jo 2], [Ma 2]. For an example of

a study of a geometric theory, see [Wr 1].
1.4 Knipke-models

The natural way, at least for us, to show that a formula ¢ is
not derivable from some set of axioms is by constructing a coun-
termodel: if T'H ¢ then T'M ¢. It turns cut that Kripke-models are

convenient for that purpose.

Let IP = (P, <) be a partially ordered set (poset). Then we con-
struct a topological space TIP on P by taking UcC P open if and
only if U is upward closed. These spaces TP have some extra
properties. The collection of open sets is closed under arbi-
trary intersection. Each point a € P has a smallest open neigh-
bourhood Uu' The sets UOL form a basis and we have a<B« BE Ua’
If we want to describe a sheaf S over TP we only have to give
the sets S(Ua) and the restriction maps pg: S(Uu)+-S(UB) for
a<pB (in fact we even have that S(Ua)z Sa)' This makes it pos-
sible to give an easy description of sheaves over TIP . They are
related to Kripke-models. The definition of Kripke-model below
differs from [Kr 1] and [Sm 1] in that the equality is inter-
preted as the real equality and that the restriction maps pg

need not be injective. Moreover, the Ka‘s may be empty.

1.4.1. Definition. A Kripke-model K= (K,P ) over a poset IP =

= (P,<) consists of:
(1) for each a€ P a set K>

(2) for each pair a<f a function pg: Ka+-K such that pg: id

B
and p$p§= p$.

Let K, L be Kripke-models over P, then a morphism F: K+ L of
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Kripke-models consists of: for each a€ P a function Fo: K =L,
such that for each pair a<PpB the following diagram commutes:

! ]

KB————iL——“QLB
The category of Kripke-models and morphisms over a poset IP is
the same as the functor category setT . One easily verifies that
the categories Sh(TIP ) and set® are equivalent.
Let K be a Kripke-model. Then the product En is given by for
each o€ P the set (Kn)a= (Ku) and for each pair a<@ the func-
tion qg= pgxpgx...xpg. A relation RC K satisfies: for each o€ P
we have a subset Rug K, and we have restriction maps qg such

that for all a<p the following diagram commutes.

—
RO‘. K(l

I pg

RB }————————QKB
A Kripke-model K with morphisms F and relations R for all func-
tion symbols f and all relation symbols r of the language L
(see 1.3) is called a structure. We usually write K for the whole
structure. For each a€ P we have a structure Ku with morphisms
F, and relations Ra' Definition 1.3.1 also applies to this si-
tuation. Thus if ¢ is a P sentence and Kabc @ then o€ [p]. And
in the same way 1f ¢ is an N sentence and a€ [¢] then Kahc ®-.
Instead of o< [p] we usually write allF¢. From the definition of
[.1 we find:

alFpa v eal9 and aly,
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albFev y  « ol or alFvy,

alF@+ 19 e for all B=a: Rll—e= Bly,

all=e e for all B=a: BRI,

all-3x@(x) @ there is an a€ K, such that alF@(a),

all-vxp(x) e for all B=a and all a€ KB: RlF@(a).

Example: let P = (N, <), the set of natural numbers with stan-

dard ordering. Define K by Kn= 10,00 0« « sF, pﬁ the inclusions.
As unary relation R on X we take Rn: {03254 %% an=1}:

0571527 {0,1}

{0,1} {%}
Kis: {0} R is: ¢

One easily observes that the structure K satisfies

KFE qvx(r(x) v ar(x)).

Remark: our restriction to the class of Kripke-models for the
construction of countermodels is not only motivated by their
simplicity but also by the completeness theorem for Kripke-

models. If there is a countermodel in the class of sheaves,

then there is also a countermodel in the class of Kripke-models.
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2. ALGEBRAIC STRUCTURES

2.1 Deginitions

We shall straightforwardly adopt the classical notions of
group, ring and module. All structures are equipped with

a tight apartness relation, except if we explicitly specify
otherwise. The standard operations and relations will be
strongly extensional. The main sources we use are [He 2],
[Ru 1] and [Sc 1]. Other definitions of algebraic structu-

res can be found in [Ju 11,[Jo 1],[Ko 1] and [Mu 1].

2.1.1. Remark. In classical mathematics we can define mo-
noids, groups, rings and modules by some elementary univer-
sal axioms like V¥x,y,z.(x+(y+z)= (x+y)+z). Therefore we
axiomatize them in a canonical way in intuitionistic mathe-
mathics as structures with tight apartness. The definitions
can be paraphrased as:
(1) The structure satisfies the well-known universal
axioms.
(2) The domain is provided with a tight apartness so
that the standard total functions on it are strong-

ly extensional.

We shall give two examples below. With respect to rings we
shall restrict ourselves to the commutative one's with unity.
The definition below can be generalized to the theory of all

rings by deleting the commutativity axiom.

2.1.2. Definition. A (commutative) ring with tight apartness
is a structure with #, 4+, -, -, 0, 1 such that +, +, -, 0

and 1 are total and strict and
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(1) For +, *, -, 0 and 1 we have the well-known univer-
sal axioms of a commutative ring.

(2) # is a tight apartness relation such that +, -+, and

- are strongly extensional.

Let R be a ring and A an abelian group as defined above. The
induced apartness relation on RxA is (see chapter 1):

(r,a) #(s,b) + ErAEaAEsAEbA(r Fsv a #b).
We use this tight apartness in the definition of scalar mul-

tiplication for modules.

2.1.3. Definition. An R-module A is a structure with a ring

R, an abelian group A and a function -+ : RxA~+ A such that
is total and strict and
(1) For + we have the well-known universal axiocms of a
module.

(2) - is strongly extensional.

If R is a field (to be defined later) the structure is called
an R-vector space A. The study of vector spaces is the main

goal of the following chapter.

The definition of morphism (total and strict) for monoids,
groups, rings and R-modules is straightforward. If a morphism
is strongly extensional, then it will be called a strong mor-
phism. It is not natural to restrict our attention to strong
morphisms alone. It turns out that the inverse of a strong
morphism, if it exists, need not be strongly extensional.

The notion of surjectivity of a morphism is more or less ca-
nonical: a morphism o : A+ B is surjective if it satisfies:

¥b&€ B3ia€ A.o(a) = b.
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The morphism is injective if

Va,a'€ A.(c(a)=o(a')»a=a').
Now there is a reasonable alternative for injectivity: o is
an embedding if we have

Va,a'€ A.(a#a'+o(a) #Fo(a')).
A morphism ¢ is bijective if it is surjective and injective.
Then the inverse morphism o1 exists and is also bijective. If
¢ 1is a strong bijection, then o1l is a bijective embedding. If
o is a bijective embedding, then o 1is a strong bijection.
Therefore we define: ¢ is an isomorphism if it is a strong
bijective embedding. The inverse then is an isomorphism too.
A bijective morphism of a structure A to A itself is called a

weak automorphism. An isomorphism of a structure A to A itself

is called an automorphism.

Now we shall treat the structures in more detail.
2.2 Groups

We begin with some examples of groups, using the definitions
above.
(1) Aut(A) is the group of weak automorphisms of a structure

(monoid, group, ring, module) A. The apartness is induced by

the apartness on AA.

(2) Aut 7(A) is the group of automorphisms with the apartness

of AR, Aut #YA) is a subgroup of Aut(A).

(3) From a subcbject X of a group G we can construct the sub-

group H of G, generated by X, by using IN:

Helxe G|anemare ¢ (xsf ... f avm<n(f_e xvi le X)}.

1

In classical mathematics we may construct from a group and a
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normal subgroup a quotient group. Intuitionistically this may
not work because we may loose apartness on the quotient object.
Therefore we need a "complementary'" version just as # is in

some sense '"complementary" to equality.

2.2.1. Definition. A cogroup C of a group G is a subobject of

G satisfying

(1) -1 C,

(2) xy€ C+ x€ Cvy€ C,

(3) x"tecsxec,
C is normal if it satisfies one of the following equivalent
conditions:

(4.a) ¥Vx,y(xy€ C+ yx€ C),

1

(4.b) Vx,y(x€ C>yxy ~€C),

(4.c) Vx,y(yxy_iE C* e ),

The subobject (-C)= {x€ G|ax€ C} is a subgroup. If C is normal,
then (-C) is a normal subgroup of G, i.e. for all g€ G

g(-u(",')g_1E (=C). (4C) is stable: it satisfies Vx€ G(-ax€ C+ x€ C).
In the case C is normal, the quotient structure G/(-C) becomes a
group with apartness (2.1.1) generated by x*(aC)#1:(4C) ¢ x€ C.

Remark: each group satisfies x#ye xy_l#l.

2.2.2. A morphism ¢ : G+ H gives rise to a cogroup

C,= 1x€ Glolx)#1}.
Cc is a normal cogroup and we have a factorization diagram as in
the classical case:

6—2LH

N

G/(ﬂCc)

o* is a strong embedding.
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2.2.3. Remark. Names like cogroup (and coideal as we shall de-
fine later) have the advantage of being recognizably related
to subgroup (and ideal). It should be natural to call CU above
the "cokernel" of o. Unfortunately the word "cokernel" has al-
ready a meaning in homology theory. For a name for C0 we still

have to lock for an alternative.
2.3 Rings

From a ring R we can construct several group structures. Some
of them play a role in the following chapters.

(1) The additive group of R. With respect to #, +, -, 0 R is

simply an abelian group, the additive group of R.

(2) The multiplicative group or the group of units of R. Let

x"1 be the term Iy.(xy= 1). Then this group is

1 =

R*= {x€ R|Ex "}, with #,-, , 1 as for the ring R. The

elements of R* are the units.

The constructions of the power series ring R[[X]] and the po-
lynomial ring R[X] over R play a role in studying extensions of
a ring R, e.g. algebraic extensions if R is a field (cf. chapter

.

2.3.1. Definition. The power series ring R[[X]] over R is the
ring R[[X]]= R]N with the canonical definitions of +, =, -, 0,
1 and with # the canonical apartness relation of RDJ, i.e.

f# g+ EfAEga3dn€ I f(n) F#g(n).

2.3.2. Definition. The polynomial ring R[X] over R is the sub-

ring of R[[X]] with domain {f€ Rﬂq|3n€ INVmE€ IN (m>n-~» f(m)=0)}.

For convenience a term f€ R[[X]] will usually be written as
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B 2
f= f0+f1X+f2X *4 ¢ &

or, if f is a polynomial, as
£u k.. ALK,
n
R may be embedded in R[X] by the well-known strong embedding
o : R=+ R[X] defined by
o(a)=If€ R[X].(f(0)=aA ¥VmE W (m>0~+ f(m)=0)).

The inclusion R[X]-+ R[[X]] clearly is a strong embedding.

As with cogroups (2.2.1) it is natural to define a complemen-

tary notion of ideal.

2.3.3. Definition. A coideal C of a ring R is a subobject of

R satisfying
(1) -0eC,
(2) x+tyEC+xELCVYEL,
(3) xy€EC>x€ECAyEC,

C is weakly non-trivial if 4-1€ C. C is strongly non-trivial

i1 1€ Qs

It is simple to show that (AC)= {x€ R|-x€ C} is a stable ideal.

The quotient object R/(-AC) is defined straightforward.

2.3.4. A morphism ¢ : R+ S gives a coideal C_= {x€ R|o(x)#0}.

There is a factorization as in the classical case:
R——2 45
\\\n ///:*
R/("ICU)
o* is a strong embedding.

2.4 Integhal domadins

When we want to define an intuitionistic notion of integral do-
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main, there are several non-equivalent versions which genera-
lize the classical notion. Here we choose a version, which is
well-known in the literature ([He 2], [He 3]) and which has
nice properties, see below. Moreover, we already had some rings
in mind which we should like to be integral domains, and now
they do.

An axiom like Vx,y(xy= 0=+ x=0vy=0) is too restricted. The
strength of it comes from the disjunction on the right hand side
of the implication. An axiom like 1= 0 is less attractive be-
cause of its double negation nature in the presence of apart-

ness (al= 0+ 41#0).

2.4.1. Definition. An integral domain is a ring satisfying

(1) 1#%0,

(2) x#FHF0A y# 0> xy#0.

Some simple properties of integral domains are:
xy=0Ax=0+y=0,

x#0A En+ x"#:0, n an IN-variable,

mi mn
[ i (ax.=0v 1xj5 0)a XqT e tx = 0] » (xlz Dv..vxns 0y

ESESES T o

A property which is not derivable from the theory above is

xy=0+rx=0vy=0.
Nevertheless in some proofs of statements later on we need such
splittings of products. It turns out that, with aid of the
apartness relation, we sometimes can get such splittings. In
the following example we illustrate how we get one.
Let pl(X), pz(X) and p(X,Y) be polynomials over an integral do-
main such that pl(D)E pz(U)E p(0,0)= 0. Without use of the
apartness we only may expect splittings in the following way.

We have:
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XyEO’\(1p1(x)50V-|p2(y)-=-0)*xEUVyEO.
On the left hand side as well as on the right hand side of the
implication we have a disjunction. But with use of the apartness
we can derive:

Xy Z20AD(xX,y)FF0 >*x=0vy=0,.
Here we only have a disjunction on the right hand side of the
implication. That makes the result more valuable.
Another application of apartness is: let p, g be distinct prime
numbers. Then we have p7#0 v q#0.
Proof: there are s,t€R such that sp+tq=1#0. Then sp#0 v
V tq#0 and p#0v q#0.

The result holds in each ring with 1%0.

2.4.2, Definition. A coideal C is called prime if it satisfies
the conditions
(1) 1€cC,

(2) x€CAyEC+xyEC.

We can use prime coideals to construct integral domains. From
the definitions it easily follows that for all coideals C we
have ("C is prime") ¢ ("R/(-C) is an integral domain™).

The following theorem is due to Heyting, see [He 21.

2.4%.3. Theorem. Let R be an integral domain. Then RI[X] is an

integral domain too.

Proof: easy. The essential step in the proof is based on the

following lemma.

2.4.4. Lemma. R is an integral domain. Let b= b0+...+bpxp,

o= CO+"'+chq and a= bes=s aU+...+ap+qXp+q. Then for each pair
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i,j we have bicj#0-+ 3k € N (i+j<k<p+q A ak#O).

Proof: induction on (p+g-i-j). Step 0: trivial. Induction step:

assume b.c.#0. Thus b.c.=a. .- Z  b,c. 0.
1, 5 19 i+] K+1=i+] k71
k=1
ai+.=#:0v W (b, #0)v w (cl#O)-
J k+1l=i+j k+l=i+]
k>1 1>
Now use the induction hypothesis (k+j>i+j or i+1>1i+3):
a., .#7#0v w a, #0.
1+] 1+j+1<k<p+q ©

This lemma has more applications, for instance in the following

theorem as Heyting observed [He 2].

2.4.5. Theorem. R is an integral domain. Let b= b0+...+bDXp,

c= co+...+chq and a= bc= a0+...+aan. Let t€ N such that

> fea = =
p+tg -~ n+t and a_t 0. Then bp 0v Cq 0.

Proof: p+g>n+t, thus n-t>n+(n-p-q)= (n-p)+(n-q). And an-t##o’
thus W b.c.#0.
i+j=n-t
Assume some bPCS%EO from this disjunction. Thus r+s=n-t. Then
r>n-qv s>n-p.
Because of the symmetry we may choose in this disjunction.

Choose r>n-q. Then br##ﬂ and we have cq##O*—3m3>n.am##0 by

using lemma 2.4.4. Thus ﬂcq##ﬂ, 1wk g, 0. Symmetry:

In the last theorem the case t=0 is of special interest. Apply-
ing the theorem repeatedly we can find p and g so that p+q=n
and b_##0, c #0.

P q
The following lemma is closely related to 2.4.4 and it can be

used to prove that R[[X]] is an integral domain if R is so.

2.4.6. Lemma. R is an integral domain and a,b,c€ R[[X]]. Let
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= P = q = P R
b= b0+...+pr o n CW c0+...+ch +.. and a=bcs= a0+...+anX Fa

Then for each pair i,j we have bicj##UA-akE IV (Osk<d+J A ak##D).
Proof: by induction on (i+j), analogous to the proof of 2.4.4.
From lemma 2.4.6 it immediately follows that

2.4.7. Theorem. If R is an integral domain then so is R[[X]].

Since subrings of integral domains are alsoc integral domains,
theorem 2.4.7 gives an alternative proof of the theorem that if

R is an integral domain then R[X] is an integral domain (2.4.3).
2.5 Fields

Of main interest is now the notion of field. The apartness makes

it again possible to give an axiomatization without negation.

2.5.1. Definition. A field is a ring satisfying

(1) 1#0,
(2) x#0- Ex °,

where x-1 is the term Iy.xy=1 (cf. 2.3).

It is simple to prove that a field is an integral domain. Exam-
ples of fields are the rationals, the Cauchy reals and the Dede-
kind reals and its algebraic extension, the complex numbers

([Bu 11,[Da 21,[Ro 1],[Tr 31).

As in the classical case it is possible to construct from an

integral domain the so-called guotient field. In detail:

Let R be the integral domain and S= {x€ R|x#0}. Then we define
on RxS the following equivalence relation:

(x,y)~ (z2,t)e xt=yz.
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Let
Q(R) = {a€ P(RxS) |3(x,y) € RxSv(z,t) € RxS[(z,t)E€Eae (x,y)~ (z,t)]}.
As tight apartness on Q(R) we have:
a##b+ 3(x,y) € ad(z,t) € b.xt##vyz.
With the well-known definitions of +, *, =, 0 and 1, Q(R)
becomes a field. The standard inclusion o : R- Q(R), defined

by o(x)=TIa€ Q(R).(x,1)€ a is a strong embedding.
For the following theorem we need a weak version of finiteness.

2.5.2. Definition. An object X is weakly finite if it satisfies

vae xN3i jem(i<jiaali)=alid).

In classical algebra finite integral domains are fields. This

property can be extended to the following intuitionistic version.

2.5.3. Theorem. Let R be a weakly finite integral domain. Then R

is a field satisfying ¥x€ R(x#¥*0v x=0).

Proof: let x€ R. Take a= If€ RN (£(0)=1a YmE IN (£(s(m))=x*£(m))).

m

Thus a(m)=x . R is weakly finite thus there are i,j€ IN with

i<3j and xiE xj. xi(l-xj_i)z 0. From 1#0 we get
1371y It
1~xj—i¢#0v xi#*o

xiE Ov xj_ia 1

1

x=0v (x#F0A Ex ).

This theorem shows that finiteness makes the theory of integral

domains and fields considerably stronger.

2.5.4, Definition. A coideal CE R is called minimal if it satis-
fies the conditions

(1) 1€c,
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(2) x€ C»3y€ R.axy-1€ C.

One easily verifies that for all coideals CC R we have

("C is minimal")+ ("R/(-AC) is a field").
This implies that a minimal coideal is prime (see 2.4.2). The
name "minimal" of a minimal coideal can be justified by the
property: Let D, C be coideals, C minimal, and let 1€ DC C.
Then D= C.
Proof: let x€ C. We must prove that x€ D. By definition there
is a y€ R such that =xy-1€ C. Thus =xy-1€ D. D is strongly

non-trivial, thus 1-xy€ Dv xy€ D. So xy€ D and x€ D.
2.6 Local nings

We shall study local rings in a more general context than that
of rings with a tight apartness. The theory of local rings is
of special interest, e.g. see [Jo 2], [Mu 11, [Sc 2] or [Wr 1].
It can be axiomatized by geometric axioms ([Jo 21, [Ma 2]).
This implies that - in the terminology of chapter 1 - it has a
finite set of axioms of both the forms N and P as we shall see
below. We will consider local rings because many results in
chapter 3 and chapter 4 for fields can easily be generalized

to local rings. Then these results are also applicable to other

notions of fields ([Ko 1], [Re 11).

2.6.1. Definition. A (commutative) local ring is a structure

with +45 *5 =4 04 1 such that
(1) +, *y, -, 0, and 1 are total and strict,
(2) for +, =, -, 0 and 1 we have the well-known universal

axioms of a commutative ring, with -0= 1,

€3y velEx Ly Blass)"1.,
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When we replace axiom (3) by the equivalent axiom
Vx.(y.xy=1v Ay. (1-x)y = 1)
we see that it is of type N and of type P. The relation # on
a local ring, defined by x##y4+E(x—y)H1 is a (not necessarily
tight) apartness. Now we can formulate the relation between

local rings and fields as follows.

2.6.2. Proposition. Let R be a local ring. The following proper-
ties are equivalent:

(1) R satisfies Vx(-Ex L»x= 0),

(2) the apartness # on R is tight,

(3) R is a field (2.5.1).
Proof: straightforward.

Most results of the sections 2.3, 2.4 and 2.5 can be generalized
to rings whose apartness need not be tight. Here we shall list
some differences. For the construction of a quotient ring we
need more than only a coideal as in 2.3.3. We need a pair C,I
where C is a coideal and I is an ideal such that IC (aC). Then
the quotient ring (R/I,C) has the following equality: x= y+
“ x-y€ 1 and apartness x#y+ x-y€ C. The prime coideals give
integral domains, but with not necessarily tight apartness and
the minimal coideals give local rings if they satisfy

X€ C» Iy.xy-1€ 1.
Theorem 2.4.5 does not hold in general.
The construction of the quotient local ring Q(R) from an inte-
gral domain with generalized apartness still works although we
have to define the equivalence relation ~ on RxS in another

way: (x,y)~ (z,t)* 3s€ S.s(xt-yz) =0 (see [La 1] p.67).
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The real drawback is that the canonical morphism o : R+ Q(R)
need not be injective without an extra assumption. R must be

balanced, i.e. R has to satisfy vx,y(x##0A xy=0+y=20).
2.6.3. Proposition. Let R be a local ring. Then R[X] is balanced.

Proof: let f,g€ R[X], f=f +...+mem##O, g= g0+...+ann and

0
fg= 0. The equation fg= 0 can be translated into the following

linear equation for the coefficients.

- ¢ 3
fO 0 -0
1 [f1 T,
f i f
. :O
. m
il
. Me &
D‘ O ------ f
m

By 4.3.2 this implies (go,...,gn)s 0. Thus g= 0.

The generalized version of theorem 2.5.3 is also somewhat diffe-
rent. Let R be a weakly finite integral domain with generalized
apartness. If R is balanced then it is a local ring satisfying
Vx(x#0v 9x#¥0). Morecver, if R has no nilpotents, i.e. if R

satisfies Vx(xzi 0+ x=0), then R is a field according to 2.5.1.
2.7 Modules

We return to structures with a tight apartness. Let A be an R-
module. We shall use Greek characters for R elements and Latin
characters for A elements. A module over a field is called a
vector space. Vector spaces have some additional properties, e.g.
ax#F 0o a#F#0A x¥#0. We shall present some constructions of modu-

les below. They will be used in chapters 3 and 4.

(1) Let R"= RX where X= {m€ IN |1<m<n}. As apartness on R" we
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take the apartness of the exponent. With the well-known opera-

X, it is an R-module. Elements of R" are usually writ-

tions of R

ten as (ul,...,an). The apartness relation is in this notation
(Ql""’an)##(81’°"’8n)f>1g£;h(gui’\EBi) Alsgghai##si.

(2) Let A be an S5-module, BC A a subgroup and R€ S a subring,

such that a€ RAxXx€ B+ ax€ B. Then B is an R-module.

A case of special importance: for each subring R of S we have:

S is an R-module.

(3) This is a generalization of construction (1). From an R-

module A and an object V we can construct the R-module over AV,

which is the function module with pointwise operations. For a

subobject DS;AV we can construct the submodule generated by D.

Define

v N ™ *
M(D,R) = {x€ A" [In€E WInER Fa€ED WE V(ix(v)= Z asa.(v))}.

i=1
M(D,R) is a module with the operations and the apartness from
AV. For elements of M(D,R) we usually write
x=oa,a,+...+a_a_ with the a.€DC AV.
171 nn 1

2.7.1. Definition. A comodule C of a module A is a subobject

of A satisfying
(1) -0€ C,
(2) X4y EC* XEQV yE €,

(3) %€ = xE Q.

Let CE€ A be a comodule. Then (-C) is a stable submodule of A.
The quotient module A/(-C) is defined straightforwardly. A mor-
phism ¢ : A+ B of R-modules, also called an R-linear map, gives
a comodule C_= {x€ Alo(x)#0}. For C, we can derive the well-
known theorems about quotient objects and factorizaticn as in

2202 atigd 2 .84,
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2.8 Models of group thechy

With help of the remarks of chapter 1 we can characterize the
sheaf models of groups, rings and modules. The classes will be
treated successively. We start with groups.
Let G be a model of the theory of groups, G€ Sh(X), the cate-
gory of sheaves over the topolecgical space X. The group opera-
tions give rise to functions on the sets G(U) and Ga (g X,
a€ X). The group axioms yield that the G(U) and G, are (clas-
sical) groups. In chapter 1 we found that #Ea, the induced
apartness relation on Ga’ is the complement of an equivalence
relation ~, It is simple to show that strong extensionality
of + and ~~ means that the corresponding group operations on
Ga preserve ﬁh. Therefore, to characterize this equivalence
relation it is enough to determine the structure of the equi-
valence class of the unit element 1@ in each stalk Ga.Let the
equivalence class of the unit element in stalk GOc be Na' From
the strong extensionality of - and ~~ we can prove the follo-
wing intuitionistic statements.

XyFEL> x#F1v y#F# 1,

x_i##la-x##l,

yxy_1#1+ x¥F 1.
These are of type N and of type P, thus for the N in the stalks
we have

aae Na and bae Na = aabue Nu’

=1

EN_,

a €EN = a
a o a a

a €N and b €6 =b ab 1EN

o o o o o o o o
Thus the N are normal subgroups of the Gu'
Conversely let G be a sheaf of groups with a tight apartness.
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Assume that in each stalk Ga there is a normal subgroup Nu so
that for all a_,b € G_ we have a€ [a#Db] if and only if a b len .
a’ o o a o o
Then we easily see that this model satisfies the intuitionistic
statement Vz(x##y - xz#yz A zx¥F zy). With this property we can
show that -+ and ~1 are strongly extensional. Thus G is a group

model.

Examples:
(1) Let M be a k-dimensional manifold in R"™ with smooth group
operations. Take for the group model G as underlying topological

k we take

space X = HQQ with standard topology. For open UC R
G(U) = {fe Cm(U,M)]f is a local immersion}.
For f,g€ G(U) we take as apartness
[f# gl = {x€ U|£(x) #F g(x)}.
With the group operations of M pointwise applied to the func-
tions we get an intuitionistic group G.
(2) Let G be a (classical) group with normal subgroup N. Then

we can form the following simple Kripke-model.

G,=6,N ={1} GY=G/N,NY={1}

Gy =C,N =N
All morphisms are canonical. As apartness we hdve ol x#ye
'%’xy-iﬁ'E N, BlFx#yex#*y and ylFx#ye x#y. In other words, the
apartness is induced by the normal subgroups in the nodes (i.e.
the stalks of the corresponding sheaf, see chapter 1) as described
above. Observe that if al-x¥y, then BlF-x#y, thus x= y. From
that it follows that the apartness of G is tight and G is a group

model. This model serves as a prototype for all sorts of Kripke-

models for group theory.
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2.9 Modets of ning theonry

Analogous to the characterization of models of group theory we

can characterize the models of ring theory.

2.9.1. Let R be a sheaf of (commutative) rings with a tight
apartness. Assume that in each stalk Ra there is an ideal Ia
such that for all au’bae Ra we have o€ ﬂé##ﬁﬂ if and only if
aa-baé Iu' Then +, * and - are strongly extensional and R is

a ring model.

Examples:
(1) Let R be a (classical) ring, 1#0. Consider the following
Kripke-model R.

R, =R,I

- - 2 -
3 B—O RY-R[X]/(X ),IY-O

~

R, SRIXIAO )L =00

All morphisms are cancnical. As apartness we have uﬂ—i%ﬁ§a
x-y € Lo BlF-x#y e x#y and ylFx#v e x#y. Thus the apartness
is induced by the ideals in the nodes as described in 2.9.1.
R is a ring model. Observe that RE %? 0, but also

B# X=0 v -,}.(; D
(2) Let §= CO([O,l],ﬂi) be the (classical) ring of continuous
functions with the topology induced by the supremum norm. Let
X be an arbitrary topological space. Take as model the sheaf
S over X which is defined for each open UC X as follows:

S(U)={f : U+ S|f is continuous}.
As apartness we take for f,g€ S(U)

[£#gl = {a€ U|f(a) #g(a)}.

With the canonical ring operations S is a ring model.



39
If a sheaf model R is a model for the axioms of an integral
domain, then by definition R is a ring model too. Therefore,
if we want to characterize integral domain sheaves we may res-

trict ourselves to ring models.

2.9.2. A ring model R is an integral domain if for the stalk

structures (R_,TI ) as in 2.9.1 we have I _#R_ and I_ is a prime
a’ o a o o £

ideal. This easily follows from the axioms of 2.4.1 which are

of type N as well as of type P (see chapter 1).

For group theory it is simple to prove, that for each pair (N,G)
with N a normal subgroup of a classical group G there is a group
model G in which (N,G) occurs in some stalk as N= Na and G = Gu'
And for ring theory we have the same for each pair (I,R) with I
an ideal of a classical ring R. The question arises: which pairs
(I,R) ocecur as stalk in integral domain sheaves?

Let R be a ring model which is an integral domain. Let (Ia’Ra)

be a stalk structure as described in 2.9.1 and in 2.9.2. We shall
derive some necessary conditions for (Iu’Ra)' We already know
that Ia#:Ra and that I  is a prime ideal. R is an integral do-
main, thus for each natural number n we have Bh x'=0>x=0. The
sentence x"'= 0+ x=0 is of N-form, thus Ra must be nilpotentfree.
An element c€ R is called a zero divisor if there exists a bER,
such that ¢b=0 and b# 0. We can derive that Rk xy=0aA x#0+y=0,
which is of N-form, thus IDt must contain all zero divisors.

Taken together: if a pair (IQ,RQ) occurs in a stalk of a sheaf
model of integral domain theory, then ROt is a nilpotentfree ring
and T is a prime ideal, Ia#:Ra’ such that IOL contains all zero
divisors.

The converse is also true: all such pairs occur in a stalk of a
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model:
Given a nilpotentfree ring R with prime ideal I#R containing
all zero divisors, then there is a sheaf model of integral do-
main theory with (I,R) in a stalk in a way as described in 2.9.1.

Before we construct our sheaf medel we need the following lemma.

2.9.3. Lemma. Let R be a nilpotentfree ring with prime ideal
I#R such that I contains all zero divisors. Let c€ R, e#0.

Then there is a prime ideal J.E I such that cé& Jg-

Proof: let S=R\I. S is a multiplicative subset such that 0¢ S.
Let S' be the least multiplicative subset containing S and {c}.
Since §S' = {cns!n2=D and s€ 5} and ¢# 0 nilpotentfree and s zero-
divisorfree for each s€ S, we have 0¢ S'. Thus there is (use
Zorn) a maximal multiplicative subset T2 S' with 0¢ T. Let

d, = R\T. Then J, is a prime ideal with J,CI and c¢ Jo-

Now we construct the integral domain sheaf R in which the (T,R)
as mentioned above occurs in some stalk. In fact we construct a
Kripke-model such that R is the corresponding sheaf model. As
underlying partially ordered set we take as domain D= R and as
ordering xSy (x=y or x=0). In x= 0 we take as stalk struc-
ture I,=1, R;=R. For x#0 we take B R/JX and Ix: 0 (we take

the J  from 2.9.3). In a picture
W R/JC,D

Rl
0

The apartness is defined as follows: let a,b€ Rx,then Xl a#£ D e
a-bé Ix' We easily verify that this model is an integral domain.

The only non-trivial point is the tightness of the apartness.
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Assume that 0|F-c# 0. Then clFa¢#0. If ¢# 0 then c= 0 in R/JC.

This contradicts 2.9.3. Thus c=0 in R and Ol-c¢= 0. From this

the tightness easily follows.

For the characterization of the sheaf models of the axioms of

field theory we may restrict ourselves to ring models. From 2.9.1

and 2.5.1 we easily find the following characterization.

2.9.4, A ring model R is a field if for the stalk structures

(R ,I ) as in 2.9.1 we have I _FR_and I_ is the unique maximal
a’ o a a o

ideal of R+ The rings Ra are local rings.

2.9.5. Let R be a ring, ICR an ideal. From 2.9.2 and 2.9.3 it

easily follows that (R,I) occurs as stalk structure of a field

model if and only if R is nilpotentfree and I is the unique ma-

ximal ideal of R. Therefore, to describe some stalk structure

of a field model we only need to give a nilpotentfree local

ring R.

2.9.6. Examples. For the field models below, by 2.9.5, we only

need a description of their ring structures.

(1) Let R be:
\ /,P
: -1 .
Z, 218 T, wWith
Then R¥ p=0v ap= 0.

(2) Let R be:
- K(X) K(Y)

\\Q<T 0 /////Gﬂ*tl

s~ YKIx,Y17(XY) with
Then R¥ XY=0-+X=0v Y= 0.

(3) Let X be a topological space and

S= Z\(p).

S the complement of (X,Y).

F a (classical) field with
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absolute value ([La 1], p.283). This absolute value induces a
topology on F. Then the sheaf C(X,F) of partial continuous func-
tions with open domain and with the canonical operations from
F, is a field model with apartness

[##gl = {a€ U|f(a)#*gla)} for f£,g€ C(U,F).
(4) Let R be a nilpotentfree (classical) ring. Spec(R) = {pC R|
|p is a prime ideall}. On Spec(R) we take the Zariski topology,
which has as a basis the collection 0d= {p€ Spec(R)|d€ p}, A€ R.
Then we take on Spec(R) the sheaf with in each p€ Spec(R) as
stalk the local ring Rp: S_lR, with S= R\p. As ring of sections

-1

R(Od) on the basic opens Od we get R(Od)= S "R with S the mul-

tiplicative subset, generated by d.

Finally we want to give a characterization of local ring models
where local rings are defined as in 2.6.1. We cannot use the
characterization of rings with apartness of 2.9.1 since the in-
duced apartness of a local ring need not be tight. But the axioms
for a local ring are of type N and of type P (see chapter 1).

Hence we find the following characterization.

2.9.7. Let R be a sheaf of rings. Then R is a local ring model

if and only if the stalks R are local rings.

Since fields with apartness are local rings the models of 2.9.6
are examples of local ring models. However, local rings are more
general. One easily verifies that for all (classical) rings R#0
the constructicn of 2.9.6(4) gives a local ring model. This im-
plies that each non-trivial commutative ring R occurs as global

sections ring of a local ring model.
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2.10 Modets of modufe theonrny

The characterization of the module models A over a ring model
R easily follows from the characterization of the group models

and of the ring models.

2.10.1. Let R be a ring model and let A be a group model so that
A is abelian. For all open UC X and for all o€ X we have that
A(U) and A are abelian groups. We use an additive notation for
the group operations on A. By 2.8 there are subgroups Nag_Aa so
that for all a,»b €A, we have a€ ﬂé##ﬁﬂ«oau—bué Na' By 2.9.1
there are ideals 1 g_Ra so that for all au’bae RCl we have

o€ ﬂé%ﬁﬁﬂc,au—baé Iu‘ Let A be an R-module. By chapter 1 we
easily find that 2.1.3(1) means that we have a morphism

* : RxA+ A satisfying the well-known commutative diagrams for
scalar multiplication, i.e. the equations a(x+y) = ax+ay,
(a+B)x = ax+Bx, (aBlx=a(fx) and 1x= x correspond with the fol-

lowing diagrams.

Bxéx_A_ _ Rx (AKA) —> RKA

(ﬂlxﬂz)x(ﬂlxﬂa)

(RxA) x (RxA)

l*x*
+

axA > A
E*E*é'————ﬁ———e(ﬁxﬁ)xA——iEQ—éﬁ*ﬂ
(ﬁjxﬂg)i(ﬂ2xﬂ3)
(Rx) ¥ (Rxt) .
l*x*
AxA . — A
(RxR) xA — =5 Rx(RxA)22*" sRxA

= xid - l*
*

R¥A > A
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X
llxid lid
*

Rep———4
For all open UC X and for all o€ X we have R(U)-modules A(U) and
R,-modules A,- The strong extensionality of the scalar multipli-
cation is equivalent to the property oax# 0+ o 0A x# 0. This
formula is of type N and of type P. So this property and hence
2.1.3(2) is equivalent to the assertion that for the scalar mul-

6 = : : A N e .
tiplication in the stalks we have Ia Aa—'Na and Ra Na"Na

Example:

Let R be a (classical) ring, IC R an ideal. Let A be a module
over R with submodule NC A so that I‘AC N. Then the following
Kripke models R and A with canonical morphisms form a ring model
R and a module A over R. The ideals and submodules in the nodes

are the Ia and Na as menticned above.

R: R,Q\ R/I,0
R,I

A A,0 A/N,0
A,N

Observe that A/N is the module over R/I with scalar multiplica-

tion £/I-a/N= Ea/N.
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3, LINEAR ALGEBRA

3.1 Local nings and fields

In the literature there exist several versions of intuitionistic
field theory, all extending the notion of field in classical
mathematics. For some of these theories, some statements have
been derived, which are extensions ofwell-known properties in
classical mathematics. As we shall do here with linear algebra,
we of course have to reprove all of such statements, starting
on an elementary level. However, it is not very attractive,

if we have to do this for each of these field theories again.

We cannot avoid this completely, because on a more advanced
level the different theories will diverge, but on the level

of linear algebra some theories are close enough so that we

can give a uniform way to derive their basic properties ([He 2],
[Ko 11, [Re 1], [Jo 1]1,[Ju 11). Therefore we shall do linear

algebra over local rings.

Further we shall consider the following sorts of field theory:

3.1.1. Definition. A W-field is a local ring satisfying

Y (-lEOl—l +aa0=0).
An H-field is a local ring satisfying
=1
vo(=Ea “+a=0).

An AK-field is a local ring satisfying for all n

,a (5 m a.= 0~ W Ea£1

Vai,...
ik 1<i<n *t 1<i<n

)
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As we observedbefore, an H-field is just a field in the sense
of chapter 2. The relation E(x-y)_l is an apartness relation
on local rings making the operations strongly extensional.
The extra axiom for H-fields makes this apartness tight. The
axiom defining a W-field is fairly weak. It is possible to construct

models for the theory of W-fields satisfying
=1
~va(~Ea “+oa=0)

or satisfying

1

avo(—0= 0+ Ea 7).

On the other hand both H-fields and AK-fields are W-fields.
AK-fields are studied in [Ko 1] and [Re 1].

There is a little ambiguity in the definition of AK-fields:

in the presence of a natural number object we have an object

of finite sequences of field elements. Now we can interpret

the definition so as to quantify over sequence objects. Another
way of interpreting the definition is to read it as a scheme

of axioms with n=1,2,.... Usually it is enough to work with
the scheme, but for instance if we wish to work with matrices,
whose size is indexed by a natural number internally, we need

an AK-field with quantification over the sequence object.

By introducing modules over a local ring we have to distinguish
modules which are provided with an apartness and modules without

apartness.

3.1.2. Definition. An R-module without apartness (defined

as usual) will be called a general module.
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An R-module provided with apartness so that scalar multiplication

is strongly extensional will be called a strong module. We

tacitly assume that the apartness on such a module is tight
if R is an H-field. The names introduced here are used in

chapter 3 only.

From chapter 1 we get that each submodule of a module of the
form r* is, with canonical apartness, a strong module over R
and also over subrings of R. Thus R" is a strong R-module
for local rings R, with canonical apartness:

(0, geeest I)F(RB ,...,B ) M (Eoo. A EB.) A W a.# B..
1 n il ’"n % &n i 1 151 i i 1

3.2 Dependence, 4independence and freedom

With respect to notions like dependence, independence and
freedom we shall restrict our attention to finite sequences

of vector elements of the modules.

3.2.1. Definition. Let A be a general R-module and Ya¥qsewesy

m)

xl,...,xne A.

: Vs a¥V depends on XpseeeaXy if for all y; we have

aul,...,uné R yisa Xt e o X

nn’

2 SARRETI and x -»X  are equivalent if the two sequences

g

depend on each other (i.e. if they generate the same submodule).

3. y is independent of KqseesaX if we have

Val,...,uné RAys= a1x1+ st X

4. For strong modules we can define:
y is free from XqaseeaXy if we have

€
Vul,...,an R y#ﬁalx]+ ceeta X .
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Clearly we have:

A

- "y depends on xl,...,xn”++”y independent of XKysewnsX,

and "y is free from Xqs+++5%x " "y is independent of x p'e

IEEEEEE
The expressions in quotes abbreviate certain formulas
of the formal language. In classical mathematics the last

implication could be replaced bya bi-implication if we should

consider vector spaces over fields.

3.2.2. Example. The following vector space model over a field

shows that in intuitionistic logic this is not so simple.

Q(y15Y2)

Qly,)

Field F. %

Q(yi,yz)[X,Y] with N=(Y—y2X).Q(y1,y2)[X,Y]

Q(y)[X,Y] with N:(Y—le).Q(yl)[X,Y]

Vector space A. Q[X,Y] with N=(Y-X).Q[x,Y].

The N's in the definition of the node structures of A are the
Nu's of 2.10.1. In the definition of F we need not specify the
unique maximal ideals. In fact they are the 0-ideals of

the fields in the nodes. F is an H-field as well as an AK-field
and A is a (strong) module over F with tight apartness. We
have:

Fl-Vala#0vas=0)

and A | V¥x(-x=0vx=0), but nevertheless:
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(F,A) E "Y is independent of X" A~ "Y is free from X".

3.2.3. Definition. Let xi,...,xn(EA, a general module.

1. Xqaee-sX are weakly dependent if

Ja X, + ...+toa x =0)

et (= A o, =0 A0, X,
1 n"n

3
2. Over strong modules A we define:

X1+ X are strongly dependent if

3u1,...,un(1£g<n ai#=GA a X, ...t a X = 0)

With respect to strong modules over AK-fields the notions
are equivalent. Over W-fields the negations are equivalent.
Over H-fields these negations are equivalent to the notion
of independence, because of the stability of the equality

(chapter 1).

3.2.4. Definition. Let A be a general module, xi,...,xne A.

T X

PERERE e is independent if

Vol seeeqtt,. (0%, F ot x. .m0 M a.= 0).
1 n 17 n n 1<j<n *
2. Over strong modules A we define:

XygoeoesXy is free if

Ya a (W a.# 0+a,x, + ... +a x #0).
n'n

3 ey
1 B gk 1

For the construction of free sequences we have the following

3.2.5. Lemma. Let A be a strong module and y, xl,...,an A,
Let Xqoee e s Xy be free and y free from XqoeresX e Then y,
KypeeesXy is free.

Proof: Let o a0 €R such that W af# 0.

03 -
0<i<n
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Let =z

Upy oy Xy F et o X To prove: z# 0. We have

a,#0v W  oa.#0. From a,#0 we get Ea-l and
0 : 0 0
1<i<n

i -1
y=og7z- a, (a1x1+ sy unxn}.

y free from x s X gives z#0. From W ai#=0 we get

gree
1<isn

z - aoy:#O, for XqseeesX, is free.

Thus z# 0 va, #0. From a,.# 0 we already derived z# 0. Thus

0
z# 0.

3.3 The Austauschsatz

As Heyting observed ([He 21]), the Austauschsatz is a basic
tool in many proofs. Before we present the theorem we give

a lemma.

3.3.1. Lemma. Let A be a strong module, x,yl,...,ynE A such
that x#0 and x depends on Vyoeees¥ - Then there is an 1,
1<1i<n, such that yi#dJand Yqsres¥ g %5 Yipqae-esY, and
Yqseeoy, are equivalent. Moreover, if one of these sequences
is free or independent, then so is the other sequence.

Proof: There are Cyseees@ such that

X=o ¥ wiew # mnynﬁﬁo, thus W oa.y.#0.

¥
373 1<i<n

Then there is an i, 1<i<n, such that y{# 0 and ai#:O and
Vim ‘1(—ay— -a +x - - -oa_y )
i= e Y17 e TG 1Y i+1Yi41” =07 n¥n’

Conclusion: Yqse+ea¥i_q9 X5 Yiuqs---5¥, and y ,...,y are
equivalent. This transformation is invertible, because yi#EO
and 1 depends on Yyseees¥iqs X Yiqoee0s¥, in the way described

above. For the last claim it is enough, because of the invertibility,



to prove one direction : if Yqse-¥y is free, then YyseeesYi_qo
2. yi+1,...,yn is free. The same for independence. Assume
Yqorreoy free and let 81""’Bn be given, satisfying W R. #U.

. Pieh

Let 22 Bqayg® vovd By q¥i g b ByXy* BrogTPiaq® vov ¥ Bl To

prove: z#0.

We have:

7, = (61+u181)y]+ . (Bl_1+al_181)y]+ ulﬁiyl + (Bi+‘1+ai+181}yl+] ...

If B, #0 then a;B; #0 and thu z #0, because Vs W 4

free. If Bj#(} for - i=j then

B.+a. B.#0va. B.#0. And this gives z# 0, becausc
] Jj 1 Tk =
YooYy is free and o, is invertible. The proof for independence

is similar.

With the lemma we get (see [lle 2]):

3.3.2. Theorem (Austauschsatz). Let A be a strong module and
1,...,xm,yl,...,yné A such that

wavecgil, T8 ee an ve.,% depends on . .
s **m 7 fr d x5 >m ! ’ ¥q» Y

Then there is a sequence z .,%2_€ A, madce from T
’“n 1 n

12"

by replacing m vectors by x s X such that

i

Ty e i 18 BgnIvalent to A .
1°? 3 quive yi’ :yn

n

Moreover, if one of these sequences is free or independent,

then so is the other sequence.

Proof: We apply the proposition to the successive subslitution

of x S X There is only one aspect that we have to check.

g

If we have replaced say YqseeoYy by XyseeosXss then we know
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(induction) that XqseeesXis Yigqaeees¥y and y,,...,y, are

equivalent. Now we must replace one of Yigq2e oYy by X541t

This is possible because there are @ys...50, so that
Xipq® OqXg+ cenbOox, bar oYLt Lot Oy
NOW X g = QyX = «vo= aixi#EO because x;,...,%x;,4 18 free.

Thus W Graoy W0
iZi+r 17

Then we apply the method of the lemma. The remaining details

are routine.

3.3.3. Corollary. If in the premiss of the Austauschsatz m= n,
then XyseewaXy is equivalent to Yqseeesy, and

Ppyusmallis is free.

3.4 Independence and freedom overn AK-fields

With respect to vector spaces over H-fields freedom is the
basic notion to work with. With respect to AK-fields one
uses independence ([Ko 1], [Re 1]). So 3.3.2. seems to be
less interesting for vector spaces over AK-fields.

Let R be an AK-field and consider the strong module R™ over

R. It is simple to show that this vector space satisfies:

Vx (= Mm x.=0> W xl.#[]).

g e w
A n 1<i<n 1 1<i<n

As a special case: for n=1 we have v¥x(o x= 0+x#0). Therefore

we have for x;,...,x € R™: if Xyseens Xy is independent,
then Xpoee Xy is free. Now we shall present a result in
the converse direction.

3.4.1, Lemma. Let R be a W-field. For x1,...,xneRm, iE

XpseeesXy is free then Ky seeesXy is independent.
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Proof: let xl,...,xne R™ be free. KpsewosXy depends on the
basis €1s+ces8 € rR™, Using the Austauschsatz we can extend
our sequence to length m. It is enough to prove that this
new Sequence X,,...,X ., which is free, also is independent.
Let the vectors XpsewesXp form the columns of an m xm-matrix
M with detM#0, i.e. M has an inverse M-1 (by 3.7.2).

Now assume aqXgt et = 0 and let as= (al,...,am). We

X
m m

must show that a= 0. We know that Ma= 0, thus:

=1

as=M I“'I‘EJ.EI"[—:‘L

0=0.

AK-fields are W-fields. Thus if R is an AK-field and

xl,...,an R™ then we have

"

XgseeesX is independent" « "x SaX is free".

127

3.5 Degree and dimension

A basic notion in linear algebra is dimension. We shall
use more than one intuiticnistic version of that notion in

classical mathematics.

3.5.1. Definition. Let x -5x € A.

ERE
1w IE Xqis+++5X  generates A we say that A has degree at
most n.

2., IE XqseeesX, is free (A is strong) we say that A has

degree at least n.

B EF Xqse++5%, generates A freely (A strong), we say that
A has degree n or is of degree n.

L IE x s X generates A independently, we say that A

1>

is n-dimensional.

Notations: deg(A)<n, deg(A)=n, deg(A)=n, dim(A) = n.

It is a simple task to extend the list of definitions with
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properties, related to names like dim(A)<n and dim(A)=n.
From the Austauschsatz we can derive some corollaries concerning

degrees.

3.5.2. Remark. 1. If the degree of a strong module exists,
then it is unique. Thus deg(A) is a partial map.

2. Let A be a strong module so that deg(A) exists. Let
KysewosX € A, If XqyseeesXy generates A, then deg(A)< m.

TF XqneeesX is free, then deg(A)=m.

The same sort of statements can be made for dimension, but
then we need the Generators Theorem, so we postpone their
treatment. Degree and dimension are not equivalent, even
if we restrict ourselves to the very special vector space-
model of 3.2.2:

Take the sub vector space of A over P, generated by X and

Y, say B. Then (F,B) E "B has dimension 2" A - "B has a degree".

From this we conclude, that the vector space B is not embeddable

& n .
in any vector space of the form F°, because we can derive:

3.5.3. Proposition. Let A be a vector space over a W-field
with deg(A) =n. Let B be a finitely generated subspace.

Then we have:
- = "B has a degree".

We shall give a proof in 3.7.4.

3.6 The nank of a mathix

Now we shall study R-modules of the form R" in more detail.
As we already observed (3.1.2), this is a strong module
and it has degree n. Morphisms m:Rn—>Rm can be expressed

by mx n-matrices
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Ms 2 E with a..€ R.
1]

Matrices will play an important role in most proofs below.

3.6.1. Definition. Let A be a strong module and XqseeesX €A,
We say that this sequence has rank r if the submodule generated
by it has degree r. In other words: there exists a sequence
Vqysw-tsY,€ A such that

M XysereaXy and Yqs+++5Y, are equivalent

2 ¥y sowwa¥y, is free.

Let M be an m X n-matrix. Then the n columns may be seen
as a sequence of vectors out of R™ and the m rows may be
seen as a sequence of vectors of R™. The ranks of these
sequences are called column rank and row rank respectively.
We want to prove that they are equal. Therefore we need

a lemma.

3.6.2. Lemma. If the column rank (or the row rank) of a
matrix exists, then it is invariant under the following
manipulations:
1. Permutation of columns, multiplication of a column
by a factor a#0 and addition to a column of a linear
combination of the other columns.

2. As 1., but for rows.
Proof: straightforward.

One easily verifies that there are analogous invariance
properties for weak and strong dependence and also for

something like independence rank for rows and columns.
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3.6.3. Theorem. If the column rank or the row rank of a
matrix exists, then they both exist and are equal.

Proof: by induction on the size of the matrix.

1 (i

Given a matrix : ‘ with, say, column rank r>0.

. .

B+ Opapy

Then aj j##O for some i,j. Applying row and column permutations
3
(allowed by the lemma) we may assume “11##0‘

With the manipulations of the lemma we can make a new matrix

with the same column rank and - if it exists - the same
row rank: using the invertibility of ayq We can get:
oqq 0 ... 0
0 Bpp +++ Byp
L Bm2 ot an

We apply induction on the lower right (m-1) x (n-1)-matrix:
it has column rank (r-1). Thus also row rank (r-1). But

then the row rank of the total matrix 1is r.

We define the rank of a matrix as the column rank. We cannot

generalize this theorem to independence rank without extra
assumptions. Namely, the problem is to find the invertible
aij' It turns out that we just need the extra axioms for

an AK-field. Thus over AK-fields independence rank exists.

s i R

Assume, that the matrix . : has among the

Q. Q.

ml °°° “mn

columns a subsequence, say the first r columns
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11 1r

gin % * 13 A , of r free vectors.
o o
ml mr

Then the same holds for the rows.

R = By,

Take the submatrix N=

mi *°° %mr

2 e

Then rank (N) =r. Thus there are r rows free. The extension
to the original matrix preserves freedom. The same method

works for independent sequences over AK-fields.

3.7 The deteaminant

In intuitionistic mathematics the theory of determinants

is of more importance than in classical mathematics because

of its "constructive" character. For example let KyseeesX € R
™

be free. Let Xn41€ R". If we want to know whether Xp41 depends

on X,,...,X, we have to go through all linear combinations

ayXgt et o Xy to find out whether this is equal to X1

% z .. € R. +..+ = .
or not: i.e. we have to show: 3@1, & R (aixl a X Xn+1)

This precisely requires the computation of a finite number

of determinants:

M det M.=0
1<i<p <

where the M, range over a finite collection of (n+1)x(n+1)
matrices. The point in favour of the use of determinants
is that it allows us to reduce logical complexity. Let R

be an H-field. s : .
field. Then % 2X9X 4 18 free if Vai,..,an,un+1e R.

(w ui##0~>2aixi##0). This is equivalent to
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where the M; range over the same collection of (n+1)x(n+1)
matrices as above. In both cases we have eliminated quantifiers.
Especially in constructive mathematies the quantifier free

formulation can be used to show for H-fields R: if XqareeaX oX e R™

n+1l

so that x ..X_ 1is free then

12°° H

" < " n 1"
e K 4 O is > depends Woix g o w900 T
Xy N s X141 free Xo41 pends on E s X

3.7.1. Definition. Let M be an n x n-matrix. Then det(M) is

the well-known polynomial in the n2 entries.

From Cramer's rule it follows that for every nx n- matrix M

there is an nx n-matrix N such that
MN= NM= det(M).In with I the n x n-identity matrix.

This even works for n xn-matrices over a ring. The coefficients

of N are polynomials in the coefficients of M.
With this property one can verify:

3.7.2. Proposition. Let M be an nx n-matrix with coefficients€ R.

Then:
1. ¥vx€RM(x#0+ Mx#0) « detM+#0.

2. "M invertible"+> det M #0.

For arbitrary formulas ¢ and Y(x), with x not free in o,
the following formula is not generally valid:
Yx(p vi(x))+o@vvxypix).

Nevertheless we have the following
3.7.3. Lemma. Let M be an n x n-matrix. Then we have

vx € R™M(x#0 (pvMx#0)) > pvdetM#0.
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Proof: By induction on n. n=1 is trivial, thus we consider

n>1. Given the n *n-matrix M and given the induction hypothesis,
take the first vector e, of the standard basis (basis = free
generators) € 5eees€ - e1=l=0, then we have @v Mel#(}. To
prove:@v detM#0. If ¢, then we are done. If Mei*O, then

we have W oa.1=f-'0, say all#O. (Here M= (ai.)).

1<i<n * J

o o o \

[ - 32 o _33 - _an
o o a
11 11 11

0 1 0 i 0

et § = |0 0 *
: : 1 0

\o o0 0.... 0 g/

Now det S=1, thus S is invertible and

U
MS = Baq
B
OtniL

Using transposition and the same arguments we see that there

is an invertible n x n-matrix T such that det T=1 and

Thus detM= a...detC.

T™S = 11

0

Induction: V¥x € R”"l(x#o > (pv Cx7#0)) > @ vdetC#0.
The left hand side of this implication is derivable from

the assumption about M, thus:

@ vdetC#0, and hence @ vdetM#0.
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Matrices need not have a rank. But over W-fields we have

for each matrix M:
= a4 "M has a rank".

Proof: use the determinants of the square submatrices and
apply double negations. With this fact we can prove proposition

3.5:3::

3.7.4. Proposition. Let A be a vector space over a W-field
with deg(A) = n. Let B be a finitely generated subspace. Then

we have:
4 o "B has a degree".
Proof: Write the generators y, of B as

X X

Pp & Qe By ¥ oee ¥R »X, a basis of A.

nin?®* 12"

B4 =% S

.

For the matrix M= we have: = = "M has a rank".

a FEE
nl %np

And from that it follows: ~+ = "B has a degree'.

Another application of the result above is: let A be a vector

space over an H-field with deg(A)=n. Let vl,....yFE A. Then

we have
”yl....,yr is independent"+ 5 = ”yl....,yr is free"
(see 3.5.2.).

Given a matrix M with an rx r-invertible submatrix and so

that each (r+1) x (r+1)-submatrix has determinant 0. By using

lemma 3.6.2 it is simple to show rank (M) =r (see 3.10.7).
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But if we have a square matrix M with det(M)= 0, then the
columns or rows need not be dependent: even not over a field.
Take the following model:

P dg

KX K(Y) K (Ka field from classical mathematics).

N, #

s™IkIX.¥1/(XY) with S the complement of the ideal (X,Y).

F is an H-field as well as an AK-field. For the matrix
M= (ﬁ g) we have det(M) = 0, but the columns are not even

weakly dependent.

There may be other notions of dependence for the columns
of the matrix M above. We shall list some of them

1. Strongly dependent.

2. Weakly dependent.

3. Not independent.

4. Not free.

It is simple to verify that we have (for strong modules)
(1+2) v(2~+3).

Further we have for vector spaces over H-fields (3> 4) and
4 1+ 4 2% 4 3. But none of 1,2,3 and 4 are equivalent.

There is even a model of - 3 A4 (3.5.2).
Returning to the square matrix M over F:

If det(M) =0 then

4 "the columns are independent", thus version 3 holds.

3.8 Left and night invenrses

We shall give some properties which can simply be derived
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from previous results. Here we study the possibility to simplify
the structure of a matrix by multiplication on the left hand

side or on the right hand side.

3.8.1. Theorem. Let M be an m xn-matrix over R and r€ IN.
Then the following assertions are eqguivalent:

1. M has r columns free.

2. M has r rows free.

3. There is an nx m-matrix N and an n x n-permutation

matrix S such that

i

(4 @ coc B

0 1 -] . .
NM=S"| " * S 7, with r times 1 on

. . 0 )
0 coesse the diagonal.
B wvemasm sow s o 0 0

. [ W

4. There is an n xm-matrix N and an m X m-permutation

matrix S such that

i 0 . Di www W0

MN =s* |0 1 i3 : -S_l, with r times
: o . 1 on the diagonal.
0 sse 100 3 g

From this we get

3.8.2. Corollary. 1. Let M be an mx n-matrix with m=n. Then
we have: M has rank n if and only if there is an nx m-matrix
N, such that NM= In.

2. Let M be an mx n-matrix with n=m. Then we have: M has

rank m if and only if there is an nx m-matrix N, such that
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MN=TI .
m
The corollary remains valid if we replace the identities I
and Im by invertible matrices of the same size. In both cases

M and N have the maximal rank.

3.9 The Generators Theorem

In the Generators Theorem we need noticns like sum and direct

sum.

3.9.1. Definition. Let A be a strong module, and B and C

subspaces. Then we define

A=B®C if and only if
1. A=B+ C, that means V a€ A3 b€B3cE€C a=b+c

and 2. VDbEBVcEC (b#F0ve#0+b+c#0)
In the same way we define over general modules:

A EB@WC if and only if
1l: &=8 +C

and 2. YDEBVYcEC (b+ae=0+b=0Ac=0), or:BNC={0}.

Let A,B be general modules, then we can construct A @wB as
in the traditional case. The same is true when we construct

A®B out of two strong modules A and B.

Let f: A->Bbea morphismof R-modules. Define kernel Kerf
and image Im £ as usual. Then we see: if A and B are general

modules then
AZKer £ Im f

if we have a morphism @:Imf -~ A so that f .¢@=1d. As bijective
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morphism we can use the map Y : A+Kerf GL Imf defined by
Uyt xe (xm(£(x)), £ (x)).

If we have a morphism 6: A+Kerf so that 6:i=id (i the

inclusion map) then we also have a bijective morphism, namely:
by xw (8(x),£(x)).

Let A and B be strong modules and let f be strongly extensional.
When do we have isomorphisms AT Kerf ®Imf? If ¢ is strongly

extensional tnen 12 is an isomorphism. If for 6 we have:
8(x)#Fx +f(x)F0
then ¢, is an 1somorphism.

3.9.2. Theorem (Generators Theorem). Let KyoeeesX oY aeeesy, € A3
n<m. Let BC A be the subspace generated by Vysereo¥, - Let

ZC A be the subspace generated by x X . Let CCA be a

e,

subspace such that
A= B+ C and
A= Z+ C.
Then we have:
1. There is a subspace XC A generated by a subsequence

Xj seee5Xs SO that A= X+ C and so that:
1 n
2. If A= Bﬂéw C and Yqoers¥y is independent, then xil,...,xin

is independent and A= Xﬂ9w 3

3. If A is strong, A= B&C and CSRERRRS is free, then X oseeaX
1 n
is free and A= X&C.

Proof: by induction on the number of generators n of B, we
show the existence of K aeeeaXs o We restrict ourselves to

1 n
the induction step.
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There are matrices

Ggq =+ Oy4p Biq +++ Byp
K= : : and L= Z : such that
n1 "t %m |Bnl . Bn
¥y ® iy e R0 X 3 di and x, = Bliyl e vBoLy oty

WLEH Bl B,
T 4,

Y11 =+ Yin
Let LK= # v

. .

Yo v+ Y

Then yiEYIiy1+ e & I N E aliC1+ cee t

e Fid. .
ni=r mi m 1

Now we apply the fact that
det (LK) #1 vdet (LK) #0.

Consider Jet(LK)# 0. Then the rank of L exists and is n.

Let the columns of L, numbered by ij,...,i be free. It

nD

is simple to prove that x, ,...,x, generates an X with the
i n

right properties. Consider det(LK)# 1. Writing det(LK) as

the well-known sum of n! products we find:

Yl,l'..."Ynn#-"i V(‘W'Yij#o).
i#)
For some 1 we must have vy, ,# 1 or Yij#:U for some j# i. Then

Y depends on the ¥ie with k# 1 and on C. Thus

A=B'+C
where B'C A is the subspace generated by Vg smansnbhy g i¥g v sy, ¢
Now apply induction. This proves part one of the theorem.
Now assume that BN C= {0} and YiseeeaYy is independent. Then

in the induction process we find a,.Cc, + ... + .c_+d.= 0
P B Py % mim 7

for all i, thus
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Yi®Yqi¥g e ¥ YpiVpe
The independence of YyseesYy makes that
LK=1 .

n

So we find the subsequence, say XyseeesXs such that

811 o Bln
X; = Biiy1+"'+8niyn+ci and : : invertible.
Al ftt Trn
To prove the independences:
Assume 51x1 + i s +6nxn-+c =D
Then there is a sequence S ERRRET- such that
&q Big +-c Ban\ [94
. = . : : and
En Bnl ' Bnn Gn

BNC={0}, thus

51y1-+...-+£nyns D« Vys-eesy, 18 independent:

0.

1]
m
1]

515.4.

0 and thus c=0.

1]
.

.
1]
(=2}
1]

Thus 61
Conclusion: KyaeeoaXy is independent and A=X '?E-‘WC.

This proves part 2. The proof of part 3 is analogous.

Assume A strong, A=B®C and Yysrera¥y free. By going through
the proof of part 1 we again find that det(LK)#0 because if
det(LK)# 1 then some y; depends strongly on the other ¥ and
on C. That contradicts the assumptions. Thus we get the same

invertible matrix (Bij) as in the proof of part 2.
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3.9.3. Corollary. Let x C X and SRR A be two sequences

TR
of generators. Let n € IN, so that n<m,r. Then there is a

subsequence Xy opeeesXy such that
1 n

Xas cee g X
i.? 3% 8
n

SE is nce o enerators.
) - ¥y, a seque f gene

A special case of this is:

3.9.4. Corollary. Let Yqseres¥ s XyseeesX € A such that
Yyserea¥, and Xqpee e X both generate A, and let n<m. Then

there is a subsequence Xy o aeeeaXy generating A.
1 n

Using the Generators Theorem we can extend some properties

about degree as in 3.5.2 to properties about dimension.

3.9.5. Theorem. (Dimension theorem). If A has a (finite)
dimension then it is unique.
Proof: apply the Generators Theorem to two sequences of independent

vectors, with C= {0}.

Given sequences YooYy and Xggee e X, OVEr A with n<m; let
yl,...,yn generate A. Does there exist a subsequence xil,...,xin
equivalent to xl,...,xm? The answer is yes if Xyqoeen s Xy generates

A (3.9.4), but without that extra assumption it need not be true

as the following model shows: F is

K(X,Y) K (K a field from classical mathematics).

N/

s”1KI¥,Y] with S the complement of the ideal (X,Y).

|

is F itself.

F is an H-field as well as an AK-field and A is a strong
module with tight apartness and of degree 1.

Take Vet =1 and Xyt =X, Xyt =Y.

Then Xqs%, is not even weakly dependent:
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F [# 30,B(<(cs0AB=0)AaX+BY=0).

5.170 RS

Let A be a strong module, yi,...,yn free and let this sequence

depend on x 2 X n<m. The Austauschsatz suggests that

R
there is a free subsequence X; seeeaXs The Generators Theorem
gives a condition (the existenée of C)nfor the validity of

the above statement. In some modules we can construct a C

for the Generators Theorem. But it is not true in general,

as the following model shows.

3.10.1. Example. F is: K(t) K(t) K(t) K a field in classical

\\\\I,///// mathematics
K

and A is: K(t)[x,y,z]l/(x-ty)

K(t)[x,y,z]/(y-tz)

K(t)[x,y,2]1/(z-tx)

Klx,y,z].#1is in the nodes the inequality.

Take YqsYpi=X,y+z. Take Xqa%gsXgi =K,V 47 Then YqsYo is free
and depends on Xy sXgaXge But we cannot give the requested

subsequence of XqsXpaXg.
As we observed in 3.1.2 RX is a strong module over R for

all objects X and with apartness
f# g+ Ef AEgAJEEX. F(E)H#g(E).

All submodules A with the induced apartness are strong over

R too.
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3.10.2. Lemma. Let y¥.,...,y_€ RX be free. Then there exist
_ i n

X
El,...,EnEX and z ,zn&R so that

R

Al Yqseeesy is equivalent to ZyseersZy and

n
2. zi(ij)aﬁij for all i,j, 1<i,j<n.

Proof: by induction on n.

n=1: yl#[l, so there is a £, € X so that yl(il)#f}.

Take zlsyi{él)_l-yl.

Induction step: assume Yyorrs¥pq equivalent to ZyseensZo g
Let ygsyn—yn(gi)'zi-— -yn(F,n_l)-zn_l.

Yise eV, is free, thus y;#o. There is a £,€ X so that y;(én)#ﬂ.

-1
Tak = y¥* sy k 'sz,. -2. i
ake z yn(gn) ynand z!s=z, zl(En).zn for i<n.

3.10.3. Theorem. Let yl,...,ynEA ERX and let VyseeeaYy

be free. Let B £ A be the subspace generated by Yqorees¥pe

Then there is a submodule C € A so that
A=B&C

Proof: by lemma 3.10.2 there are gi,...,gne X and Zl""’ZnEA

satisfying the properties mentioned above. Let
C={f€A|f(£;)=0 for 1<i<n}.

Let a€ A. Then

jal}
1

= (a- a(&l)-zl- -a(En)-zn) + (a(gi)'zl+ s & a(gn)-zn).

Thus a€ B + C.

Lo=i B i@y
On the other hand, let z€ B and c€ C. If z#0, then z(gi)#o
for some i, while C(Ei)E 0. Thus z+c#0. If c#0, then z+c#0

or z#0. Thus again z+c#0. So A=B&C,

Application (see 3.10.1):
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3.10.4. Proposition. Let A be a submodule of RX. Let Yyseeesy
n

and KyseweaXy be sequences of vectors such that VqsesYy
is free and depends on Kysewr X Then there is a subsequence
Xy seeeaXy of free vectors.

1 n

Proof: immediate from 3.9.2 and 3.10.3.

Another application concerns the extension of free sequences.

3.10.5. Thecrem. Let A be a submodule of RX. Let Yyseres¥y
and XyoeeeaXy be two sequences of free vectors, n<m. Then

there is a subsequence Xi aeeenX

’ i(m-n) such that YyasreesY s

Ko e w v gl is free.

11 *(m-n)

Proof: It suffices to prove the theorem for m=n+l. Let B
be the subspace generated by Yqsseas¥ye Then deg(B) =n and

by 3.10.3 there is a submodule C ¢ A so that
A=B&C.

We can write for all i, 1<i<m:

s E sV b s et Y+ Cs.
X357 %499 “ni¥n* ¢4
Since Kysenes X is free and the matrix
%11 %m
nl1 “°* %m

can at most have rank n<m, we have:
ci#o for some i.
Thus YqseeroY o%Xs is free.

3.10.6. Corollary. Let M be a matrix with at least r columns

free. Then every i i-invertible submatrix with iS<r is extendable
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to an r x pr-invertible submatrix.

A converse of the corollary is the theorem below, giving

a bound on the size of invertible submatrices.

3.10.7. Theorem. Let M be a matrix with an r x r-invertible

submatrix. Let det(N)= 0 for each (r+1) x (r+1)-submatrix N.
Then M has rank r.

Proof: Using the existence of the r xr-invertible submatrix

and 3.6.2 we may assume M has the following form

{
T B ssws @ O iams d\
1 u
: 10 : : r tlmes
0 . 01 o 0
0 sssses 0
k . e
...... 0 /

Now we can prove that each coefficient occcuring in C is 0.
Let o occur in C. Using 3.6.2 we may assume that a is the
top left most coefficient of C. Then the determinant of the

top left most (r+1) x (r+l1) matrix is o and is 0. Thus a= 0.
This theorem is of extra interest for solving linear equations:

3.10.8. Corollary. Let M be an mx n-matrix with rank r and
let be R™. Let det(N) =0 for each (r+1) x (r+1)-submatrix N

of the mx (n+1)-matrix (M,b). Then there is an x€ R" so that

As opposed to 3.2.2 we have the following propositions:
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3.10.9. Proposition. Let KyseensX € AC RX. Then we have:

XysevesXy is free"*—”xl,...,xn is independent".

Proof: There are gl,...,gne X as in 3.10.2 so that

xl(il) . xn(Ei)

Xl(En) w g xn(En)

is invertible. But that immediately implies that KyseoesX,

is independent.

3.10.10. Proposition. Let R be a W-field. Let Xqs-r-sX € AcC RX.
Then we have:
”xl,...,xn is independent"*—1ﬂ”x1,...,xn is free".

Proof: by 3.1.1 and 3.10.2 we can show, up to double negations,

that there exist gl,...,gne X so that

xl(Ei) P xn(El)

xl(En) s xn(En)
has determinant &, -8=0. That means: =-6#0 over the W-field
R. If 8§#0 then XyoeeeaXy is free. Thus we have derived:

a1 "Xl,...,xn is free".

Conclusion: The model of 3.5.2 is not a submedule of any RX

Let L be a module over R. Then M= L™ also is a module over

R and M is strong if L is.

3.10.11. Theorem. Let L be strong. Then the following are

equivalent.
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a. M=1" has a degree.
b. deg(L) exists.

If a or b holds then m-deg(L) = deg(M).

Proof: write 1¥ for ¢0,...,0,1,0,...,0 €L™ with 1 on the k-th
coordinate. Assume b. Let ©yoe oy be a basis for L. Then
one easily verifies that the following sequence is a basis

1 1. m

2 2
L R L

This proves a. Assume a. Let ZyseeesZy be a basis of M. We
shall only prove:

If we have a sequence XqoeeraXy free in L so that

im <nthen there isa vector xi+1€L free from KyoreesX,.

The rest of the proof is routine.
Proof of the claim: Given Xqs+ee>X; @S in the assumption,
the sequence of all x? is free in M and has length im. Using

the Austauschsatz we may assume that in the basis ZyseeesZy

5 P 1 1 2 2 m
the first im vectors ZyseeesZin AT@ Xjsee o3 X X 5003 Xiseee Xy

Each zj can be written as

Zia By w g wegd

] 13° mj

This gives an m x n-matrix with L-elements on the coordinates:

e a

1 i T 1,im+1 Lfi
0 2559385 0 Xl...x: 0 A . .
B - . -
: 0 . :
. . 0 e . 0 .

B! s vwnn s w e o R xl.....xi am,im+1 am,n

The columns of this matrix are free in L™. Let cjs a% o for
2

j=1,...,m. Then



- is a basis of M thus there are Bj ke K such that
- 3

= 81’121 F omeme: T Bn,lzn

vww B

G in
n,m n

Addition of both sides of the equations gives =z

on the left
n
hand side.

The sequence z

'EREREE is free over K, thus
Bn’1+.. +Bn,m#0‘
W Bn .#O.
Let us assume that B_ .#0. Then Zl""’zn—l’cj is a basis
3
of M. Take x. =

] 3 .3 :
T aj,n' We showed that xl""’xi’aj,n 1s free.
IEEEREE SRS I IPIE free.

Thus x
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4, GALOIS THEORY

In this section we consider extensions of H-fields, that
means fields as defined in chapter 2. Thus by "field" we

mean "H-field", i.e. a local ring with tight apartness. Many
results of this chapter can be generalized from fields to
local rings. Therefore we shall explicitly mention the cases
where we essentially needed the tightness of the apartness

relation.

4.1 Field extensions

4.1.1. Definition. Let K,L be fields such that K€ L. Then
(L/K) is the K vector space L.
[L:K]. is the dimension of (L/K).

[L:K] is the degree of (L/K).

Given a tower of fields KC LC M, such that [M:L]i and [L:K]i

exist. Then [M:K]i exists and
[M:K]ia (M:L], [L:K];.

The proof of this fact is the same as in the classical case:

Take sequences x .. 3% _and e of independent generators

1**
of (L/K) and (M/L) respectively. The products Xiyj form a

m

sequence of independent generators of length mn.

If we replace independence by freedom we get more.

4.1.2. Theorem. Let KC LC M be a tower of fields. It two
of the three terms [M:K], [M:L] and [L:K] exist, then the

third also exists, and

[M:K]=[M:L][L:K].
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Proof: The main problem is the construction of a basis. There
are three cases that we have to consider.
a. Assume that [M:L] and [L:K] exist. Then the same simple
proof as in the independence case works.

b. Assume that [M:K] and [L:K] exist and let
[M:X] =n and [L:K]=2.

Then we can prove:
If we have a sequence Xl""’xie M so that it is free
in (M/L) and so that i£<n, then there is a vector

5 €M so that x is free in (M/L).

127 X 0X5 4,

With that result the existence of [M:L] (and the proof of

i+l

the equation above) follows simply by an induction argument.

Proof of the claim: Given KyseoesXy with if<n and a basis
Yqs+--s¥p OFf (L/K), the sequence of products XY is free
in (M/K) and has length i£<n. Using the Austauschsatz (3.3.2)

we find a z in (M/K) free from them. Now take x. =zZ. X

i+1 i+1

is free from KpseresXg in (M/L), thus x SRR is free.

z IR 197 el
¢. Assume that [M:X] and [M:L] exist. Let [M:L]=m.

Then MT L™ as K vector spaces. Apply 3.10.11: deg(L)=s [L:K]

exists and

[M:K]=[M:L].[L:K].

4.2 The deghee of a polynomial. Divisdion algornithms

Let K be a field. One can make field extensions of K as
follows. Take the polynomial ring K[X]. K[X] is an integral

domain, so the quotient field exists. For the quotient field
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of K[X]we write: K(X). However, there is no finite degree
or dimension for (K(X)/K). Another construction uses minimal
coideals C in K[X]. Then take the quotient structure
K[X]/(- C). Later on we shall discuss in more detail how
to get minimal coideals. Some extensions are related with

roots of polynomials. First some definitions.

4.2.1. Definition. Let R be a ring and f€ R[X], f=aj+ ...+ aan,

then we say f has degree at most n. If for some r ar%ﬁo,

we say f has degree at least r' for r'<r. f is regular if

there is an m such that f has degree m; i.e. degree at most
m and degree at least m. If the degree exists, it is unique

and we write deg(f) =m.

From these definitions and the results in chapter 2 one easily

deduces

4.2.2. Proposition. Let R be an integral domain and f,g,h€ R[X]
such that f= gh. Then the following are equivalent:

a. g and h are regular.

b. f is regular.
Moreover, if f is regular, then

deg(f) = deg(g) + deg(h).

Proof: for the implication b a we use the fact that the

apartness is tight.

Now we shall consider the division algorithm.

%.2.3. Proposition. Let R be a ring and f,g€ R[X].

fza.+...+ax®
n

g=Dby+ ... +bm)(m with n=2m.
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Then there are q,r € R[X] with r degree at most (m-1) such

that

n-m+1
m

b f=qg+r.

Proof: as in the classical case by induction on (n-m).
Sketch of the induction step: Given f,g as above, let
il ol anxn-mg. Then f* has degree at most (n-1) and we

apply induction:

b;_m f*=gg+r for some q and r satisfying the conditions.

n-m+1

= n-m n-m
Thus b f=(q+b a X )g+ v,

For the extra conditions necessary for the uniqueness of q

and r we need new notions.

4.2.4, Definition. Let R be a ring, bER.

b is weakly zero divisor free if

VXxER(xb=0+x=0).

b is strongly zero divisor free if

VxER(x#0~>xb#0).

Now we can strengthen proposition 4.2.3:

4.2.5. Proposition. If moreover bm in 4.2.3 is weakly zero
divisor free then g and r are unique. Thus if in that propeosition
R is an integral domain and = bHIEO, then q and r are unique.
This extra proposition requires the apartness to be tight.

If b is invertible we can eliminate the power bg-m+1! in

particular:

4.2.6. Corollary. If in the proposition R is a field and

tm;#ﬂ, then there are unique q,r € R[X] with r degree at most
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(m-1), such that f=qg+r.

4.3 Codideads of polynomials and poweh serdes

Now we shall construct from a power series f €K[[X]] a coideal
in K[X]. In classical mathematics for power series that are

not polynomials the following holds: K[X]/(f)= K[X]. This

fact yields no useful information. But in intuitionistic
mathematics polynomials are closer to power series. For instance,
consider a power series f =fy+ £ X+... satisfying

== 3Invm >n fm =0. See also 4.4.11.
4,3.1. Definition. Let K be a field and let f €K[[X]]. Then
Cp = {g€ K[X]|VYhE€ K[X].g#hf}.

When is Ce a coideal? Certainly if f=0. This is a trivial

case. For the case f#0 we need some lemmas.

4.3.2. Lemma. Let f=f,+ le-+f2X2+ v 08 KITX11; s6 that

fr%&D. Let M be the following (r+n) x n-matrix:

p
£,0 ... 0)
£l

oo .
fr. fO
| Blppg 24 4 fI}

Then there is an s<r and an n x n-submatrix B of M of the

form
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so that B is invertible and fs%ﬁo.

Proof: by induction on r. r=0 is trivial.
Induction step: let f&j#ﬂ. Let C be the submatrix with the
£, on the diagonal.

fg#ﬂ, thus

f;#de‘tc vdetC#0.
If detC#0 then we take B= C. The case f_ #detC. Writing
detC as the sum of n! products we get

W ft#O.
t<p

Then apply induction.

4.3.3. Lemma. Let f=f + ... +mem€K[X] so that f #0. Let

M be the following (m+n) xn-matrix:

- \
£, 0 ... 0
B, E e
: 0
Me |Tm . £y
0. . .
W oo £

Then there is an s 2r and an n xn-submatrix B of M of the

form

so that B is invertible and fS##O.
Proof: by induction on (m-r), analogous to the proof of U4.3.2.

4.3.4. Lemma. Let P_={g€ K[X] | g has degree at most n}. Let
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g€ P_. Then we have for all f€ KI[X]1]:

g€ C,»VhE P .g#nhs.

£

Proof: Fromleft to right is trivial. From right to left:

let h€ K[X]. To prove: g#Fhf.

n - n+l m
O+... +hnX and h>= hn+1X + ... +th .

Then g#h_f, thus g#hf vhi#h_f. Assume hf#h_f. Then

Split h= h< +h, where h_=h

h f # 0. Then hf has degree at least n+l. Thus g#hf.

4.3.5. Remark. One easily shows that for f,g and Pn as above

we have
Jh€ K[X].g=hf«< 3h€P .g=hf.
Take the proof of 4.3.4 and use that the apartness is tight.

4,3.6. Lemma. Let Pn be as above, f€ K[[X]], f# 0. Then there
is a K linear mapping (-)’;_:Pn'* P so that for all g€P_
a. ge Cf Hg#g’gf

and b. 3heK[X].g=hf & g= g}f.

Proof: a. f# 0 thus for some r we have: fr#O. Then there

is an s <r and an (n+1) ¥ (n+1) matrix B as in lemma 4.3.2,

£ e
S .
B=s|: i
: Wik
........ )i

so that B is invertible. (If f is a polynomial we can get
an s so that s=2r by 4.3.3). If we write polynomials

n n+1
hzx0+...+xn}( EPn as vectors (xo,...,xn)eK then we

define:
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h*=R~ x where x_ =0 if m>n.
% m

To keep the notation easy we shall write h* instead of h¥%.

i
Let k= h-h*f= k0+k1X+k2X2+. ... Then it easily follows from
thedefinition above that
k_=k ®=,..3k =0.

S s+1

Now consider BEP . If g€ Cf then we immediately can conclude
that g#g*f. So assume g#g*f and let he€ P_. To prove: g#hf.
Then we are done be 4.3.4. We have: g#hfv hf#g*f. Assume

hf #g*f. Then h#g* and
Bh# Bg*

Let 1=X°.Bh (we use the identification of P and K
Then for some t, s <t<s+n, we have: lt#gt while 1* = h.
Thus g#1*f = hf. This proves a. b. follows from a by using

the tightness of the apartness relation.

4.3.7. Theorem. Let fE€K[[X]], £#0, then Ce is a coideal.

Proof: We check the axioms of chapter 2.
4 0€ Cf is trivial: take h=0.
Let g,8,€ C¢. To prove: g e C.. Let he K[X], then

gng#hng' Thus gl#hf.

Finally let + gy € Cpw There 16 an n so that g. .g,€P. .
¥ g,1+8,€C¢ 1282 "%

Let (.)* be the linear mapping of 4.3.6 for this P_. Then
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gy teg, ¥ (g, +g,)*t.
1 ha g’:'[f tg, —g’%f#{].
g, #aifvg,#git.

2y € Cp v E, € Cpn

In 4.3.6 and 4.3.7 we essentially use that x#0 implies Ex 1

This is necessary, as the following model shows:

R is: Z, Zy where Z_ = S™1Z with S= {1,n,n2,...}.
- n

N/

Z # 1s in the nodes the inequality.

Let £=6X. Then R | 5X€C.. But R [#2X€C v 3XEC

£ £
In this model R is an integral domain satisfying vx(x#0v x=0).

4.3.8. Remarks. a. We can write K[a] for K[X]/(1Cf) where

a= p(X), ¢ the canonical morphism

QZK[X]*'K[X]/{ﬂcf).

If f is a polynomial then f(a)= 0. K[lal is a vector space over

K. If f is regular with deg(f)

n, then (K[a] /K) has degree

Fi=1l. .
n. The sequence 1,0,...,04 forms a basis.

b. There also is a constructicn of K[al for local rings K.
The only difference is that we have to define the equality

by an ideal: K[aol = K[X] /(f), where
(£) = {g€ K[X] |3h € K[X] .g = hf}.

If the apartness is tight then (f) = sC,. (4.3.6).

f

c. Let r€K[X]. If def(f) exists and r has degree at most

deg(f)-1 then
r#0+ r(oa)#0

However, in intuitionistic algebra deg(f) need not exist.
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Therefore we have a more elaborate statement: if

ViE]NJri#0+3j>iij#U)tMm
r#0+« r(a)#0.

Proof: r(a)#0 immediately implies that r#0. So assume r#0.
Then I&f#@ for some i and re€ Pn for some n. We complete

the proof by induction on n-i. The case n-i= 0 is easy because
fj#ﬂ for some j>n.

Induction step: r#0. Let (.)* be the linear map of 4.3.6

for P_. Then
n

r#FEr¥fv r¥f#0.

f
some j>1 thus r#r*f or r has degree at least j. If r#r*f

If r# r*f then r€ C_. and r(a)#0. Assume r*f#0. fj#ﬂ for

we are done and if r has degree at least ] we can apply induction.

d. Let g€ P and let (-)* be the map of 4.3.6 for P_. Then

we can write

e e okE = s-1 s+n+1 s+n+2
k=g-¢g f"(kG L +ks—1X )+ (k5+n+1x +ks+n+2 g

s-1

Let k = 1+h where 1= kO +1uu kK X If h#0 then there

s-1
is an s'>s so that fs,#ﬂh because g has degree at most n.
If 1#0 then even 1(a)#0 as follows from 4.3.8c. Remark

4.3.8d plays a role in some induction proofs.

4.4 Relative primality

We first consider relatively prime pairs of polynomials before
we consider prime polynomials. This looks somewhat unnatural,
but there are economical reasons for it. In particular we can

avoid repetition of similar proofs.
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4.4.1. There are severalways to define relative primality.
Let f,g€ K[[X]]. Let ¢ be a formula in which h, k and 1 do
not occur free. We shall consider the following notions of
relative primality modulo @:
(a)  (g#0AVh,k€KIX].(h&€C,>hf +kg#0ve))v
V(E#0A Vh,k€ K[X] . (k€ C»hf + kg#0v o)),

(b) (£#0vg#0) Avh,k€ K[X] .(h€ Cgv KE C.+hf +kg#0v o),

F
(c) vheE K[[X]].(h#h(0)~+fE€E C,vege ChV(p),

(d) Yhe K[[X]IVk,1€ K[X] .(h#h(0) >hk#fv hl#gv o).

b.4.2. Remark. We want to prove that under special circumstances
(a), (b), (c) and (d) are equivalent. Our main interest concerns
the case when ¢ is false. Then we can delete ¢. However,

the more general notions of 4.4.1 are needed for the proof

of L.u4.7.

4.4.3. Lemma. Let k€ K[X] and let f,g,h€ KI[[X]] be so that
£#0, g#0 and h#h(0).
Then: (1) f#hkv k€ Cf,

(2) k€& Cf+ f#£(0),

(3) kEC .+ kE Cg" f#g.
Proof: (1). From £#0 it follows that f#hkv hk# 0. Assume
hk# 0. Then k#0. If ki#t} for some 1 then hk has degree

at least i+1. Thus f#hkv 3j>i. f.j#O. Since k has degrec

at most n for some n we find
f#hkv Vi€ IN.(ki#U+EIj>i.fj#0)

k# 0 thus by 4.3.8c f#hkvkE€ Cee

Concerning (2): £# f(0) v £(0)# 0. Therefore we may assume

f(0)#0. From k€ Cf now follows that }{#‘kf(D)_if. Thus £#f(0).
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(3). Assume k€ Cee By induction on r =r, +r, we shall prove:

if f_ #0 and g_ #0 then k€ C_v f#g. The case for r=40
ry r, g
is contained in the induction step.

Induction step: there is an n so that k€ Pn. Let (-)’]',_; and

(-)E be maps for P according to 4.3.6. Then k#k}f. Thus
k#k*g v k*g#k*f, hence KEC_ v g#fvk*#k*. We may assume

58 v kig#FKEL, g Ve s +ky y
kg#kg. Then we easily find that

gHFEEV 351<r1,f51#0 v 352<r2.g82#0.

Applying induction we get k€ Cgv g#f.
4.4.4. Proposition. The statements 4.4.1(a) and 4.u4.1(Db) i
are equivalent.

Proof: one easily proves that (b) implies (a).

Assume (a). Let g#0 and Vh,k€ K[X] . (h € Cg+ hf + kg#0 v ).

Let h,k€ K[X] be so that k€ Cee It is sufficient to show
that hf + kg#0v @ for these assumptions. hE€ P for some n.
Let (')E be a map for P according to 4.3.6. Then

hf +kg = ((M¥g+d)f+kg = ((MEF+I)g+df with d=h-(h)%g.

Since g#0 and k€ C_. we have that ((h)§f+k)g#0. Thus '

£
hf + kg# 0 v df #0.

Assume df #0. Then d#0 and hECg. Apply the assumption:

hf + kg #0 v .

4.4.5, Lemma. Let (b), (ec) and (d) be the statements of 4.4.1.

Then (b)=(d) and (c)= (d) holds.

Proof: (c) trivially implies (d).
Assume (b). Let k,1€ K[X] and let h€ K[[X]] so that h# h(0).

We have f#0v g#0 so by 4.4.3 we get
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f#hkvkecC vg#hlleCg.

£

Assumption (b) implies f#hk v g#hlv 1f - kg#0 v ©. Assume

1f#kg. Then 1f#1hk v lhk#kg. Thus f#hkv g#hl.

4.4.6. Proposition. Let f,g,r€KI[[X]], q€KI[X] and f=qg+ r.
Then we have:
(1) If f,g satisfies condition 4.4.1(d) then the same
helds for g,r.
(2) If f,g satisfies condition 4.4.1(a) or condition

4.4.1(b) then the same holds for g,r.

Proof: (1) is easy.

(2): let f,g,q,r be as above and let f,g satisfy condition
b.4.1(a).To show: g,r satisfies 4.4.1(a) (or 4.4.1(b) by
proposition 4.4.4). If g#0 then the proof is easy. So
assume f#0. Then g#0 v r#0. We may assume r#0. Let
h,k € K[X] so that k€ Cr" By 4.4.3 this implies k€ Cfv f#r.
To show: hr+ kg#0 v . If f#r then g#0 and we are done
because of the remark above. If k€ C. then hf + kg#0 v o.

£
Thus hr + kg#0 v ¢ v hgqg #0, where hqg#0 again implies g#0.

4.4.7. Lemma. Let f,g€ K[X] satisfy 4.4.1(d). Then f,g satisfies

4.4.1(a).

Proof: by induction on my =n, +n, we shall show: for all

1 2
f,g,» if f,g satisfies 4.4.1(d) modulo ¢ and if f has degree
at most n, and g has degree at most n, then f,g satisfies
4.4.1(a) moduloc @. The case my =1 is trivial since f#0vg#0v o
holds (take k=1=0 in 4.4.1(d)).
Induction step: let f,g be given, satisfying the conditions

for the inducticn step. £#0 v g#0 v ¢ holds,
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thus we may assume: g# 0. Let h,k € K[X] so that he CP. To

>

prove: hf + kg#0v @. By 4.4.3 we have that g#g(0). Then
the assumption 4.4.1(d) implies f€ CgvtD. We may assume that

s, so that f #0 and g_ #0.
4 =%

We complete the proof of the induction step by induction on

fe Cg holds. There are 545

m, =n, + N, =8, =Sy- The case for m, =0 is contained in the

1

induction step for m

2

. Induction step for m let f=f +...+f_ X

2:

nro

- 2
and g=g,+ ...4-g52X . We may assume that 512352. There
are gq,r€K[X] so that f=qg+r and r has degree at most 52—1.
One easily verifies that for all h€ K[[X]] and k,1€ K[X] so

that h#h(0) we have
hk#rv hl#gv F#£fvgH#g v 0.

Let ¢ be the formula f#f v g#gvy. Then r,g satisfies 4.4.1(d)

modulo ¥. By the induction hypothesis on m, r,g satisfies

1
4.4.1(a) modulo ¥. By 4.4.6 f,g satisfies 4.4.1(a) modulo Y.

Thus since h€ Cg implies h€ Cg_v g# g we get

hf + kg #0 VE#fVE#gVLD, i.e.

hf + kg#O0vov E#fvg#Hp.
And if f£#f v g#g holds we apply the induction hypothesis on m, .
As a corollary we get:

4.4.8. Theorem. Let f,g€ K[X] . Then the statements 4.4.1(a),

(b), (c) and (d) are equivalent.

Proof: for polynomials f and g one casily shows that 4.4.1(d)
implies 4.4.1(c) by using 4.3.6. The other implications between

the statements follow from 4.4.4, 4.4.5 and H.4.7.

bL,4.9, Definition. Let f,g€K[X]. f and g are called relatively

prime if they satisfy one of the statements in 4.4.1 with
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b ok ool

is false.

rl

; Lﬂ:LgEKH],f#O,KN]EKH]NﬂCfL Then f and g are
relatively prime if and only if for all h(o) € Kla]l h(a)#0
implies g(a)h(a)#0.

L In other words: f and g are relatively prime if and onlyif g(a)is

F strongly zero divisor free in K[al (cf. 4.2.4%).

i Now it is easy to show:

} 4.4.10. Proposition. Let f,g,,g,€ K[X] so that the pairs
f,gl and f,g2 are both relatively prime. Then f and 8485
are relatively prime.

E“ Proof: we have £#0 v (gl#OAgz#D). Assume f#0. Then

r' gl(a) and gz(a) are strongly zero divisor free in
Klal = K[X] /(A Cg). But then the same holds for g,(a)g,(a).
Thus f and g,g, are relatively prime. Assume gf#:U and gzmﬁﬂ.

g Thus (gf# gl(D)v gz#:gz(ﬂ))v (gl(D%# 0n g2(0)#=0}. If

gl#gi(ﬁ) or gz#gzto) then f# 0 and we are done. Thus assume

that gl(O)##D and gz(U)#%O.

Let h,k€ K[X] so that he€ C . To prove:hf+ kg,g. #0. Since
heC +h€C_ we have that heC_ v g, #g,(0).
gQ(O)gl 3 8y E27 By
If gz%ﬁgz(u) then £#0 and we are done. Assume he€ C? . Then
21
hf+kg1g2(0}#0. Thus hf+kg1g2#0vg2#g2(0}.

4.4.11. Remark. The theory as presented here makes it possible
to generalize results over relative primality for polynomials

to result over other kinds of power series. We especially

think of power series which strongly resemble polynomials.

Qur main interest in this chapter concerns polynomials. Therefore

we shall restrict ourselves to one example;

A power series f is called a pseudo polynomial if it satisfies
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dm € IN.((EIi>m.fi#O) +fe K[X]).

A pseudo polynomial need not be a polynomial. It is easy

to show that for pseudo polynomials lemma 4.3.2 holds with

s 2r by a method as used for 4.3.3. 4.4.7 also holds for
pseudo polynomials, this follows after modifying the proofs

of 4.4.5 and 4.4.7. Then we have shown:

For pseudo polynomials f and g the statements 4.4.1(a), (b) and
(d) areequivalent. The study of power series seems rather

promising for future research.

4.5 Prnimality and minimality

Let f€ K[X], £#0. Then Ce is a coideal in K[X] . We shall

give conditions for f so that C_. is prime or minimal (cf. chapter

t
2).

4.5.1. Definition. Let f€ K[X]. Then f is prime if £#£(0)

and for all g,h€ K[X] with g#g(0) and h# h(0) we have f#gh.

4.5.2. Lemma. Let f€ K[X], £#0. Then the following are equivalent:
(a) f is prime

(b) £# £(0) and for all g€ Ce £ and g are relatively prime.

Proof: Assume (a). Let g €C_. and h,k,1€ K[X] so that h#h(0).

f
To prove: hk#f v hl#g (the generalization to power series
h is trivial). Since f#0 we have f#hk v hk#0. So we may
assume: hk#0. Then k#k(0) v k(0)#0. If k#k(0) then f#hk
because f is prime. Assume k(0)#0. Let Kla] = K[X]/(ﬂCf)

g €C,. implies g(a)#0. Thus

f

g(a)#Fh(a)l(a) v h(a)l(a)#0.

If g(a)#h(a)l(a) then gF#hl.
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Assume h(a)1(a)# 0. Then h(g)# 0, thus h(g)k(0)#:0 because
f# £(0) in K[X]. Then is h(a)k(a)# 0v h(a) (k(a) - (k(0))F* 0. If
h(a)k(a)#0 then hk#f.
Assume h(a)(k(a) - k(0))##0. Then k#k(0) in K[X] thus hk# f
because f is prime. This proves (b).
Assume (b). Let g,h € K[X] so that g#g(0) and h#¥h(0). By

4.4.3 this implies

f#ghvgt€ Cf.

Assume g€ Cc. Then f and g are relatively prime, thus

f# ghv g#g-1. Thus f#gh. Thus f is prime.

As in traditional mathematics we can prove ([He 21]):

4.5.3. Theorem. Let fe K[X], f# 0, K[a]l= K[X]/(—-Cf). Then
the following are equivalent:
(a) £ is prime

(b) K[a] is an integral domain.

Proof: Assume (a), Then 1#0 in Kla]l because f# f(0) in K[X].
Let g,(a),g,(a)e Kla]l so that g (a)# 0 and g,(a)#0.

Then by 4.5.2 the pair f,g1 is relatively prime. Thus glfa)

is strongly zero divisor free and gl(a)gz(a)##o. Thus

Kla]l is an integral domain.

Assume (b). 1#:0 in Klal thus f#f(0) in K[X] by 4.4.3.

Let g€ C.. Then gla)#: 0. Since Kla]l is an integral domain

g(a) is strongly zero divisor free. Thus f and g are relatively

prime. Now use 4.5.2.

In classical mathematics we have that if f is prime then
K[e] is a field. But in intuitionistic mathematics this matter
is more complicated. A special case can be derived from the

theorem below.
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4.5.4. Theorem. Let f,g€ K[X] be relatively prime and let

deg(f) exist, deg(f)=n. Then there are unique h,k € K[X]

so that k has degree at most n-1 and so that
hf +kg = 1.

Proof: the case f=f(0) is trivial. Assume that deg(f) >0.
xn-1

Let x= Xgteert X 4 with XgseorsX variables over K.
Compute the remainder in K(XO""’xn-l)[X] of xg over f
(4L.2.6):

xg=qf +r.
The division algorithm gives that the coefficients Tgsesesl

of r are linear in the x., say:

r. =

. e
i a1+1,1x0 i

%i+1,n*n-1"
Let Klal = K[X]/(ﬂcf_), gla) is strongly zeroc divisor free.

If we substitute elements EO,...,E € K for Koo e oX

n-1 ) § il

and so that Ei#O for some i, then x(a)#0 by 4.3.8c.

Thus x(a)g(a)#0 and rla)#0. This implies that the matrix
(aij) is invertible. Thus we find @ unique k=kj+...+k ;X -
so that after substitution xiﬂ-ki we get

kg =-hf +1.

Since f#0, h is unique too.

Observe that we did not use the tightness of the apartness
in the proof above. From 4.3.8a and 4.5.4 it immediately

follows ([He 2] ):

4.5.5, Thecrem. Let f€ K[X], £#0, Kla] EK[X]/(ﬂCf)- Let f
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be prime and regular with deg(f) =n. Then K[al is a field

so that

[K[al :K] =n.

4.5.6. Remark. It is a simple task to find a model showing
that primality alone is not enough for f, to prove that Cf
is minimal (cf. chapter 2). On the other hand regularity

is not necessary, as follows from the model below:

2

K is 1y 0 F= 2X°+X+1.
\za = sz with 5= (2)%°™PL-,
(2)
Then K |= "f is prime" A "K[a] is a field", but

K l=rf is regular" (see [Ru 2] or 5.2.10(1)).
The traditional method of [Ar 1] fails in the intuitionistic
case 1f f is not regular. But by refining the traditional
proof we can derive the following invertibility theorem for

prime polynomials in general:

4.5.7. Theorem. Let f ® & F e .4-chnE K[ X] be prime, cm#to;
g€ KIx] so that gla)#0 in Kla] = K[X]/(~Cp). Then we can
split fsf#+fE where f#s Cotoe-o +cSXS, s2m, CS#O so that
g(B) is invertible in K[Rg] = K[X]/(1Cf¢),

lloreover, we can find an inverse b(B) sc that b has degree

at most (s-1).

Proof: We prove the statement above by induction on (n-m).

The case for n-m= 0 immediately follows from 4.5.5.

Induction step: Start with f#é Cgt -t cme. o= f-f#ﬁ
Let £45.-.58 4 be K-variables and
- m=-1
x=gyt... +gm_1X .

Then gx = qf#u-r by the division algorithm.
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DByt s ¥ D Xm_:l with the r. linear in the £.:

0 m-1 i ]
0

£ g as ok
;20 450 % r1 ,mEm-1"

o]

Altogether we have g€ C., f prime, cm#G and
ngqf+r—qu.

Thus VE.,...,E . ( W  E.#0 » r-qgf #0)
v Tm=1ogign-1 t

. i
V«‘:D,.--,gm_l(gﬁwgn_lgl 0 » r#0vqf #0).

Using lemma 3.7.3 we get
. =#0.
det(al])#[)vqf 0

Assume qu#O. Then f #0, thus cm,#O for scme m'>m. Apply

induction. Assume det(aij)=#0. Then there are BD""’Bm—le K
so that
o 0
(aij) : = :
Bm—l .
m-1

LethBO+...+B X

e .
- Then gb=qf +1 (with B, for the Ei).

g(B) is invertible in K[B] = KI[X] /L—;Cf#).

Let K<L be fields, a € L. Let K(a) be the smallest field
containing K and o.a is algebraic over K if there is an f€ K[ X1
so that f#:0 and f(a)=0. The following theorem gives some

conditions under which f is prime and regular.

4.5.8. Theorem. Let KCL be fields, o € L, fe K[ X], £f#0.
Then are equivalent:
(a) f has degree at most n, fla)= 0 and (K(a)/K) has
degree at least n.
(b) f is prime and regular with deg(f) =n,
KIX1/(~CL) TK[a] = K(a) with the canonical morphism

and [Kla]l : K] = n.

Proof: From (b) to (a) is trivial.
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Assume (a).
There are Dy,.-->P. s Qqs+-+59, € K[X] so that
-1 -1 . :

pyla)g 7 (a),...,p (a)q “(a) is free in (K(a)/K).

Let qs= ql(a)-...'qn(u) and take
- -1 : <

r; =p;q;°4q, 1<is<n. Then rl(a),...,rn(a)e Klal .
A simple calculation shows that ri(u),...,rn(a) is free in
(K[a] /K). There is an m € IN so that rl(u),...,rn(a) depend
on 1,&,...,am. Now let f=c¢

0 +...+c X" and c.#0. Now we
n J

can prove by induction on m= (n-j) that
c_ #0.
n

m=0: trivial.

Induction step: m>0, thus j<n. Take the sequence S consisting

of 1,&,&2,...,a]_1,
j+1 j+2 m+n-j
Jj+1a ,cj+1u ,...,cj+1u 5
j+1 J+2 m+n-7j
cj+2u ,cj+2a ,...,cj+2a 5
T+ BETY: .m+n—'
cnu] 5 cnaj e 3.

Then, by induction on k we can prove that o (0 <k <m) depends

on 5, because if k=]

o E—C_-l(c o7d P L Jedl k+1 ak+n—]).

i 0 1 .. j'—l Cj+1 ...+Cn

Then 1,&,...,am depends on S, thus also

rl(a),...,rn(a) depends on S.

From the procedure of the Austauschsatz (3.3.2) it easily
follows that cout#D for some s>3j and t>]j. Thus CS#O for

some s>7j. Replace cs by cg. Using induction on m we can

, conclude: cn#&O. Thus

| f is regular and deg(f) =n.
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From this follows immediately:

1,a,...,am is equivalent to 1,a,...,un_1
and ri(a),...,rn(u) depends on 1,&,...,an_1.
Thus 1,@,...,an_1 is free (3.3.3). Take the canonical morphism

w: K[X] »K[a]l sending X to a. Let g€ K[X]. f is regular, thus
g = gf + r by the division algorithm. So @(g) =r(a).

Now it is simple to see that the cokernel is C. and that ¢ is

£
surjective. That means @*:K[X] /(~Cc) > K[a] is an isomorphism.

K[a]l is an intepral domain, thus C_. is prime. Thus f is prime

f
and regular. Thus Kla]l is a field. Thus Kla]l = K(a) and

[K[a] :K] = deg(£) =n.

4.6 Sepanrable extensdions

The construction of normal and separable extensions of fields
for a polynomial f is complicated. It only works under special

circumstances (see [Ke 11 , [Ri 1] or 4.10). However, it is

possible to prove some general facts about separability.

4.6.1. Definition. The derivative is the K linear map D:K[X] = K[X]
so that D(X) =1 and D(fg) = fD(g) + gD(F). D(f) is the derivative
of f. We also write Df or f' for the derivative of f.

f is separable if f is prime and Df#0.

By 4.3.8¢c we have for all f €K[X]: if Df#0 then

DfESLf.

4.6.2. Remark. We introduce the fol lowing notations. Let n€ IN.
Then we write n for the corresponding integer in K. By doing

so we can avoid some confusion in the theorems below. TP is the
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subobject of prime numbers of IN.

4.6.3. Proposition. Let f € K[X] be prime. Then are equivalent:
(a) f is separable,

(b) Yg €KIX] .VpEP.(D#T v £(X) #g(xP)).

Proof: Let f =agt...+ aan.

Assume (a). Then Df#0, thus ﬁam#'@" for some m. Let peP.

If p divides m then p#0. If p does not divide m then £0X) #g(xP)
for all g€ K[X] . This proves (b).

Assume (b). f#£(0) thus am#ﬁ for some m>0. Let p€IP be a
prime number so that p divides m. Let gs= aoi-apx+ asz2+ wwens o
Then D#0 v g(XP)#f. We can choose p so that for all other

prime g <n we have gq#0.

Assume p#0. Then m#0 and Df#T.

Assume g(XP)#f. Then there is an m'< n so that p does not

divide m' and am,#ﬁ. Thus Fam,#ﬁ and Df #0.

4.6.4. Proposition. Let f€ K[X] be prime. Then are equivalent:
(a) - "f is separable",

(b) 3g€KIX] .3p€P, (F=0Af(X) =gxP)).

Proof: Immediate from the definition. Use the tightness of

the apartness relation.

4.6.5. Lemma. Let f be prime and a,b€ K so that a#b. Then

£(a)#0 or f(b)#0.

Proof: We may assume a=1 and b=0. £#f(0) thus T€ Cf. That

g If T-X€ Ce we substitute Y= T1-X,

thus reducing case one to case two. Therefore we may assume

implies T-X€ CevXEC

X€ Cg. To prove: £(0) #70.
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ag+ ... +aan#f(a) thus ai#ﬁ for some i=1. We have

two cases to consider.
Case 1. ai#_O_ for 1 22. Then f =pX + £(0) with p#p(D0).
f is prime, thus £(0)#0.

Case 2. ai#O. Then a;X € C. and a;X-f€C.. Thus £(0) #70

or ai#ﬁ for some 1 =2.

4.6.6. Remark. Let f=aj+... +aan1 be prime, K[a] = K[X]/(—;Cf).

By 4.6.5 we may assume that a =71. Then o is invertible and

Let gla) =gyt --- +gmocm, then

gla) salg, + ...+ gmam_l SO goanotn-l).

Iterating this procedure we find x € K so that

92X g

glo) = ocm(xO N +xn_1an—1) and so that for all i

xi#0+33 >1.aj#0.

By 4.3.8c this implies: 3i.x; #0+ g(a)#0.

4.6.7. Lemma. Let f=a + ... +aanE K[X], ar#ﬁ for some

r>0, Klal EK[X]/(-;C‘f). Let yl,...,yFE (Kla]l /K) and let o
be a formula in which KypeeesXy do not occur free. Assume

that V¥x : ,er K. (W xi#ﬁ+2 xiyi#_ﬁvw) holds. Then

i %
% i i _

we have ("yi,...,yr is free")v 3r'>r. ap,#OVgo.

Proof: there is an n and there are gqo- "grEPn so that

for all i gi(u) =y;- Let (=)* = (-)} be a map for P according

to 4.3.6. By 4.3.8d there are kl""’kr so that for all i

s=1

k.Egi—gEfEki,O’rki Atawe bk X +hi. By careful

1 Sxf i,8=1

reading the proof of 4.3.6 we see that we may assume s=r

and as#ﬁ. If s>r then 3r'>r. ap,#ﬁ holds. So we may assume
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r=s. Then (ki j) is an r x r-matrix. The assumption of the
3

lemma can be translated into

vz €K', (2 #T » (kg j)z#ﬁv 3i.h, #T v ).

3

By 3.7.3 and 4.3.8d this implies ("(ki j) is invertible")v 3r'>nr.
3

ap,#ﬁ-vtp, where "(ki j) is invertible" gives "yi,...,yr 3

k]

free".

The following theorem relates separability to a notion which
can be used to define separability for field extensions

L2K in general.

4.6.8. Theorem. Let f be prime, Klal EK[X]/(—.Cf). Then we
have: f is separable if and only if the following formula

holds:

VmVyl,...,ymE Kla]l VPETP
(("yl,...,ym is free over K")»>p#0v (”yl,l),...,yrﬁ is

free over K")).

Proof: Assume that the formula holds. Let p€ P and g(X)€ K[X].
It suffices to show: p#0 vE(X)#g(XP). Then we can apply
4.6.3. £#T thus £#g(xP) vg(xP)#7T. We may assume:

g(Xp)#U. Let g =g+ ... +ngm. Then we shall prove by induction
on (m-1): if gi#ﬁ then p#0 or £(X)#g(XP). The case for

m-i =0 is contained in the induction step.

Induction step: let gi#ﬁ. Then f#g(XP)v ("f has degree

at least i+1"). We may assume that f has degree at least i+1,
Then 1,&,...,ui is free thus 1,ap,...,aip is free or p#0.

We may assume that 1,ap,..‘,aip is free. Then is

g0+g1ap+ +giaip#5, thus g(aP)#T v 3] >i.gj#ﬁ.

If g(oP)#T then £ #g(xP). If gj#ﬁ for some j>1i then
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we apply induction. This proves that f is separable. Assume

that f is separable. Let £

agtee- +aan#'[T. Take pE€IP and
YqseesY, € Klal so that yl,...,ym is free. To prove:

ﬁ#ﬁv("yp,...,yp is free"). By 4.6.6 we can write
1 m Y

o B n-1 # T s .
y; = o (Xi,0+ xi,1a+ +Xi,n‘1a )} so that X3 .3 0 implies
that ak#—D— for some k>7j. By induction on (n-r) we shall prove:
if ar#ﬁ then p# 0 or y%,. . ,y}; is free. The case for n-r=0

is contained in the induction step.

Induction step: let ar#ﬁ. YqseeeoYp is free thus the m x n-matrix
(x5 j) has rank m. If m>r then ar,#ﬁ for some r'>r and we
2
. . + +r-
can apply induction. Assume m <r. The sequence us,as 1,.. .,as B

is free. Therefore, by 3.10.5, we can extend the sequence
Yyseres¥p to a longer sequence YqseeesY, SO that the corresponding
r x n-matrix (x; j) has rank r and so that x. i =0 if 1i>m and

> L

j=r. This does not yet imply that VqseeeoVy, is free. However,

we have Vz, ...,z EK.(W 2. #0+2 z.y.#0v3r'>r.a_,#0) and by
r ; 1 ;i ba

4.6.7 this gives us ("yl,,..,yr is free")v 3r' >r.ar,#'ﬁ. We

may assume that SARRRRRY is free. Let M be the following r X -

matrix:
By i 595 P g
M=| 2
xr,G . xr,r—l

Since y,,...,¥, is free we have detM#70 v 3r~‘>r.ar,#ﬁ.

We may assume that detM# 0. Let Mp be the r xr-matrix (xli) "'l)'
2

Then detmp#ﬁvdetMp#detI«!p. If detMP#detMp then p#T0.
Therefore we may assume that detMD#U. We can write

D_ SP(,D p P p lr-1)p %7
y; =a (Xi,0+xi,1a +...+xi’r_1u ) +h, where h. 0
implies that p#70 v3r'>r’.ar,#'ﬁ. Then we have
VZgseee52,€ K.(\Ii] zi#'O'—> i? ziyg#ﬁv p#0 var'>r.a_, #0).

By 4.6.7 we get
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("y?,... ,yg iz free") vp#0 v 3r’ >r.ar,#ﬁ

If yg,...,yg is free then y?,...,ya is free too. And if

Jr' >r.ar'#ﬁ holds then we can apply induction.

4.7 Monphisms and subfields

Up to now we have constructed some extensions of fields. Now
we shall start to do the converse: constructing subfields from

an (extension-) field. The main tools are morphisms.

4,7.1. Theorem. Let o:K+R be a morphism with K a field and

R a ring with 1#0. Then ¢ is an embedding, i.e.
Vo€ K(a#0~+ o(a) #0)
Moreover, if o is surjective and R a field, then ¢ is an isomorphism.

Proof: Let a € K, a#0. Then a-l exists and

1

ola).ola 1) =ala).ola) = 140,

Thus o(a)+#0. o is an embedding. If, moreover, ¢ is surjective,
then it is a bijective embedding. It remains to prove that o
is strongly extensional if R is a field. Let o(a)#0. Then

there is a o(B) € R (o is surjective) so that

g(a)o(B) =1

o(oB) =1; af#¥ 0. And so a##0.

The extra assumption for R in 4.7.1 that o # 0 implies Eoc_l
is needed to prove that o is isomorphic, as the following model

shows:



?Z(D) with x# 0 in ZC(D) with # in the
: the nodes if " nodes the inequality.
x is invertible.

K is a field, R is an integral domain. Let o be the identity.

Then (K,R) "o is strongly extensional'.

4.7.2. Corollary. Let K be a field, o:K=+ K a surjective morphism.

Then ¢ is an automorphism.
How can we construct subfields by morphisms?

4.7.3. Remark. The presence of apartness makes it natural to
consider cofields analogous to coideals. A cofield of a field
L is a subobject CC L so that

(1) -~ 0€CaAa 1EC

(2) m=yeerxECwyEeEL

(3) xy€C+x€Cvy€EC

(4) xlegasxec

A cofield defines a subfield

(1C)L = {a EL|-a€C}. We write (=2 C) if no confusion

is possible.

Let H be a collection of morphisms from L to M. Then H defines

a cofield as follows:
C={ec€L|30o,TEH.ola)F* 1(a)}.

(4C) is called the fixed field of H: using the tightness of

the apartness we find (-C)= {a€ L|Vo,T€ H.o(a)= t(a)l}.
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Unfortunately we get only stable subfields in this way. To

cover more general subfields we use a generalization.

L.7.4. Definition. Let SCG be two collections of morphisms

from L to M. Then
@ (8) ={acE L|¥Yo,T €G(o(a)#1(a)+0 € SVIE S)}.

We write ©(S) if no confusion is possible. The reader may think
of G as a group of automorphisms and of S as a cogroup of G.
It is a simple task to show that ©(S) is a subfield and that

for (-C) above (AC)

LDH(¢).
In case G is a group of autcmorphisms of L we can do the converse,

i.e. we can construct cogroups out of subobjects of L.

4,7.5. Definition. Let G be a group of automorphisms of L.

Then for each subobject D of L we define

Y(D) = {c €EG|3da € D.o(a) #a}.

4.7.6. Remark. y(D) is a cogroup. A sketch of the proof
is given below. (=Y(D)) is called the fixed group of D and

its morphisms D-automorphisms. The least trivial step in the

proof that y(D) is a cogroup is the verification of the axiom
or€y(D)+o€y(D) vT €vy(D).
Assume 0T € Y(D). There is an o €D so that

ot(a) #o
(o) #0 F(a)
() Favad®o (a)

TEy (D) vo€y(D).

There is a standard procedure to construct from a collection
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of automorphisms of L an automorphism group.
Namely: take all finite sequences of automorphisms and their
inverses and take their compositions. 0f course we need the
natural number object for this construction. The group carries

the apartness relation from LL:

o#F T+ 3o €L. o(a)F1t(a).

4.8 Chanractens

4.8.1. Definition. Let 5 be a monoid and let L be a field.
A character is a morphism from S to the multiplicative monoid

of L (i.e. L with restriction to #,.,1).

Example: a ring morphism o:L *M from a field L to a field M
defines a character o*:L*¥+M*cM (L* and M* are the multiplicative

groups as in chapter 2).

We call a sequence xi,...,anEX apart if the xi‘s are pairwise
apart.

4.8.2. Theorem. Let gi,...,onEELS be an apart sequence of
characters; 5 a monoid. Then Opse==s0, is free in the vector

space LS over L.

Proof: induction on n. n=1: let €L with a# 0. Then
o_(]l(l) = q# 0, thus (101#0 in LS.

Induction step: Let a 0 €L with W a; #0. It is no

T
1 1<i<n
restriction to suppose ql#%o.
. S
Define ¢ =040, ¥ ,as +anan, T€L". To prove: T #F0.

There is an @ € S such that Ol(ct)#cn(a).
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Define Eaicl(u)01+... +unon(a)sn and

To
Gn(a)'r = ozlcrn(oa)cr1 +oo..t uncrn(a)crn. Subtract:

Ts - on(a)rs ocl(crl(a) = crn(on))o1 - +an_1(un_1(m) = on(oc))on

-1°
Since ul(cl(d) -Un(ot))#(l, we can apply induction: there is
a B €S such that

T,(B) = o _(a)T(B)#0.
Thus r(as)#an(a)':(B) g Syt

T(aB) #F#0 v1(B)+#0 and

TH#0.

Let L, M be fields and CPERRR ,UnEML ring morphisms. They define
*
characters o*,...;0 *€ ML.
1 n
Then “01 geees0 is apart' <« "Ui* 5663 ,cn* is apart".

For, let ci#O’j. Then there is an o€ L so that
ci(oc)#cj(a).

Furthermore a#0 v 1-a#0. Assume a#0, then we are donec:
oi*#cj*. Assume 1-a#0.
Now 1—0i(a)#1-cj(a)
= = : * *
o, (1 a)#oj(l a). Thus again o #cj :
Thus we have oi#cj ->ci* #cj*. The converse is trivial.

From 4.8.2 and the remarks above it easily follows that:

4.8.3. Corollary. Let 01,...,Un be ring morphisms from the

field L to the field M and let them be apart. Then o*,... ,G;

; ; *
is free in the vector space mE over M.

4.9 Deghrees over a fixed §Lield

Let the fixed field K of a sequence Tpoeees0 of morphisms

e M be +the field K=@; () as defined in 4.7.4, for Hs= {01,...,0n}.
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4.9.1. Theorem. Let Oqseses0 be an apart sequence of morphisms
EIWL with fixed field KCL. Let the gy be strongly extensional.

Then (L/K) has degree at least n.

Proof: we shall prove by induction on r, that for r<n there
is a sequence of vectors ml,...,u&1E(L/K), which is free and
so that

0wy v o, (wy)

.
.

A = ; . is invertible over M.
I" - .

Ul(wr) — Gr(wr)
r=1: take w, =1. Then A1 = (1) is invertible.
Induction step: Let r<n, Wyseonsl, be free in (L/K) and A

invertible. Then there are El,...,EPEEM so that

Bq Fopg (g !
A : = :
L I :
£ Ur+1(mr)
Opseees0,,4 18 free; thus there 1s an mr+1E L so that wr+14¢0
and
Elgl(wr+1) O +£r0r(mr+1)=#cr+1(mr+1).
First we shall prove that w4 18 free from Wysewssw in (L/K).
Let al,...,ure K and
VEO Wt F O W To prove: mr\+1#v'

We have Elol(wr+1) + ... +€r0r(mr+1);%0r+1(wr+i) and

Elci(v) 55 v +grcr(v)s o] (v), because for all

v+
347 41 Gj(ai)s Ok(ai).

Thus glcl(mr+1—v) + ... +Er0r(w —u)%#or v).

r+1l #1$0npq”

For some i<r+1 we have Oi(mr 1—v)#ﬁL oy is strongly extensional,

+

S0
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L‘u]:‘+1#\)'
Wyseensly g is free.
cr+1€m1)
A :
T
Then we must prove Ar+1£ Gr+1(w )
01(MP+1) : Ur(wr+1) 0r+1(wr+1)
is invertible.
Let the columns be ViseroaVqe Then VysesroVy, is free. To
: i ‘ HE, v —
prove: v_ ., 1S free from them. We know that Vs Eixl + +grvF
because of the bottom row. Lat ai,...,arEEM and
= .
WEav,ytees ta v, To prove Vg 7 W
vr+1#‘w v W#Eivi s FELV
If vr+1=#=w, we are done. Suppose W#E vy + ... +E v .
oy GP+1(M1)
Then A : # :
T : 2
o, Ur+1(wr)

Thus Vr+1#w'

Conclusion: WyseesW 4 18 free and Ar+1 is invertible.

4.9.2. Corollary. Let o.,,...,0_ be an apart sequence of
S 1.2 n
automorphisms of a field L with fixed field K in L. Then

(L/K) has degree at least n.

The automorphisms leaving the subfield K invariant are
closed under composition and inversion. So we can only expect
that [L:K]=n if EPERRRE - forms a group. That assumption actually

is enough.

4.9.3. Theorem. Let o <e00 form a group of apart automorphisms

12"
of L with fixed field K in L. Then [L:K] =n.
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Proof: by 4.9.1 there are wl,...,u%lEL.free over K so that

ci(wl) e on(wi)

is invertible.

Q sssen

1(mn) T cn(wn)

Thus the transposed matrix Ag 1s invertible. We must prove
that Wyaeee s generates (L/K). Let w€ L. Then there are

51,...,En€EL so that

. . =0. <i <

Elol(mi) 4 e +£ncl(mn) Ul(w) for 1<i<n. (1)
Let 9 be one of the autcomorphisms. Then 04 0q5+++50,0, 18 a
permutation of OgsreesO . Applying o, to the system (1) and

recrdering the rows we get
- 5

o (B0 (wy)+ ... +Ok(£n)ci(mn)-si(m) for 1<i<n.

Subtracting from (1) we have
- r . ~ <i<

[£,-0, (6010, () # .o +[E -0 (£ )]0 (w ) =0 for 1<i<n.

The rank of AE is n, thus
£, S <k <n.
Gk(Ei) El for 1<i<n, 1<k<n

Thus 51,...,£n6 K.

Moreover, idL is among the a.s thus

£1w1 + v +£nwn5 w .

w .,w ~generates (L/K).

e

4.10 Examples

Example 1. Let L, M be fields: M= L(X). Let 0,7 be automorphisms
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of M such that

¢ =1, % id

M ML L’

o (X) E% and

(X)) =1-X.
o and T are automorphisms with 02E %= idM.c and T generate a group
of & apart automorphisms, sending X to
1 X-1 1 X ; %
Xe 1 =X, ¥ X T=X and X:T-respectlvely. We can determine

the fixed field K of this group.
xFaein?
YErRe 2
K2L(I) and [M:K] =6, thus (M/L(I)) has degree at least 6 and

Let I= .o(I)=1(I) = I, thus IE€ K.

M=L(I)(X). Now X is root of the polynomial
£=?-vr? - v?or-n2 e Lanyl.

With theorem 4.5.8 we may conclude: f is prime, repular and

[M:L(I)] =6. Thus by 4.1.2 K=L(I).

Example 2. Let L, M be fields: M=L(X,,...,X ).
Lxamp. G 2 1 t
Let Sn be the collection of permutations of 1,...,n. For ecach

meE Srl we take an automorphism @ defined by

a = id

e and oﬂ(xi) =X

L n(i)’
This is a sequence of n! apart automorphisms. The sequence forms

a group. Again we shall determine the fixed field K. ILxtend the

automorphisms o, of M to automorphisms of M[Y] by defining

OW(Y)EEY.



- _h n-1
Let £ =(¥Y+X, ) ... (Y+Xn) =Y +a,v tooota .
Ays-..,a  are the elementary symmetric functions.
o.(f) =f, thus
Uﬁ(ai)sai, forw ESn, 1<is<n.
K.D_L(al,...,an).
Thus (M/L(a;,...,a )) has degree at least n! for the same reason

as in example 1. We construct a tower of rings Rnan-ig s gngRO
where
RnE L(al,...,an) and

= [

Rj= Rj+1 So M EQ(RO), the quotient field of R

0
By the division algorithm we find that fj+1 E(Y+X1)u.n(Y+X

Kaggle

j417€ Ryyql Y]
+1° By an induction argument this gives

(Rj/RnJ has degree at most n(n-1)+...-(j+1), j<n-1. Thus (RO/Rn)

and(—Xj+1) is a root of fj

has degree at most n!, while (Q(RO)/Rn) has degree at least n!.

So [Ry:R 1= n!. By 4.5.8 we have M EQ(RO)E R, and [M:Rn]s mi.

[M:L(al,...,an)] =n! and K= L(al,...,an).

R, are fields (theorem 4.5.8)

From this follows that Rn’Rn—l""’ 0

with [Rj:Rj+1]E ) = B8

Especially RDEP{. It turns out that the set of monomials L
m4 m.
b O LD ¢

b n

Thus they form a basis of (M/L(ai,...,an)).

with mjﬁj -1 is free in (M/Rn). There are n! of them.

4.11 Algebradic freedom and normal bases

4.11.1. Definition. Let f € K[Xl"'°’xn] be a polynomial in n

variables, f has degree at most m if f has degree at most m in

each of its variables separately.



i)

4,.11.2. Let L and M be fields and let o ...,Un be a sequence

1,
. L ; .

of morphisms €M™ so that the o, are strongly extensional. Since

Gl(L) is isomorphic to L we shall assume that LCM and that

01 EldL.

Let Oyaeees0 s LEM be as mentioned above, f a polynomial of

L[X ,Xn]. We want to consider the problem whether there

EEEE
is an x€ L such that

f(Ul(X),....,Gn(x))=#O.

4.11.3. Lemma. Let f€ K[Xl""’XI]L f#0, be a polynomial in
n variables with degree at most m. Let x,,...,x_be an apart
0 m

sequence of m+1 elements of K. Then there is a sequence Xg s e eaXy

1 n
such that f(:-c:.L g VD,

i 1n
Proof: by induction on n.
n =1:then we can give a proof by induction on m. But there is

also a direct proof (see [Gr 1]). Let f= fD + ... +mem. Consider

the Vandermonde matrix

m
1 Xy o- Xq
m
i xl “ xl

M = : G with detM = T (x.-x.)##0.
: . ol st
1<)

1 x " Xm
m m

Then for the vector v a{fU,...,fm)#O we have Mv#0. Thus f(x;)#0
for scme 1.

Induction step: we can write f as follows:
_ m
f =gU(X2,...,Xn)1-X1g1(X2,...,Xn)+...+ lem(xz,...,xn)4£0.

By induction there is a j and there is a sequence X aeeeaXs
2 n
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so that gj(xi RS YFED.

2 n
N m .
Thus f(Xl,xio,...,xin)= ag+Xqa, ... +Xiah;#0. So there is
an x. so that flx, ,...,x, )F0.
i i i
1 1. n

In the presence of apartness the notion "algebraically free"

is more natural than the notion "algebraically independent".

4,11.4. Definition. Let o 50 LCM be as in 4.11.2. ¢ s« 50

IEREE 'REE
is algebraically free if for all f € L[Xl,...,Xn] with £#°0 there

n

is an x€ L so that f(Ul(x),...,cn(x))‘#O.

4.11.5. Lemma. Let o 50 s LCEM be as in 4.11.2 and so that

13"

=50 is apart. Let K be the fixed field of ¢ o_. Let

a 1% **%p

107"
Xgaeee Xy be an apart sequence of elements of K. Then for all

fe L[Xl,...,Xn] so that £#0 and so that f has degree at most

m we have an x€ L with f(Ul(x),...,cn(x))iﬁﬂ.

Proof: by 4.9.1 there is a sequence w;,...,w € (L/K) which is

free and so that the n x n-matrix (Gi(mj)) is invertible.

Let w:L[Xl,...,Xn]->M[Y1,...,Yn] be the following strongly extensional
embedding: for 1 €L we have 9(1l) =1 and for 1<i<n we have

w(Xi) ] Gi(wl)Yi + ... +oi(mn)Yn.

Let g(Y ..,Yn)s w(f{Xl,...,Xn)). If f has degree at most m

2=

then g has degree at most m. For all x=gw, + ... +E 0w

1 Y

g(gl,...,gn) Ef(ol(x),...,on(x)). By 4.11.3 we may conclude:

with E1s--sE €K the following equation holds (use that o, =1id

for all f#0 with degree at most m there is an x= Elml + ... +£nwn€ L

such that f(ol(x},...,cn(x))s g(£1,>..,£n}##0.

4.11.6. Definition. An object Y with apartness is strongly infinite

if for all m there is an apart sequence YyseesYp of elements

of Y.
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4,11.7. Theorem. Let o <50 LEM be as in 4.11.2 and so

q B84

that ¢ e is apart. Let the fixed field K of ¢ o

TERRE g0y

be strongly infinite. Then O seees0 is algebraically free.

Preocof: immediate.
Another application of lemma 4.11.5 concerns the construction

of normal sequences and normal bases.

4.11.8. Definition. Let Oyseees0 s LCM be as in 4.11.2. Let

K be the fixed field of Opseees0 - A normal sequence of (M/K)

is a free sequence of (M/K) of the form cl(x),...,cn(x), X € L.
A normal basis of (M/K) is a basis of (M/K) of the form

Oi(X)"°"Gn(X)'

4.11.9. Theorem. Let 0,,...,0_  be a sequence of automorphisms
_— 1 n

of L with fixed field K. Let ¢ -»0  be apart and let K have

12"

an apart sequence of n+l elements. Then (L/K) has a normal

sequence Ol(x),...,cn(x).

Proof: let Tt -+»T 2 be the sequence of all compositions

4.2

%Fj' There is a bijective map u from pairs of numbers i,j

..

with 1<i,j<n to numbers k with 1<k<n? so that T _,. .. =0.
uli,j) 173

By induction on nlarg - s we shall show: if there is an apart
subsequence Tii,...,TiS, then there is a normal sequence
UI(X)""’Un(X) of (L/K). The case for m=0 is contained in
the induction step.

goeeraTy is apart. For

each tsgn2 there is a number v(t) <s such that for all s'<s

Induction step: we may assume that T

N

. ' e X = 1 .
with s'# v(t) we have Tgm ¥ Ege Consider the n x n-matrix (Xv(u(l,]))

Let f(X .,XS)Ede‘t(X ).

L v(u(i,g))

For all i,j,k with j# k we have Uicjﬁﬁoick.Thatileies:if j # kand
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v(u(i,j)) =v(uli,k)) then o, o v(u(l j))v 0,0 #ETv(u(i,k))'
If o;0. #bTV(u(l,j)) (or equlvalently if o0 :#TV(U(l Kx))) then
the sequence TysressT ’Tu(l 3 is apart. From this it easily

follows that
Vi,j,k<n.(j# k= v(u(i,j)) # vu(i,k)))v
vas'>s. ("1

3T T is apart").

13" SI

Thus f(Xl,...,XS)%&Ov 3s'>>s.(“T1,...,TS,TS, is apart").

If there is an s'>s so that T sTgsToy is apart then we l

PERERT R
can apply induction on m. Assume that f(Xl,...,A )#0. f has
degree at most n. By lemma 4.11.5 there is an x€ L so that
f(Tl(x),...,TS(x))#%O. Thus for the nx n-matrix (Uicj(x)) we
get f{Tl(x),...,Ts(x))##det(vioj(x))v det(cioj(x))%ﬁﬂ.

If f(Ti(x),...,Ts(x))¢ﬁdet(cicj(x)) then there is an s'>s

so that TyoeersTysToy is apart and we can apply induction on m.
Therefore we may assume that det(oicj(x)}#%ﬁ. Now we shall
prove that Ui(X)’°“’0n(X) is a normal sequence. Let
E,’i,...,EnEK be so that ;gk#o for some k. To prove:

£101(x) + ... +En0n{x)=#0. But this easily follows from the

fact that Gl(Ei)Uiol(x) G R +01(En)0i0n(x)#50 for some i.

As a corollary we get:

4.11.10. Theorem. Let CPERRREL

of L with fixed field K. Let K have an apart sequence of n+1

L form a group of apart automorphisms

elements. Then (L/K) has a normal basis Ol(x),...,ﬁn(x).

Observe that in 4.11.10 the polynomial £ = (X - Uj(x))-...'(X— o (x))
‘ n
is prime and regular over K with deg(f) = n. Moreover, f is

separable and L= Kldl(x)]E'K[X]/(ﬂcf)_
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4.12 Subfields generated by subobfects

Let M be a field and G a group of autcmorphisms of M with fixed

20 is apart

field K. Let DC M and 01,...,anEG so that PR
on D and
vIEG( W Ty = O pn)

ID iD

1<i<n

in

The cogroup v (D) {T€(3|TM)#=idMJ- defines a field

LEmGW(m)E{HEEMlVTEG(Na)#a+TM)#i%D}.

Let H = (qY(D)).H is a subgroup of G.

The tightness of the apartness relation and the apartness
of Oqs+++50, ON D give that H=s {TE(3| ™ Ef&%D} and
g0, are

representatives of the left cosets of H in G. K and M can

L={a€M| Yr€H.t(a)=al. Hence, DS L. ©

also be defined by ¢ (see 4.7.4):
KE%¥¢)am1MEq¥GH where G*= {T1€G | T#idl.

Now we have the following inclusions:

G {id} M
ul all ul
v(D) H L2D
ul Nl ul
¢ G K

Now we can prove:

4.12.1. Theorem. Let D,K,L.,M,G,H and o RN be as mentioned

1
above. Then we have: L is the smallest subfield of M containing
D. Moreover, L satisfies:

2. [L:K] =n.

2. L=K[D], the polynomial ring in D-elements over K.
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Proof: if we take ¢ <20, EfEML and apply 4.9.1 we find

1Mt
at once that (L/K) has degree at least n. But we need slightly
more. Therefore we shall consider the proof of theorem 4.9.1
in more detail.

Let D* be the multiplicative monoid generated by D (use N

to define D*). We can find the sequence Wyseee s in D*, by
following the proof ©f 4L.9.1 step by step.

First: wy = 1€ D*. Now the induction step of 4.9.1. We use
theorem 4.8.2 in this case:

*
04 m*"°"cn]D*E]qD are apart, thus free over M.

Given T = 5101 + ... +Er0r there is an mr+1€ED* so that

T(w ) =g ).

r+l Y # s +Ergr(w

VG S g

191 peg r+1
So wl,...,MHEED* and L2 D*, thus (L/K) has degree at least n.

It remains to prove that Wyseeos generates (L/K). Then it
follows automatically that L is the smallest subfield containing
D and that [L:K] =n. Therefore we modify the proof of theorem
U9 3

The relevant point of that proof is: Let T€ G. Then le,...,TUn

need not be a permutation of 045+-+,0, anymore. But we do
n

not need that in full. Apply T to A . Because of the facts

n

i) An is invertible and

ii) vt EeEG( W T =o0.
ey BT LB
we have that the columns of the matrix

)

Tcl(mi) SR TUn(ml)
TA = 5 i
n : :
Tcl(wn) = o Tcn(wn)

are a permutation of the columns of A .

b

e e
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With this modification, the proof of theorem 4.3.3 applies
in the present situation. The generators w;,...,w are iri: D¥,

so we have L= KI[D].

The automorphisms GlFL""’OnhL of the theorem above represent
all possible morphisms TNL from L to M leaving K fixed, but
with the restriction T €EG. We want to extend this result to all
strongly extensional tT:L+M leaving K fixed.

4.12.2. Proposition. Let K,L,M be as above, 1:L+ M a strongly

extensional morphism leaving K fixed. Then we have W 1t=g0,y, -
i iM,
1<i<n

Proof: by induction on r, we can prove that there is an i<rpr

so that M T#o. - from this follows, that at most o
=, J#1
may be equal to T. Therefore, assume T#ci e

Then 01 NIRRT N T is a sequence of strongly extensional
apart morphisms GEML, leaving K fixed. Then (L/K) has degree
at least n+1 (theorem 4.9.1). Contradiction: = T%Eci N
Thus t=0, rLby the tightness of the apartness relation.

4.13 Galodis palhrs

A Galois pair is a pair (M,G3) with M a field and G an automorphism

group. For the fixed field of G we usually write K.

Let M/K be the collection of subfields L such that Kc Lc M.

Let G be the collection of cogroups of G.

We take y:ﬂl§;+g andcp£2+gé§:as follows (see 4.7.4, W.7.5):
y(L)= {0€G|3a€ L.a(a)# al
@(C)={o€EM|VoEG(o(a)Fa+0€EC)],

We give a connection between intermediate fields and cogroups

rather than between intermediate fields and subgroups. The

reason for that is the following. Think of groups and fields

as Kripke models G and K over some partially ordered set F.
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. G, can be seen as an
B B
extension of Goc since we have: al- x#1=gllolx)#1. Thus if

For o <B we have a morphism G:Ga*-G

we go upwards in the poset IP then the Ga may increase.

The same holds for the Ka of a field model K.

But the fixed field of a subgroup which should have to decrease
if the subgroup increases, must be stable. In fact, fixed
fields of subgroups are of the form (-C) with C a cofield,

see 4.7.3. Therefore it is less probable to get a bijective
correspondence between subgroups and subfields.

The following models show why cogroups give better connections.

The models are constructed over the Kripke treeﬁ\w/’

IR IR T C
K is: R\\ /r , Ly Tige R\\ /?
IR ()

K is the fixed field of the following automorphism group,

where (+) is complex conjugation:

& is: fid, (™)} {id, (")}

N/

13d €7 ]
Then we can list the subfields of L/K and the cogroups of

G over the bottom node of the Kripke tree (the other nodes

are easy):

IR

KT VO A O

¢ o {(H} {1} b {1} {CHY {1} {()}

OO N© NCx @/

() ¢ ) ¢ {(-)}

L

When we also make a list of the subgroups we see that we do not

have a one one correspondence with the subfields (see the



numbers @,..., @ Yoa

{id, (D} {id, )} {id, ()} {id (7)) 4dd, Y] {id}

\®/ \NO/ o/

{id, ()} {ia} {iqd}
{id} {dia,(H} {ia} {id}
NZ \G/
{id} {id}

In this special case @ and y are bijective and ¢y = id and yp = id.
But in general this does not hold either. The only thing we
have is that ¢ and y form a so-called Galois connection

(see [Ma 11).

4.13.1. Proposition. y=y@y and ¢ = oye.

Proof: at least we have
LCyy(L) and y@p(C) CC.

v and y are inclusion order preserving, that means:
VL, ,L, € M/K(L, €L, > ¥(L;) €v(L,)) and

VCi,Cr€G (C CCy+0(C)Ew(Cy)).

2
Thus v(L) € ypy(L) and @ye(C)Ce(C).

The inverse inclusions are also true. This completes the proof.

By definition of ¢ and y we have

m

L=o@y(L)+Va€ M[VoE G(o(a)#a> IRE L.0(R) #B) »a€ L]

C=yp(C)+VoEG [0EC+TAnEM(c(a)FaaVTEG(t(a)Fa+TEC))]

The identities hold if and only if L is in the image of o
and C is in the image of y. M and K are in the image of ¢

and G*= {0 €G|o#id} and ¢ are in the image of y.

n

For, v(M) =G* and ©(G*)=M
and also y(K)=¢ and o¢(¢) K.
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We want to extend these results to other intermediate fields.
Therefore we have to add extra assumptions. It turns out that
the following statement suffices to show that for stable subfields
L we have @y(L) = L. We have inserted double negations because
it adds some extra generality that allows more models and
it does not increase the technical difficulties. A Galois

pair (M,8) is said to be of finite degree if G satisfies:

EinE.'INVGO,...,UnEG( ERR criEcr-).
0<i<j<n ]
4,13.2. Theorem. Let (M/G) be a Galois pair of finite degree.
Let LEM/K be a stable subfield, i.e. L satisfies

VeEM,.(~+wE L+a€L). Then @y(L) = L.

Proof: let a €M so that YoE€G.(c(a)#* o+ 3IRE L.a(B)#R).

To prove: =-a€L. There exists an n so that

Yo -,UHEG( - W . =0,).

0*"" Oﬁ{j% ¢ j

Now we can prove by induction on n-m:

=30 ¢ 500 ( m 0. #dj) S i

LT iy L

For n-m=0 assume .+ ( ”01,...,cn is apart") Then we have
ﬁﬁ(“cl,...,cn forms a group of apart automorphisms with
fixed field K")

and =~ M (g.(a)Favo.(a)=adAa M og., #id v O
1<i<n * 1 1<i<n

by the tightness of the apartness relation.

From this it easily follows, that =-=("K[alC L") thus =s~a€L.

Induction step: Let m<n and assume that -4 30

PERRREL ¢ A ciéﬁcj)

M <i<igm
holds.
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Then 0,,...,0_ generates a subgroup HC G with fixed field Kt
1 m
and we have —.—-(“01,.. s il is a group" v "there is an automorphism

o} so that o g is apart"). If o exists such that

m+1 12T m+1

T is apart then we apply induction. So we may assume

==("0o = forms a group of apart automorphisms with

G e

fixed field K'™). By using the same method as above we have

A= ("K [a] ELJ'") where L* is the smallest field containing

K* and L. Assume ~a € L. Then --3B8€ K .-R€ K. That implies

that a=("there is an o so that o 3 500 ic apart™)

12

holds. Applying induction we get =—70€ L. This contradicts

m+1 m+1

the assumption -a € L. Thus --»o € L. This completes the induction.

Now take m=1.

For a generalization of the result of 4.13.2 to all subfields,
i.e. for having @y = id, we need still stronger conditions.
The conditions that we give below suffice, but we expect that
there exist many other conditions as well which imply that

y = id.

4.13.3. Theorem. Let (M,G) be a Galocis pair, Gs= {Tl,.--,Tm}

and Vo€ M.Vo € G. (g (a)#a v ola) =a). Then @y = id.

Proof: let a« €M and Le M/K and
Vo€ G.(o(a)##a+3BE L.o(R)FB), i.e.a€ @y (L).

To prove: g €L.
Let gy5---50,€ G be the automorphisms so that ai(u}# a. For
each 0. there is a B.€ L so that o.(B.) #B..

i i i1 1
By 4.12.1 we find that ¢y(K[al]l)= K[a] and
wY(K(Bl,...,Bn))EK(Bl,...,Bn). Since Y(K[a])EYLK(Bl,...,Bn))

we have K[u]gK(Bi,...,Bn)EL; Thus & € L.
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5. PRIMALITY AND INVERTIBILITY

In this chapter we consider invertibility problems in extensions

K[a] of a field K.
5.1 Extensions by one element

If K[a] is a field then there is a minimal coideal Cg K[X] such
that K[a]l =K[X]/(aC). Is C of the form Cf for some fe€ K[X]? The
only theorem in that direction is 4.5.8. Unfortunately we cannot

expect much more without strong extra assumptions as follows

from the countermodel below.

5.1.1. Example. Let K and C be the following field model and

coideal in K[X]:

Qlv2] OLV21IXIN(X=v2)
K is: C is:
0 DIXIN (X2-2)

In this example C is equal to the intersection O{Cf|fE K[X],
f(a) =0} but C is not equal to any Ef separately. Observe that
K satisfies vx(x#0v x= 0) and that

0rv2]

K[X]/(aC) = K[a] is:

0rv2]

Another problem is: let K(B) be a field, B# 0, and assume that
there is an f€ K[X] such that f has invertible leading coeffi-
cient and such that f(B) = 0. Is K[B] a field? The answer is no.

And again there is an easy countermodel.

5.1.2. Example. Let K be the field model of 4.5.6.
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T, 0
K ig: \\\\
Z 9y
Kla] = KIX]/(5C) with £= 2X°+X+1. Kla] is a field (see 5.2.10(1)).
Let B= u_l Then K(B) = K[a] and 82+B+25 0 holds. But K[BR] is not

a field because we do not have that o€ K[B] (observe that all

elements of K[B] can be written as af+b with a,be€ K).

We shall restrict ourselves to integral domains K[a] = K[X]/(ﬂCf),
f prime. In contrast to the situation in classical mathematics

K[o] need not be a field if f is not regular.

5.1.3. Example. Let K be the following field model.

Q(x,y)

s710Ix,y] with §= (x,y)C°mPL

The elements x and y are transcendental over . Let f= xX2+X+1
and g= yX+1 be polynomials over K. One easily verifies that f

is prime and that f and g are relatively prime in the model.
Thus Klal= K[X]/(~Cg) is an integral domain with g(a)# 0. But
K[a] is not a field because we do not have an inverse element
for gla) = ya+l. For, if g(a) is invertible in K[a] we may as-
sume that g(a)-l is of the form o"(aa+b) with a,be K, ef. 4.6.6.
Over §(x,y) in the top node of the Kripke-model we find for

all n unique a ,b € Q(x,y) such that un(ana+bn)(ya+i)= 1. a_
and bn satisfy the equation

n

0 -x) P [(-xy)/ Gty 2=y)

1 =4 (x—y)/(x+y2-y)

Since x+y2—y essentially occurs in the denominator of
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ay ag 0 =x 5

det |, and since det = x it follows that x+y -y essen-
by bD 1 =1

tially occurs in the denominator of a_  or bn for all n. Thus
alsoc in the denominator of a or b. But x+y2-y is not invertible

in the bottom node of K. Contradiction. g(a) is not invertible.

Let Klals= K[X]/(ﬂCf) with f=a +...+anXn prime, am#*O. If m<n

0
then Kla] need not be a field. But it is very much like a field.
As illustration of that statement we shall list some properties

of Klal below.

5.1.4. Some useful properties. Instead of integral domains Klo]

as above we consider rings Klo] with some g(a) which is strong-
ly zero divisor free. This adds some generality to the results
and it does not increase the length of the proofs. Let f,g€ K[X]

be relatively prime. Then f€ C, v g€ C, holds. Because of symme-

X X
try we may assume f€ Cy. Then f(0)#0., Let f= a0+...+aan,
a #0. We may assume that ag=1. Let K[a]= K[X1/(-C.). Then

g(a) is strongly zero divisor free, i.e. we have

(1) Vh(a).(h(a)¥*0~+ g(a)h(a)##0), (cf. remark following u.4.9).
There are h,k€ K[X] such that hf+kg=1 if and only if g(a) is
invertible (with inverse k(a)). Thus if we want to find h,k
such that hf+kg=1 as in classical algebra, then it is enough
to find an inverse element for g(@). So we come to the inver-
tibility problem for g(a). g(o) need not be invertible as fol-
lows from 5.1.3 but we have some approximate results.

We can show: there is an s2m such that asitD and for f%Z

= ao+...+aSX5 there are h,q€ K[X] such that gh= qf#ﬁl.

Proof: analogous to 4.5.7.

Write gh= qf+l-r with r= q(f—f%é). This gives:

(2) There are h,r€ K[X] such that we have r##oﬁ-am'>’m.am,##0
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and g(a)h(a) = 1-r(a).

As in 4.6.6 we can write g(a) = aPk(a) for some p€ N and some

on n-1
k-kD+...+kn_1X

for k(a),u_lk(a),...,a k(a) there are polynomials k

(n) -i+1
SRR € K[X] each of degree at most n-1 such that o

Ek(l)(u). Let A be the matrix A= (k(l),...,k(n)) using the

€ K[X] satisfying ki##04-3j3>i.aj##0. Then

-n+1 1)

k(a) =

coefficients of the polynomials as column vectors, detA= E.

Then by Cramer's rule there exists a vector vE€ k" such that

Avs= (£,0,...,0), Let c= VO+"'+vn—1Xn-1' Then c(a)k(a)a

= £. Thus for some 1€ K[X] with 1(a)=-c(a)o

“ritel _

“p-n+l we have

gla)l(a) = £. Assume an##o. Since k(a) is strongly zero divisor
free we find vwe K" (w# 0+ Aw#:0). Thus A is invertible and
E#+0. Conclusion:

(3) There is an 1€ K[X] and a £€ K such that we have an##0+

+ EF#0 and g(a)l(o) = &.

1
Assume that there is an m'€ IN such that Elr(a)m . Then m'<2"
n‘l
for some n'>0 and £t(a) = r(u)2 for some t€ K[X]. Then we have
n'-1 nt
g(a)h(a) = gla)h(a) (1+r(a)) (1+r(a)?) ... (14r()? )= 1-r(a)?

and g(a)(h(a)+1l(a)t(a)) = 1. Thus gla) is invertible.

1
(4) If Elr(a)™ for some m' then g(a) is invertible.

Example: Let f,g be as in example 5.1.3, Kl[a] = K[X]/(wgf). When

we apply 5.1.4 to ga)=ya+l we find that
1 e XYL 2
T‘F(ya*‘l) =1 ﬁ(x

and

(-xya+x-y) (ya+l) = x+y2-y.

Thus r(a)EAT§§ 2 and EE x+y2—y. Observe that in the bottom node

1
of the Kripke-model K we do not have Elr(a)m for any m'.
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5.2 C,D-fiekds

In this section we consider fields satisfying the extra axiom
D: vx,y.xlyvylx.

Using D we can find the greatest common divisor (ged) of finite

sequences XpseeesX, of elements of K. Another consequence of

D is:

5.2.1. Proposition. If a field K satisfies D then it also satis-

fies xy=0+x=0vy=0.

With help of D we can diagonalize matrices in the following

sense. We call a matrix Bs=s (Bi j) a diagonal matrix if B i 0
E ]

for all pairs i#j.

5.2.2. Proposition. Let K satisfy D and let A be an mxn-matrix

over K. Then there is an mxn-diagonal matrix B, and an nxn-

matrix B, with detB,= 1 such that A= Ble.

2 2

Proof: use that each row 05 50 contains a ged.

LAl 2T A om
With axiom D and some extra axioms we shall show that for all
f,g€ K[X] we have f and g relatively prime if and only if there
are h,k€ K[X] such that hf+kgs 1. This implies that for prime
fe K[X] K[a]= K[X]/(ﬂcf) is a field. The main lemma for this

result is:

5.2.3. Lemma. Let K satisfy D, let f,g€ K[X] be relatively prime
with f= a0+...+aan, am##O and K[a] = K[X]/(ﬂCf). Then there are
£,N€ K such that (n#0v g= O)+'(333>m.as##OV'ans 0) and

vie DJ(glnl+-“g(a) is invertible").

Proof: From 5.1.4 we get: there are h,r,1€ K[X] and £€ K such
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that g(a)h(a) = 1-r(a), gla)l(a) = £ and if r#0 then aS#D for
some s>m and if £ =0 then anzﬂ. Moreover, if Elr(u)i for some
i then g(a) is invertible.
Let n be the ged of the coefficients of r€ K[X]. Then r=nr
with r#0. If n#0then r#0 thus we have (nF0vE=0)~>
> (Bs>m.as#0vans 0). Let i€ N . If {Elni then E;Ir(o.)i and g(a)
is invertible by 5.1.4(4). Thus we have proved

vie IN (gl nl-z» "g(a) is invertible").

5.2.4. Consider the following principles.
C, vy,xan€ IN (My>x#0vy=0),

C, Vyan€ N vx(x'ly> x#0vy=0).

We call fields that satisfy C; and D CiD-fieldS.
One easily verifies that c, implies C,-

5.2.5. Theorem. Let K be a ClD—field. Let f,ge K[X] be relati-

vely prime. Then there are h,k€ K[X] such that hf+kg=1.

Proof: we have f€ CXV ge CX' By symmetry we may assume f€ CX'
Then f(0)#0 and thus we may assume f(0)=1. Write f as f=

= aU+...+aan and let Klals= ]<[X]/(-'Cf). By induction on (n-m)
we show: if am#O then g(a) is invertible in K[a].

The case n-m= 0 follows from theorem 4.5.4.

Induction step: let am#O. By lemma 5.2.3 there are £,n€ K
such that n#0v £=0 implies as>m.as#0v a. = 0 and if Elni
for some 1 then g(a) is invertible.

By axiom C, there is a number p such that npl £ implies n# 0y

il
v £= 0. By axiom D we have nplgv g!np. If Elnp then g(a) is
invertible. If nPI £ then n#0v £= 0 holds. Thus we have

3s>m.a_#F#0v a = 0 and we apply induction: gla) is invertible.
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5.2.6. Corollary. Let K be a ClD—field, fe K[X], £f#0, Kla]=
= K[X]/(ﬂCf). Then we have:

f is prime & K[a] is a field.

Proof: let g€ K[X]. By 4.4.9 we have g(a)#0 if and only if f

and g are relatively prime. Now apnly 5.2.5.

One thing that is missing in 5.2.5 compared to 4.5.4 is that we
do not have a bound on the degrees of h and k, see example
5.2.10(1). Another difference between 5.2.5 and 4.5.4 is that
we do not have a uniqueness condition on h and k. But we have

a weak uniqueness in the following sense.

5.2.7. Proposition. Let K be an arbitrary field. Let f,g€ K[X]

be relatively prime, f=a +...+aan, f(0)# 0. Let m€ N . Then

0
there is at most one pair h,k€ K[X] such that k= ka(l) where

k(l) satisfies Vi€ DJ(kii)##04-3j>’i.aj##O) and such that

hf+kg= 1.

Proof: we only have to show the existence of at most one k.

Let Klal= K[X]/(~Cp). Let k= XMy (1) my (1)

mk(l)

and 1= X be so that

(o) = g(u)aml(1)(u)s 1. Then k(l)(a)s 1(1){a) and
(1) (1)

gla)a

L (1) (1)

= (1Cf). Assume k Then kil)##lil) for some

i and thus k;l)##ﬁv 1£1)##0 holds. Thus a.#*0 for some j>1i.

This implies that we have Vi€ DJ((k(l)—l(l)

(1)_ (¢ o

)§#0> 33> 1.a#0).

So by 4.3.8(c) k Contradiction. kci)s 1(1).

£
Observe that from 5.2.5 and 4.6.6 it follows that if K is a

CiD-field then for some m€ IN there is a solution h,k where

(1)

k= XMk is as described in 5.2.7.

)

If for some m we have a k= X"k as in 5.2.7 such that
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(2)

g(a)amk(i)(a) =1, then there is a k € K[X] such that k(z)(a)s

m+1k(2)

= m_lk(l)(u) and X satisfies the conditions of 5.2.7.

Iterating this procedure we find that if we have a special so-

(1)

lution XMk for some m then we have a special solution for

all m'=2m.

We have some constructions of new fields from old ones. We shall

show that they preserve combinations of the axioms D, C1 and C,.

5.2.8. Theorem. Let K be a field and K(X) the field of raticnal
functions over K. If K satisfies one of the axioms D, Da C1 or

DA C2 then K(X) does so too.

Proof: for D, use the fact that the numerator f of an element

fe K(X) can be written as f=nh with n€ K and h# 0. The rest

is trivial.

5.2.9. Theorem. Let K be a CiD-field, fe K[X], f prime and K[a] =

= K[X]/(ﬂcf)- Then K[a] is also a CiD—field.

Proof: from 5.2.6 it follows that K[a] is a field. Now we shall
prove the following claim:
each g(a) € K[a] can be written as zr(a) with g€ K and
r(a)#0.
The remaining details concerning Da C; then follow easily from
the property Da Ci for K.
Proof of the claim: let f=a +...+aan. We may assume that

0

f(0)=1. By induction on (n-m) we shall prove: if am%#O then

i

the claim holds. The case n-m= 0 is easy. We continue with the

induction step. Let am##O and g(a)€ K[al. n is the gecd of aiyq0e e

T By induction on p we show
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("g(a)=uz(a) with z(a)#0, uUE K")v("g(a)snpu(a) for some ula)").
The case p=0 is trivial. Induction step: we may assume that
gla) = npu(u) holds, otherwise there is nothing to prove. We
can write g(a) = npamrx(u) for some m' and x= xgt...+x 4 P
Let (.)*= (')F: Pnﬁ'Pn be a map according to 4.3.6 and with
corresponding invertible submatrix B with a_s= fs##o on the dia-
gonal such that s2m. Then we can write x= (x)*f+y with ysl+§
according to 4.3.8(d). Let y be the ged of the coefficients of
y. Then y=yz with z#0. y=vyz and y = yz. From 2#0 we derive
2#0v z#0. Assume z#0. Then z(a)#0v z#0. If z(a)#0 then

x(a) = y(a) = yz(a) and gla) = anam'z(a) with amrz(a)##ﬁ. Sco as-

sume z# 0. The coefficients of y are divisible by n thus we get

nly. Conclusion: x(a) = nu(a) for some u€ K[X]. So gla)

1
= ﬂp+1am ula). This completes the induction on p.

By 5.1.4(3) there is an 1€ K[X] and a £€ K such that £=0 im-

plies a = 0 and g(a)l(a) = £. By axiom C, there is a p€ N such
that nflg implies n#0v £= 0. Now we may assume that gla) =

= npu(u) for some u€ K[X]. Thus npu(a)l(a)z £. There is a

g€ K[X] such that npul+qfs £. Let e be the ged of the coeffi-

cients of g: g=eq with q#0. From the fact that gf#q(0)£(0)

it follows that nple. Thus also nplg and n#F0v £= 0. Then we

have 35>>m.a5¢#0v a = 0 and we can apply induction on n-m.

5.2.10. Examples.
(1) Let K be the following field model.

\

%(2} , the localization to the prime ideal (2).

Then one easily verifies that K satisfies the axioms D and C,.
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Let f = 2X2+X+1. Then £ is prime and K[a]-= K[X]/(ﬁgf) is a field.

For instance we have 6a+1# 0 and -au(6a+1)s 1. In fact there is
no f€ E(Z)[X] with degree at most 3 such that f(a)(6a+l) = 1.
(2) Let R be a unique factorization domain from classical alge-
bra. Let R have infinitely many prime numbers. Then we construct
the following sheaf model. As topological space we have X-=

= {(p)CS R|p is prime} with the cofinite sets as open sets. lor
open UC X, U= X\{(pi),...,(pn)}, we take as ring of sections

abigve U: REUY =91

R with 8 the multiplicative set pgenerated by
e Call this sheaf model R. Then R is a local ring mo-
del satisfying D (observe that these axioms are of type P as
defined in 1.3.1) since as stalk structures in the points a= (p)

we have the local rings R(p)' Each y€ R(U) with y# 0 can be

written as y = % where d,e€ R and 4 has a prime number decompo-

n n
dl m

sition d= o Let n= max(n nm). 'hen one easily

EEEEE
verifies that for all x€ R(V), Vc U, we have

Hxn+1|y+ x#0vy=012V.
Thus R satisfies C?. Finally, let a= (p)€ [~y¥ 0| for y-= ge RO,
a€ U. Thus pld. Then [-y# 0] is an inhabited open set, thus co-
finite in X. So there are infinitely many prime idecals (p) such

that pld. Thus d= 0 and y= 0. This implies a€ |y=0]. Conclu-

1]

sion: R is a ficld model satisfying 1 and CQ. Observe that this
model satisfies more extra propertics. Since cach open subscet
UC X of the infinite set X is cofinite or empty we find that

for cach formula ¢ R satisfies =a@v 2agp, c.g. in R vx(x= 0y ax=10)
holds.

(3) Let C=C€(C,C) be the sheaf of holomorphic functions. Then

€ is a field model. Since sections a,b in a neiphbourhood of
)m+1+

; ; m
some 7 can be written as power series a(g) = am(g—c) +am+1(E—c
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+
m+2+_ n+1+ n 2+._

a5 kE=T) and BOEY = b NE-5) #b JME~EY  #hy . (€-T)

we see that C satisfies Da C,-
By interpreting intuitionistic theorems in their sheaf models
we have an alternative method for deriving results concerning
classical structures. As an illustration of such a procedure we
shall use theorem 5.2.5 to derive a property of rings, using

the sheaf construction of 5.2.10(2). This property is chosen

for its illustrative nature.

5.2.11. Example. Let R be a unique factorization domain from
classical algebra. Assume that R has infinitely many primes.
Let f,g€ R[X] such that for each maximal ideal MC R we have
ged(f,g) =71 in (R/M)[X]. Then there are h,k€ R[X] such that
hf+kg=1.
Proof: let R be the sheaf model of 5.2.10(2). From the condi-
tions on £ and g it follows that RE "f and g are relatively
prime". Thus we have RF 3h,k€ K[X].hf+kg= 1. From the interpre-
tation of the existential quantifier 3 (see 1.3) it follows
that we get the h and k only as a collection of local sections.
The problem to find global h,k (and thus h,ke& R[X]) essentially
makes the proof more complicated.
There are open U,VC X such that Uu V=X and [£(0)7 0] = U and
[g(0)#0] = V. Here X\U= {(p)C R|p is prime and pl £(0)} and X\V=
= {(p)CR|p is prime and plg(0)}. Then by 5.2.7 we have a cover

{Um|m€ W} of U such that we find unique h,k with k= et12

(1)

above Um’ where XMk is as described in 5.2.7. By the com-

pactness of U we can find a fixed m such that we can choocse

Um: U. By the sheaf property we can glue the local - unique -

(1)

h,k with k= *Mye to h kUE R(UX[X]. So th+kUg: 1 where we

1>
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allow divisors of f(0) in the denominators of the coefficients

of hU and kU. So there is an aUE R and an n€ W such that

_ n
ayhy € RLXT; aUkUE R[X] and aUth+aUkUg~ f(0)". In the same way

we get an equation thVf+aVng: g(G)m. From the conditions on
f and g it follows that the ideal (£f(0),g(0))C R is not con-
tained in any maximal ideal MCZ R. Thus (£f(0),g(0)) =R and so
(£(0)™,g(0)™) = R. There are s,t€ R such that sE(0) M +tg(0)™= 1.
Now take h= sajh +tayhy and k= sajgk +tagky. Then h,k€ R[X] and

utu v Utu
hf+kg = 1.

5.2.12. Remark. Theorem 5.2.5 can be generalized to local rings
R satisfying

D Vx,y{xlyv yl x),

C, Vy3ne€ Nvx(x"ly> x##0v ay#0),

Nil vx(4x#% 0> 3ne€ Nx"=0).
For, if f,g€ R[X] are relatively prime, then there are h,k€ R[X]
such that -hf+kg# 1. Let d= 1-hf-kg. If R satisfies Nil then

R[X] satisfies Nil. Thus since 3d# 0 we have an n such that
plk 2 g
d®=0. Let h= h(1+d)(1+d")-...-(1+d ) and k=
n-1
= k(1+d)(1+d2)-...-(1+d2 ). Then we have hf+kgs= 1.
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Samenvatting

Wiskundigen hebben altijd geweten dat constructieve bewijzen

in bepaalde zin uitgaan boven niet-constructieve bewijzen. In
de loop van deze eeuw ontstond er echter een trend om construc-
tieve bewijzen door algemenere bewijzen te vervangen (bijvoor-
beeld de introductie van idealen in de algebra). Dit leidde

tot abstractie en generalisatie. Deze abstractie culmineerde

in de ontwikkeling van categorieé&n theorie. Bij de grotere
abstractie gingen meestal de constructieve aspecten verloren.
Intuitionistische algebra zoals gepresenteerd in dit proef-
schrift is op te vatten als een terugkeer naar constructieve
procedures. Vergeleken bij de constructieve algebra in de tra-
ditie van Kronecker is onze benadering, in de navolging van
Heyting, algemener doordat wij bijvoorbeeld structuren met on-
beslisbare gelijkheid toelaten. We nemen bijvoorbeeld niet aan
dat ieder element uit een lichaam inverteerbaar is of gelijk
aan nul is.

De prijs die we daarvoor moeten betalen is dat we bepaalde stel-
lingen niet kunnen afleiden die in de klassieke algebra wel
afleidbaar zijn. Zo krijgen we niet altijd lichaamsuitbreidin-
gen via priempolynomen. Ook werkt de gangbare constructie van
normale en separabele lichaamsultbreidingen niet. Maar er is
ook een voordeel. Intuitionistische stellingen kunnen geinter-
preteerd worden in schoven over een topologische ruimte en zelfs
nog algemener: in topol. Daarmee leveren die stellingen direct
resultaten in de klassieke wiskunde. Als een voorbeeld: zie

5.2.11. In concreto bestaat de inhoud van dit proefschrift uit
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lineaire algebra, lichaamsuitbreidingen, Galois theorie en
enkele modeltheoretische beschouwingen daarover.
Algemene topos theorie sluit nauw aan op algemene categorieén
theorie. Daar juist topoi de modellen vormen voor hogere orde
intuitionistische logica kunnen we zeggen dat de ontwikkelingen
van enerzijds verdere generalisatie en abstractie en anderzijds
van de constructieve wiskunde - in dit geval de intuitionisti-

sche algebra - zich weer verenigen via de topos theorie.
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