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1 Introduction

Latarres are the end result of a series of generalizations. Our
process follows from earlier mathematical results obtained about
Boolean algebras, Heyting algebras, Visser algebras (see [1], [2],
and [4]), and what we call CJ algebras, after Celani and Jansana
(weakly Heyting algebras in [3]).
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2 What is a Latarre?

2.1 Informal Definition

A latarre is a LATtice with an ARRow. The essential parts of
its language consist of three binary operators (⊓,⊔,_). With
restriction to (⊓,⊔) a latarre is a lattice with meet ⊓ and join
⊔. For the arrow we have the additional ‘natural’ schemas

x _ y = (x ⊔ y) _ y.
x _ y = x _ (x ⊓ y).
y ✂ z implies x _ y ✂ x _ z.
y ✂ z implies z _ x ✂ y _ x.
(x _ y) ⊓ (y _ z) ✂ x _ z.

where ✂ is the usual order definable by x ✂ y exactly when
x ⊓ y = x.
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2.2 Formal Definition

For practical reasons we extend our language to (⊓,⊔,_, ε) by
adding a constant ε to the three binary operators mentioned
above. A latarre is a structure satisfying the universal algebra
schemas of a lattice with meet ⊓ and join ⊔, plus

N1. x _ y = (x ⊔ y) _ y.

N2. x _ y = x _ (x ⊓ y).

N3. x _ (x ⊓ y ⊓ z) ✂ x _ (x ⊓ y).

N4. y _ (y ⊓ z) ✂ (x ⊓ y) _ (x ⊓ y ⊓ z).

N5. (x _ (x ⊓ y)) ⊓ ((x ⊓ y) _ (x ⊓ y ⊓ z)) ✂ x _ (x ⊓ y ⊓ z).

N6. ε _ ε = ε.

Element ε is an important convenience, that is, ε with N6 is
uniquely definable over the subsystem without N6.
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Proposition 2.1. Latarres satisfy schemas

1. y ✂ z implies x _ y ✂ x _ z.

2. y ✂ z implies z _ x ✂ y _ x.

3. (x _ y) ⊓ (y _ z) ✂ x _ z.

4. x _ y ✂ z _ z.

5. x _ y ✂ ε.

6. x _ x = ε.

7. x ✂ y implies x _ y = ε.

8. x _ y = ε implies z _ x ✂ z _ y and y _ z ✂ x _ z.

Section 3 has trivial examples of latarres which are neither
distributive nor have a largest element. So ε need not be top.
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Proposition 2.2. Latarres satisfy schemas

1. x _ (y ⊓ z) = (x _ y) ⊓ (x _ z).

2. (y ⊔ z) _ x = (y _ x) ⊓ (z _ x).

3. z _ x ✂ (x _ y) ⊓ (y _ z) implies (z _ x) = (z _

y) ⊓ (y _ x). In particular, z ☎ y ☎ x implies (z _ x) =
(z _ y) ⊓ (y _ x).

4. (x _ y) ⊓ (y _ z) = (x ⊔ y) _ (y ⊓ z).

5. y _ z = ε implies (x ⊔ y) _ z = x _ (x ⊓ z) = x _ z.

6. z _ x = ε implies z _ (x ⊓ y) = (z ⊔ y) _ y = z _ y.

7. y _ z ✂ (x ⊓ y) _ (x ⊓ z).

8. (y _ x) ⊓ (y _ z) = (y _ x) ⊓ ((x ⊓ y) _ (x ⊓ z)).

Let a, b, and c be elements of a latarre A. Then

1. c ⊓ ε = c ⊓ (b _ a) if and only if A satisfies
schema c ⊓ ((a ⊓ b) _ (a ⊓ x)) = c ⊓ (b _ x).

2. A satisfies schema a⊓ ε ✂ z _ a if and only if A satisfies
schema a ⊓ ((a ⊓ x) _ (a ⊓ y)) = a ⊓ (x _ y).
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We inductively define∇nx for all n by∇0x = x and∇n+1x =
ε _ ∇nx.

Proposition 2.3. Latarres satisfy schemas

1. ∇n(x ⊓ y) = ∇nx ⊓∇ny.

2. x ⊓ y _ z = ε implies y _ x ✂ y _ z.
So x ✂ y _ x plus x ⊓ y _ z = ε implies x ✂ y _ z.

3. x ✂ y _ z implies x ⊓ (w _ y) ✂ w _ z.

4. y _ ε = ε implies ∇x⊓((x⊓y) _ (x⊓z)) = ∇x⊓(y _ z).

5. y _ ε = ε plus x ⊓ y _ z = ε implies ∇x ✂ y _ z.

6



3 Examples of Latarres

One collection of trivial latarres is the following. Start with
any lattice M and any element m of M. Set x _ y = m for
all elements x and y of M. This defines a ‘trivial’ latarre with
ε = m and M as underlying lattice.

A latarre is called unitary if the lattice has a top 1 and
ε = 1. A latarre is called arrow persistent if it satisfies schema
x ⊓ ε ✂ y _ x. A latarre is called Heyting if it satisfies schema
x = ∇x. A latarre is called Boolean if it satisfies schema (x _

(x ⊓ y)) _ (x ⊓ y) = x. A latarre is unitary arrow persistent
exactly when it satisfies schema x ✂ ∇x. So Heyting latarres
are unitary arrow persistent. Boolean latarres are Heyting.

A latarre is called almost-complete if for each subset S which
contains an element,

⊔
S exists or, equivalently, if for each sub-

set S with a lower bound,
d

S exists. So complete implies
almost-complete. A frame (or a complete Heyting algebra or
a locale) satisfies m ⊓ ⊔

S =
⊔{m ⊓ s : s ∈ S}, for all sets

of elements {m} ∪ S. On a frame M we can define an ar-
row x _ y =

⊔{z : x ⊓ z ✂ y}. The resulting structure
(M,_, 1, 0) is a frame. Each filter F on frame M is the domain
of an almost-complete Heyting latarre (F,_, 1).
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Filters on a Boolean algebraB are exactly the upward closed
(Boolean) sublatarres of B.

Filters on a Heyting algebra C are exactly the upward closed
(Heyting) sublatarres of C.

Define a unitary latarre on lattice N5 as follows. In the
diagram of N5 below, labels x, y, and z mean that we set 1 _

b = y, set b _ a = z, and so on. The letters x, y and z are
values to be chosen freely from the domain {0, a, b, p, 1} with
the only restrictions that x ✂ z and y ✂ z.

1y
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//
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The properties of unitary latarres allow us to uniquely extend
the arrow by p _ p = 1 and 1 _ a = (1 _ b) ⊓ (b _ a) =
y ⊓ z = y and a _ p = a _ a ⊓ p = a _ 0 = x, and so on.
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A function f : A → B between latarres is called a latarre
(homo)morphism if f preserves the defining operations of ⊓, ⊔,
_, and ε. Latarres are closed under submodels, products, and
(homomorphic) images.

Proposition 3.1. Let A = (M,⊔,_, ε) be a latarre and f :
M → M be a meet semilattice endomorphism. Define Af =
(M,⊔,_f , f(ε)) by a _f b = f(a _ b). Then Af is a latarre.

Proposition 3.2. Let A = (N,_, ε) be a latarre and g : N →
N be a lattice endomorphism. Define Ag = (N,_g, ε) by a _g

b = g(a) _ g(b). Then Ag is a latarre.

Let g : A → A be a continuous function on a topological
space O(A). Inverse image map h = g−1 : O(A) → O(A)
is a meet semilattice morphism on the meet semilattice part
N of the frame O(A). N is the meet semilattice part of the
corresponding complete Heyting latarre C = (N,⊔,_, A). By
Proposition 3.1 we get a new latarre Ch from C by redefining
εh = g−1(ε) and U _h V = h(U _ V ) = g−1(U _ V ) =⋃{g−1(W ) : W ∩ U ⊆ V }. Map h = g−1 is also a lattice
morphism on (N,⊔). So by Proposition 3.2 we get another new
latarre Ch from C by redefining U _h V = g−1(U) _ g−1(V ) =⋃
{W : g(W ∩ g−1(U)) ⊆ V }.
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Proposition 3.3. Let f : M → N be a lattice morphism, and
g : N → M be map which preserves meet ⊓. Let B = (N,_, ε)
be a latarre. Define εm and _m on M by εm = g(ε) and
x _m y = g(f(x) _ f(y)). Then A = (M,_m, εm) is a
latarre.

Map f : A → B of Proposition 3.3 need not be a latarre
morphism. By Proposition 3.1 we have a latarreBfg = (N,_fg

, fg(ε)) with x _fg y = fg(x _ y). Map f : A → Bfg is a
latarre morphism.

Suppose map g : N → M of Proposition 3.3 is a lattice
morphism. Map g : B → A need not be a latarre morphism.
By Proposition 3.2 we have a latarre Bfg = (N,_fg, ε) with
x _fg y = fg(x) _ fg(y). Map g : Bfg → A is a latarre
morphism.

Proposition 3.4. Let A1 = (M, ε1 _1) and A2 = (M, ε2,_2)
be latarres on the same lattice M. Define A = (M, ε,_) by
ε = ε1 ⊓ ε2 and x _ y = (x _1 y) ⊓ (x _2 y). Then A is a
latarre.

Proposition 3.4 can be strengthened for complete lattices,
where we get a new arrow that looks like x _S y =

d
{x _s y :

s ∈ S}, and εS =
d{εs : s ∈ S}.
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Let R be a commutative ring. Its collection of ideals forms
a complete lattice ordered by set inclusion. Let M be the com-
plete lattice of ideals, with I ⊓ J = I ∩ J for all ideals I and
J . Lattice M need not be distributive. The set

√
I = {r ∈ R :

rn ∈ I for some n} is the least radical ideal containing I. Given
ideals I and J , the set J : I = {r ∈ R : rI ⊆ J} is an ideal. We
construct a unitary complete latarre A on lattice M as follows.
Set I _ J =

√
J : I and ε = R. We have a unitary latarre

A = (M,_, R) with I ⊓ (I _ J) = I ⊓
√
J .

Let O(X) be a T0 topological space. So we have a latarre
A = (O(X),_, X). Define operator j : O(X) → O(X) by

ju =
⊔
{u ∪ {x} : u ∪ {x} is open}.

Define x _j y = j(x _ y) and get a new latarre (O(X),_j

, X), where ∇jx = X _j x = jx. Even in the case of O(R)
there are u with jn+1u 6= jnu for all n.

The above example generalizes to almost-complete frames.
Let M = (M,⊓,⊔) be an almost-complete lattice. Define v

covers or equals u, written u ✂1 v, by
u ✂1 v ↔ (u ✂ v ∧ ∀t(u ✂ t ✂ v → (u = t ∨ t = v))). Over a
T0 space O(X) this means u ✂1 v exactly when there is ξ ∈ X

with u ✂ v ✂ u ∪ {ξ}. Define operator j : M → M by

jx =
⊔{u : x ✂1 u}.
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4 General Substitution Rules

With each latarre A we associate a predicate logic language
L(A). We may write t(x) even if term t(x) has other variables
besides x. Given a term t(x) of L(A), we define positivity and
negativity of occurrences of x in t(x) in the usual inductive way.

Proposition 4.1. Let t(x) be a term over a latarre A. If x is
only positive in t(x), then x ✂ y implies t(x) ✂ t(y). If x is
only negative in t(x), then x ✂ y implies t(y) ✂ t(x).

An x occurs at depth n ≥ 0 in term t(x) if x occurs n levels
deep inside implication subformulas of implication subformulas
and so on. So x occurs at depth 2 in (y _ (w ⊓ (x ⊔ v))) _ z,
and x occurs at depth n in ∇nx. The x occurs informally if
depth n = 0, otherwise x occurs formally.

Proposition 4.2. Let t(x) be a term over a latarre A and n ≥ 0
be such that x only occurs at depth n in t(x). If x is only positive
in t(x), then A satisfies schema ∇n(x _ y) ✂ t(x) _ t(y). If x
is only negative in t(x), then A satisfies schema ∇n(x _ y) ✂
t(y) _ t(x).
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Proposition 4.3. Let t(x) be a term built without join ⊔ over
a latarre A, and n ≥ 1 be such that x only occurs at depth n

in t(x). If x is only positive in t(x), then A satisfies schema
∇n−1(x _ y) ⊓ t(x) ✂ t(y). If x is only negative in t(x), then
A satisfies schema ∇n−1(x _ y) ⊓ t(y) ✂ t(x).

In Proposition 4.3 the exclusion of ⊔ is essential.

Proposition 4.4. Let t(x) be a term over a latarre A in which
x occurs only at depths at least n in t(x), for some n ≥ 1. Let
a, b ∈ A be such that ∇n−1(a _ b) = ε. If x is only positive
in t(x), then t(a) ✂ t(b). If x is only negative in t(x), then
t(b) ✂ t(a).

Write x ] y as short for (x _ y) ⊓ (y _ x). If x is only
formal in t(x), then a ] b = ε implies t(a) = t(b).

Proposition 4.5. Let t(x) be a term over a latarre A, and
a, b ∈ A are such that a _ b = ε. If x is only positive in
t(x), then t(a) _ t(b) = ε. If x is only negative in t(x), then
t(b) _ t(a) = ε.
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Given a latarre A, define equivalence relation x ∼ y by x]

y = ε. We write a(1) or a′ for the equivalence class of a, and A(1)

or A′ for the collection of equivalence classes. Relation x ∼ y

a congruence. On A′ define the following latarre. If a ] b = ε,
then t(a) ] t(b) = ε for all terms t(x). The following are well-
defined on A′: Define x′ ⊓′ y′ = (x ⊓ y)′ and x′ ⊔′ y′ = (x ⊔ y)′

and x′ _′ y′ = (x _ y)′. With these, A′ = (A′,⊓′,⊔′,_′, ε′) is
a latarre. The map x 7→ x′ is an onto latarre morphism from A

onto A′.
Repeat this construction and form A′′ = A(2) by defining

x′ ∼ y′ on A′ by (x ] y)′ = x′ ]′ y′ = ε′ or, equivalently, by
(x ] y) ∼ ε, that is, (x ] y) ] ε = ε. Continuing in this way,
we get a chain

A = A(0) → A(1) → A(2) → A(3) → . . .

with for all a, b ∈ A and n ≥ 1 we have a(n) = b(n) in A(n)

exactly when ∇n−1(a ] b) = ε.
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5 Visser Latarres and Substitution

We establish a close connection between weakly Visser latarres
and (relative) meet substitution.

An element a of a latarre is called arrow persistent if it
satisfies schema a⊓ε ✂ y _ a. Element a is called unitary arrow
persistent if it satisfies schema a ✂ y _ a. A weakly Visser
latarre is a distributive latarre satisfying the schema x ⊓ ε ✂

y _ x of arrow persistence. A Visser latarre is a unitary weakly
Visser latarre.

So a Visser latarre is a distributive latarre satisfying the
schema x ✂ ∇x of unitary arrow persistence. Hence Heyting
latarres are Visser latarres.

Proposition 5.1. The following are equivalent for an element
a of a latarre.

1. a is arrow persistent.

2. a ⊓ (a _ y) ✂ z _ y, for all y and z.

3. (a ⊓ y _ z) = ε implies a ⊓ ε ✂ y _ z, for all y and z.

4. a ⊓ y ✂ z implies a ⊓ ε ✂ y _ z, for all y and z.

15



Given a latarre A and element a, we construct a latarre on
the subset {x ∈ A : x ✂ a} as follows. Set

εa = ε ⊓ a,
x ⊓a y = x ⊓ y,
x _a y = a ⊓ (x _ y), and
x ⊔a y = x ⊔ y.

The resulting structure Aa is a latarre. If a ✂ ε, then Aa is
unitary. If A is unitary, arrow persistent, Visser, Heyting, or
Boolean, then so is Aa.

The function πa(x) = a ⊓ x is an idempotent map from A

onto Aa. In general πa is not a latarre morphism. Below we
establish precisely when πa is a morphism.

Given a term t(x) and element a of latarre A, we say that
t(x) admits meet substitution over (A, a) if A satisfies schema

a ⊓ x = a ⊓ y implies a ⊓ t(x) = a ⊓ t(y).

Equivalently, (A, a) satisfies schema

a ⊓ t(x) = a ⊓ t(a ⊓ x).

We write T (A, a) for the collection of terms over A that ad-
mit meet substitution over (A, a). We define A admits meet
substitution if T (A, a) includes all terms for all a ∈ A.
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Proposition 5.2. Let a be an element of latarre A. Then the
collection T (A, a) contains all terms without x, the term x itself,
and is closed under ⊓ and under composition. Additionally:

1. A satisfies schema a⊓ ε ✂ x _ a if and only if T (A, a) is
closed under _.

2. A satisfies schema a ⊓ (x ⊔ y) = (a ⊓ x) ⊔ (a ⊓ y) if and
only if T (A, a) is closed under ⊔.

As a Corollary we get:

Theorem 5.3. The following are equivalent for a latarre A.

1. A is weakly Visser.

2. For all elements a of A the map πa : A → Aa is a latarre
morphism.

3. A admits meet substitution.
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6 Fixed Points and Löb

Over Visser latarres all terms t(x) have explicit fixed point t(1),
that is, t(t(1)) = t(1), exactly when all terms of the form ta(x) =
x _ a have explicit fixed point ta(1), that is, ta(ta(1)) = ta(1).

An equation t(x) = u(x) has ultimate solutions over latarre
A if for all a there are b ☎ a such that t(b) = u(b). We call a term
t(x) ultimately fixed or U-fixed over A if equation t(t(x)) = t(x)
has ultimate solutions over A. We call an element a a U-Löb
element over A if ta(ta(x)) = ta(x) has ultimate solutions over
A, where ta(x) = x _ a.

A latarre is U-fixed if all its terms are U-fixed. A latarre
is U-Löb if all its element are U-Löb. U-fixed implies U-Löb.
Visser latarres add the converse direction that U-Löb implies
U-fixed.

A term t(x) is called fixed over a latarre A if A satisfies
schema t(t(x) ⊓ x) = t(x). An element a is called Löb over
a latarre A if A satisfies schema ta(ta(x) ⊓ x) = ta(x), where
ta(x) = x _ a. A latarre is fixed if all its terms are fixed. A
latarre is Löb if all its elements are Löb. Fixed implies Löb.

Obviously schema x ✂ t(x) over A implies that t(x) is fixed
over A.
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Theorem 6.1. The following are equivalent for a latarre A.

1. A is U-fixed.

2. A is a weakly Visser and U-Löb.

3. A is a weakly Visser and Löb.

4. A is fixed.

An element that can be written in the form a _ b is called
an arrow element, or an arrow element of the 1st kind. Given
an arrow element t of the nth kind, we call an element a _ t an
arrow element of the (n+ 1)th kind.

Theorem 6.2. The following are equivalent for a latarre A.

1. A is weakly Visser, and there is n ≥ 1 such that all arrow
elements of the nth kind are Löb.

2. A is fixed.
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7 Almost-Complete Latarres

Another source of interest involves almost-complete lattices with
an operator. In early cases this mostly involved frames M with
a map j : M → M satisfying the schemas

x ✂ jx (increasing) and
j(x ⊓ y) = jx ⊓ jy (multiplicative).

An operator satisfying these conditions we dub a nub. With
this terminology, j is a nucleus if j is an idempotent nub, that
is, if j satisfies the extra schema

jjx = jx (idempotent).

These definitions apply to all latarres. The following is a special
case for current purposes.

Proposition 7.1. Let j be a nub on a Visser latarre M. Define
x _j y = j(x _ y). Then M with new arrow _j forms a
Visser latarre.
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Theorem 7.2. Let j be a nub on an almost-complete frame M.
Then there is a map w on M satisfying

• w is a nucleus.

• w is least fixed point operator for j, that is, we have
schemas jwx = wx, and jy = y ☎ x implies y ☎ wx.

Let e : N → M be the equalizer of j and id : M → M. Then

• N is an almost-complete frame (and the image of w).

• w = eπ for a unique π : M → N.

For each n ∈ N the inverse image structure π−1({n}) = Mn is
Visser and Löb, that is, is a fixed (point) latarre.

The lattice of π−1({n}) = Mn is an almost-complete frame,
but usually not a frame.
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