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1 Introduction

Latarres are the end result of a series of generalizations. Our
process follows from earlier mathematical results obtained about
Boolean algebras, Heyting algebras, Visser algebras (see [1], [2],
and [4]), and what we call CJ algebras, after Celani and Jansana

(weakly Heyting algebras in [3]).



2 What is a Latarre?

2.1 Informal Definition

A latarre is a LATtice with an ARRow. The essential parts of
its language consist of three binary operators (M1, L, —). With
restriction to (M, L)) a latarre is a lattice with meet M and join
Ll. For the arrow we have the additional ‘natural’ schemas

r—y=(xUy)—>y.
r—oy=x— (xMy).

y <z impliesx -y Jx — 2.
y <z implies z - Jy — x.
(z—=y)N(y—»z)dz—z

where < is the usual order definable by x < y exactly when
rlly =uwx.



2.2

Formal Definition

For practical reasons we extend our language to (I,U, —, ) by
adding a constant € to the three binary operators mentioned
above. A latarre is a structure satisfying the universal algebra
schemas of a lattice with meet M and join U, plus

N1.
N2.
N3.
N4.
N5.
NG.

z—y=(zUy) —»y.

r—y=x— (xy).

r— (xMNyNz)<x — (zMy).
y—>(yNz) d(zNy) — (zMNynz).

(= (@Ny))N((xNy) = (xNyNz)) Sz — (2NyMNz).

E—>&E=¢.

Element ¢ is an important convenience, that is, ¢ with N6 is
uniquely definable over the subsystem without NG6.



Proposition 2.1. Latarres satisfy schemas
1. y <z impliesz —y dx — 2.
.y <z aamplies z - x 1y — x.
C(r—y) Ny —2) o — 2.

L=y dz— 2.

2

3

4

5. x -y Je.
6. xt >x =¢.

7. x Qy implies x — y = €.

8. x »>y=cimplies z—>x z—->yandy —» zx — 2.

Section 3 has trivial examples of latarres which are neither
distributive nor have a largest element. So € need not be top.



Proposition 2.2. Latarres satisfy schemas
I.x—(yMz)=(xr—y)N(x— 2).
2. (yUz) wx=(y—x)M(z—x).

3. 2z —-x < (x —y) Ny = 2z) implies (z - x) = (z —
y) M (y — x). In particular, z > y > x implies (z — x) =
(z =y)N(y — ).

(2 —=y) Ny —2)=(zUy) = (yN2).
y—z=c¢c implies(zUy) >2=x—(xMNz)=x— 2.
z—x =c¢implies z — (zMNy)=(zUy) »>y=2—y.

y—z<d(zNy) — (xMz).

o XS &

(y =)y —2)=Fy—z)0(zNy) — (xN2)).
Let a, b, and c be elements of a latarre . Then

1. cMe=cN(b— a) if and only if A satisfies
schema cM ((aMb) = (aMx)) =cM(b— x).

2. U satisfies schema alle < z — a if and only if A satisfies
schema aM ((aMz) — (aMy)) =al (x —y).



We inductively define V"x for all n by V%2 = z and V" Tlz =
e — V"

Proposition 2.3. Latarres satisfy schemas
1. VM(xMy) =V"zNVy.

2. xMNy —-z=c implhiesy -z 1y — 2.
Sox <y —xplusxNy —z=c impliesxr Iy — 2.

3. vy — z implies x M (w —y) Jw — 2.
4.y — e =c¢cimplies VeN((zMy) — (zMz)) = Val(y — 2).

5. y—ec=cplusxNy — z=c implies Ve 1y — 2.



3 Examples of Latarres

One collection of trivial latarres is the following. Start with
any lattice 91 and any element m of 9. Set + — y = m for
all elements x and y of 9. This defines a ‘trivial’ latarre with
e = m and 2N as underlying lattice.

A latarre is called unitary if the lattice has a top 1 and
e = 1. A latarre is called arrow persistent if it satisfies schema
xe <y — x. A latarre is called Heyting if it satisfies schema
x = Vz. A latarre is called Boolean if it satisfies schema (x —
(xMy)) = (xMy) = x. A latarre is unitary arrow persistent
exactly when it satisfies schema x* < Vz. So Heyting latarres
are unitary arrow persistent. Boolean latarres are Heyting.

A latarre is called almost-complete if for each subset S which
contains an element, | | S exists or, equivalently, if for each sub-
set S with a lower bound, []S exists. So complete implies
almost-complete. A frame (or a complete Heyting algebra or
a locale) satisfies m M| |S = [ [{mMNs : se& S}, for all sets
of elements {m} U .S. On a frame 9 we can define an ar-
row x — y = | [{z : xMz<Jy}. The resulting structure
(M, —,1,0) is a frame. Each filter F' on frame 91 is the domain
of an almost-complete Heyting latarre (§, —, 1).



Filters on a Boolean algebra 5 are exactly the upward closed
(Boolean) sublatarres of 23.

Filters on a Heyting algebra € are exactly the upward closed
(Heyting) sublatarres of €.

Define a unitary latarre on lattice N5 as follows. In the
diagram of N5 below, labels x, y, and z mean that we set 1 —
b=y, set b - a = z, and so on. The letters x, y and z are

values to be chosen freely from the domain {0,a,b,p,1} with
the only restrictions that x < z and y < z.

S y

z

o

The properties of unitary latarres allow us to uniquely extend
the arrow by p = p=1land 1 - a=(1 - b) N (b — a) =
yMz=yanda—-p=a—allp=a— 0=z, and so on.



A function f : A — ‘B between latarres is called a latarre
(homo )morphism if f preserves the defining operations of M, L,
—>, and e. Latarres are closed under submodels, products, and
(homomorphic) images.

Proposition 3.1. Let A = (M, U, —,¢) be a latarre and f :
M — M be a meet semilattice endomorphism. Define 2y =
(M, U, —¢, f(e) bya —¢ b= f(a —b). Then As is a latarre.

Proposition 3.2. Let A = (M, —,¢) be a latarre and g : N —
M be a lattice endomorphism. Define A9 = (M, —9,¢) by a —9
b=g(a) — g(b). Then A9 is a latarre.

Let g : A — A be a continuous function on a topological
space O(A). Inverse image map h = g~ ! : O(A) — O(A)
is a meet semilattice morphism on the meet semilattice part
M of the frame O(A). I is the meet semilattice part of the
corresponding complete Heyting latarre € = (%, U, —, A). By
Proposition 3.1 we get a new latarre €; from € by redefining
en =g (e)and U —, V= h(U - V) = g (U - V) =
UH{g t(W) : WNUCV} Map h = g~ ! is also a lattice
morphism on (91, L). So by Proposition 3.2 we get another new
latarre € from € by redefining U —="V = ¢~ 1(U) - ¢~ }(V) =
UW = g(Wng '(U)) CV}.



Proposition 3.3. Let f : 91 — N be a lattice morphism, and
g : N — M be map which preserves meet M. Let B = (N, —, ¢)
be a latarre. Define €, and —,, on M by €,, = g(e) and
r —m y = g(f(x) = f(y). Then A = (M, —p,en) is a
latarre.

Map f : %l — B of Proposition 3.3 need not be a latarre
morphism. By Proposition 3.1 we have a latarre B¢, = (M, — ¢,
,fg(e)) with ¢ —¢, y = fg(x = y). Map f: A — By, is a
latarre morphism.

Suppose map g : 91 — M of Proposition 3.3 is a lattice
morphism. Map g : B — 2 need not be a latarre morphism.
By Proposition 3.2 we have a latarre B/9 = (M, —+79,¢) with
r —19 y = fg(x) — fg(y). Map g : B/9 — 2 is a latarre
morphism.

Proposition 3.4. Let Ay = (M, e1 —1) and As = (M, €2, —2)
be latarres on the same lattice M. Define A = (M, e, —) by
e=¢c1Megandx -y = (x —1 y) N (x =2 y). Then A is a
latarre.

Proposition 3.4 can be strengthened for complete lattices,
where we get a new arrow that looks like x —gy=[|{z —s y :

se St andeg =[|{es : s€S}.
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Let R be a commutative ring. Its collection of ideals forms
a complete lattice ordered by set inclusion. Let ) be the com-
plete lattice of ideals, with I 11 J = I N J for all ideals I and
J. Lattice 9 need not be distributive. The set VI = {r € R :
r’™ € I for some n} is the least radical ideal containing I. Given
ideals [ and J, theset J : I ={r e R : rI C J}isanideal. We
construct a unitary complete latarre 2l on lattice 9t as follows.
Set I — J = +/J:I and ¢ = R. We have a unitary latarre
A= M, -, R) with ITM(I — J)=1IMN+J.

Let O(X) be a T topological space. So we have a latarre
A= (O(X),—, X). Define operator j : O(X) — O(X) by

ju=| {uU{z} : uwU{z} is open}.
Define x —,; y = j(x — y) and get a new latarre (O(X), —;
,X), where V,x = X —,; z = jz. Even in the case of O(R)
there are v with j*T1u # 7% for all n.

The above example generalizes to almost-complete frames.
Let 91 = (M,M,) be an almost-complete lattice. Define v
covers or equals u, written u <; v, by
udiv & (udvAVi(u dt<v — (u=tVit=w))). Over a
To space O(X) this means u <; v exactly when there is £ € X
with u < v <uwU{£}. Define operator j : 9 — 91 by

jr={u : x < u}.

11



4 (eneral Substitution Rules

With each latarre 2 we associate a predicate logic language
L(2A). We may write t(z) even if term t(x) has other variables
besides x. Given a term t(z) of L(2l), we define positivity and
negativity of occurrences of x in ¢(x) in the usual inductive way.

Proposition 4.1. Let t(x) be a term over a latarre A. If x is
only positive in t(x), then x < y implies t(x) < t(y). If x is
only negative in t(x), then x <y implies t(y) < t(x).

An x occurs at depth n > 0 in term t(x) if x occurs n levels
deep inside implication subformulas of implication subformulas
and so on. So x occurs at depth 2 in (y — (w M (z Uwv))) — 2,
and x occurs at depth n in V"z. The z occurs informally if
depth n = 0, otherwise x occurs formally.

Proposition 4.2. Lett(x) be a term over a latarre A andn > 0
be such that x only occurs at depth n int(x). If x is only positive
in t(x), then A satisfies schema V™ (x — y) I t(x) — t(y). Ifx
is only negative in t(x), then A satisfies schema V"™ (x — y) <

t(y) — t(z).
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Proposition 4.3. Let t(x) be a term built without join U over
a latarre 2, and n > 1 be such that x only occurs at depth n
in t(x). If x is only positive in t(x), then A satisfies schema
V' Yz — y)Nt(x) < t(y). If x is only negative in t(x), then
A satisfies schema V" 1(xz — y) Mt(y) < t(z).

In Proposition 4.3 the exclusion of LI is essential.

Proposition 4.4. Let t(x) be a term over a latarre A in which
x occurs only at depths at least n in t(x), for some n > 1. Let
a,b € A be such that V" 1(a — b) = . If x is only positive
in t(x), then t(a) < t(b). If x is only negative in t(x), then
t(b) < t(a).

Write x «» y as short for (z — y) M (y — ). If x is only
formal in t(z), then a <+ b = ¢ implies t(a) = t(b).

Proposition 4.5. Let t(x) be a term over a latarre A, and
a,b € A are such that a — b = ¢. If x is only positive in
t(x), then t(a) — t(b) = €. If x is only negative in t(x), then
t(b) — t(a) =e.
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Given a latarre 2, define equivalence relation = ~ y by = <+
y = e. We write a'!) or o’ for the equivalence class of a, and A
or A’ for the collection of equivalence classes. Relation x ~ vy
a congruence. On A’ define the following latarre. If @ «» b = ¢,
then t(a) <> t(b) = € for all terms t(x). The following are well-
defined on A": Define ' My = (xMy) and 2/ V' ¢y = (z U y)’
and ' —' ¢y = (x — y)’. With these, A" = (A", 1V, /, =’ &’) is
a latarre. The map x — 2’ is an onto latarre morphism from A
onto 2A’.

Repeat this construction and form A" = A by defining
'~y on A by (zy) =2 «'y =& or, equivalently, by
(x «>y) ~ g, that is, (x <> y) «» ¢ = . Continuing in this way,
we get a chain

A=A AN — AR 5 AB)

with for all a,b € A and n > 1 we have a(™ = (") in A
exactly when V"~ 1(a <+ b) = &.
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5 Visser Latarres and Substitution

We establish a close connection between weakly Visser latarres
and (relative) meet substitution.

An element a of a latarre is called arrow persistent if it
satisfies schema ale < y — a. Element a is called unitary arrow
persistent if it satisfies schema a < y — a. A weakly Visser
latarre is a distributive latarre satisfying the schema z Me J
y — x of arrow persistence. A Visser latarre is a unitary weakly
Visser latarre.

So a Visser latarre is a distributive latarre satistfying the
schema = < Vz of unitary arrow persistence. Hence Heyting
latarres are Visser latarres.

Proposition 5.1. The following are equivalent for an element
a of a latarre.

1. a 1s arrow persistent.
2. aMN(a—y)<z—y, forally and z.
3. (aMy — z) =€ implies ale Jy — z, for all y and z.

4. ally <z impliesale Iy — z, for all y and z.

15



Given a latarre 2 and element a, we construct a latarre on
the subset {x € A : = < a} as follows. Set

Eqa = €lla,

Tllgy=xTly,
r—,y=all(x—1y), and
rlUgy=axUuy.

The resulting structure 2, is a latarre. If a < e, then 2, is
unitary. If 2l is unitary, arrow persistent, Visser, Heyting, or
Boolean, then so is .

The function m,(x) = a M is an idempotent map from 2A
onto 2,. In general m, is not a latarre morphism. Below we
establish precisely when 7, is a morphism.

Given a term t(z) and element a of latarre 2, we say that
t(x) admits meet substitution over (U, a) if 2 satisfies schema

ax=alyimplies aMt(x) = alt(y).
Equivalently, (2, a) satisfies schema
aft(x)=alt(aMx).

We write T'(2,a) for the collection of terms over 2 that ad-
mit meet substitution over (2A,a). We define A admits meet

substitution if T'(2A, a) includes all terms for all a € A.
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Proposition 5.2. Let a be an element of latarre 2. Then the
collection T'(2, a) contains all terms without x, the term x itself,
and is closed under M and under composition. Additionally:

1. A satisfies schema aTe < x — a if and only if T'(2A, a) is
closed under —.

2. A satisfies schema a T (xUy) = (aMzx) U (aMy) if and
only if T' (A, a) is closed under L.

As a Corollary we get:

Theorem 5.3. The following are equivalent for a latarre 2.

1. A s weakly Visser.

2. For all elements a of 2 the map m, : A — A, is a latarre
morphism.

3. A admits meet substitution.
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6 Fixed Points and Lob

Over Visser latarres all terms t(x) have explicit fixed point t(1),
that is, t(t(1)) = t(1), exactly when all terms of the form ¢, (x) =
x — a have explicit fixed point ¢,(1), that is, t,(¢,(1)) = t.(1).

An equation t(z) = u(x) has ultimate solutions over latarre
2l if for all a there are b > a such that t(b) = u(b). We call a term
t(x) ultimately fized or U-fixed over 2 if equation t(t(x)) = t(x)
has ultimate solutions over 2. We call an element a a U-Lob
element over 2 if ¢,(t,(x)) = t,(x) has ultimate solutions over
2, where t,(z) =z — a.

A latarre is U-fixed if all its terms are U-fixed. A latarre
is U-Lob if all its element are U-Lob. U-fixed implies U-Lob.
Visser latarres add the converse direction that U-Lob implies
U-fixed.

A term t(z) is called fized over a latarre 2A if 2 satisfies
schema t(t(z) Mx) = t(x). An element a is called Lob over
a latarre 2 if 2 satisfies schema t,(t,(x) Mx) = t,(x), where
to(xr) = x — a. A latarre is fized if all its terms are fixed. A
latarre is Lob if all its elements are Lob. Fixed implies Lob.

Obviously schema x < t(x) over 2 implies that ¢(x) is fixed
over 2.

18



Theorem 6.1. The following are equivalent for a latarre 2.
1. A is U-fixed.
2. A 1s a weakly Visser and U-Lob.
3. A is a weakly Visser and Lob.
4. R is fixed.

An element that can be written in the form a — b is called
an arrow element, or an arrow element of the 1%* kind. Given
an arrow element ¢ of the n'® kind, we call an element a — t an
arrow element of the (n + 1) kind.

Theorem 6.2. The following are equivalent for a latarre 2.

1. A s weakly Visser, and there is n > 1 such that all arrow
elements of the n'* kind are Lob.

2. A 1s fized.
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7 Almost-Complete Latarres

Another source of interest involves almost-complete lattices with
an operator. In early cases this mostly involved frames 9 with
a map j : 9 — N satisfying the schemas

x < jx (increasing) and
j(x My) = jx M jy (multiplicative).

An operator satisfying these conditions we dub a nub. With
this terminology, 7 is a nucleus if j is an idempotent nub, that
is, if j satisfies the extra schema

jjxr = jx (idempotent).

These definitions apply to all latarres. The following is a special
case for current purposes.

Proposition 7.1. Let j be a nub on a Visser latarre 9N1. Define
r —; y = jlx — y). Then M with new arrow —; forms a
Visser latarre.
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Theorem 7.2. Let j be a nub on an almost-complete frame IN.
Then there is a map w on N satisfying

e W 1S a nucleus.

o w is least fixed point operator for j, that is, we have
schemas jwr = wx, and jy =y > x tmples y > wx.

Let e : 31 — N be the equalizer of 57 and id : I — M. Then
e N is an almost-complete frame (and the image of w).
o w=er for a unique 7 : M — .

For each n € N the inverse image structure w1 ({n}) = M,, is
Visser and Léb, that is, is a fized (point) latarre.

The lattice of 71 ({n}) = M, is an almost-complete frame,
but usually not a frame.
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