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ON THE PERIOD OF SEQUENCES (4%(p))
IN INTUITIONISTIC PROPOSITIONAL CALCULUS

WIM RUITENBURG

§0. Abstract. In classical propositional calculus for each proposition A(p) the following
holds: - A(p) «> A3(p). In this paper we consider what remains of this in the intuitionistic case.
It turns out that for each proposition A(p) the following holds: there is an n € N such that

= A"(p) > A" 2(p).

As a byproduct of the proof we give some theorems which may be useful elsewhere in
propositional calculus.

§1. Finite order. Let A be a language for intuitionistic propositional calculus with
atoms a,b,c,...,constants T, L, connectives A, v, — and auxiliary symbols ) and (.
The formulas —1 4 and A< B are introduced as abbreviations for 4 - L and
(A — B) A (B— A). Let Q be the Heyting algebra for this language A with as objects
equivalence classes

[4] = {B|F4—B)

and with the ordering induced by .

Let A(p) be a formula, which may contain extra parameters gq,r,s,.... We can
interpret A(p) as a map from Q to Q sending [ B] to [A(B)]. We begin by considering
the order of A(p) as a map.

Define A%(p) = p and A"*!(p) = A(A4"(p)).

1.1. PROPOSITION. In classical propositional calculus we have for all A(p)

Fc A(p) o A%(p).

Proor. Use the definability of Boolean functions. []

So in the classical case A(p) has order at most 3 and the length of the loop is at
most 2.

Let I' U {A(p), B, C} be a set of formulas. Then the Substitution Lemma gives that
if THBeC then I'~ A(B)« A(C). By using Proposition 1.1 and iterated
substitution we get: for all A(p) and for all m > 1 we have

Fc A™(p) > A™*2(p).

Proposition 1.1 does not hold in the intuitionistic case. Consider
A(p) =—1p v 11p. Then we only have —A?(p)«—> A*(p). This weaker result
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suggests what to look for in the intuitionistic situation. We shall prove that for each
formula A(p) there is an n € N such that A4"(p)«<> A"*2(p). Then for all m > n we
get

FA™(p) e 4™ *(p).

1.2. LEMMA. For all A(p) and for all s,m,n € N such that s < m we have
1) A(T), A*(p) = A™(p).

i) A(T), A°(p) - (4" (p) » A%(p) > A"(p).

PRrOOF. i) is proved by induction on (m — s). Use k- A%(p) < (A%(p) « T).
ii) By i) we get A(T)F A"(p) » A"**(p), so

I = {A(T), A" (p) > A"(p)} - A(p) > A" }(p).

By iterated substitution in A(p) we get I' = A'(p)> A'*Y(p),n<i<s.

Therefore I', A°(p) - A"(p). O

1.3. DerINITION. Let A(p) be a formula and let I be a set of formulas. Then A(p)
has bound n over I if there is a sequence T = By(p), By(p), ..., B,(p) of formulas
satisfying the following condition: for each proposition variable C(p) =a or
C(p) = p in A(p) and for each implication subformula C(p) = D(p) — E(p) of A(p)
there is an i < nsuch that I' = C(T) e B{(T).

Observe that such an n always exists.

1.4. THEOREM. Let A(p) and B(p) be formulas, let I be a set of formulas, and let
I,=T U {A(T), A%(p)} for somes € N. Let A(p) A B(p) have bound n over I',. Then at
least one of the following cases holds for a new variable q.

i) I, A>*(p) > q - (B(g) < B(T)) A (B(T) - g).

ii) I, A*"(p) » g+ B(g) > q.

iii) Iy, A*"(p) - q + B(g).

ProOF. By induction on the bound n. We may assume that B(p) is a subformula of
A(p) by replacing A(p) by the equivalent formula A(p) A (B(p) v T). In that case
A(p) has bound n over I,.

The case n = 0. Since the bound of A(p) over I' is equal to n =0 we have
I';;- a o T for all proposition variables a # p and I, - B(T) < T for all implication
subformulas B(p). From I, a for all proposition variables a # p it follows that
each subformula B(q) of A(g) is equivalent to a formula of the Rieger-Nishimura
lattice. The property I, = B(T) for implication subformulas B( p) implies that if there
is a subformula B(p)such that I, B(q) «>(q = L),then [, (T > L) Tand[,is
inconsistent. So if I is consistent, then for each subformula B(p) we have
I;= B(g) < L or I, B(g) < q or I+ B(q).

Induction step on n. We prove the induction step by induction on the length of the
subformula B(p). Let 4,,, = I, u {A™(p) - q}.

The case for length = 1.1f B(p) = p, B(p) = T orif B(p) = L, then we easily verify
ii), iii) or i) with m = 0 instead of m = 2n. Assume B(p) = a for some variable a # p.
If I - a, then iii) holds. Assume I, i a. Take I'; = I, U {a}. Then over the theory I';
the formula A(p) has a lower bound and we apply induction on n. For the
subformula A(p) of A(p) itself one of the following statements holds for all s > 0:

A;,Zn—z = As,2n—2 v {a} |~ A(‘l),
Ason-2H A(Q) g
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Substitute g = 42"~ !(p) in the relations above. With Lemma 1.2 this gives us
I, U {a} - A*"(p). So I~ a - A*"(p) and this implies that i) holds for B(p) = a.

Induction step on the length. Write B(p) = C(p) O D(p) where C(p) and D(p)
satisfy one of the conditions i), ii) and iii) and where [J is one of the connectives A,
v or —. Then we can make the following tables.

D(p) D(p) D(p)

i) i) iii) v ) i) i) S i) i) i)

Cp) Dl H D Cp | D) i) i) C(p)  P|=* i) ii)
i) [§) i) i) i) | i) i) i) i) | * i) i)
i) | i) i) i) iii) | i) i) i) i) | i) i) i)

These tables express which condition will be satisfied by B(p) = C(p)TJD(p). Most
of them are easy to verify. There are two cases which are more involved. Both are
marked by *.

Case (a): B(p) = C(p) = D(p), where C(p) satisfies i) and D(p) satisfies i). We
have 4 ,,+ B(q) <> B(T). If I, B(T), then B(p) satisfies iii). Assume It B(T).
Let I, = I, U {B(T)}. Then over the theory I'; we find that 4(p) has a lower
bound. Apply induction. For A(p) as subformula of itself we have 4;,,-,
= As 2n-2 Y {B(T)} - A(q) or 45 ,,_,+ A(g)« q. Substitute g = A~ 1(p). Then
I, A?"(p). So I, B(T) - A*"(p). Thus B(p) satisfies i).

Case (b): B(p) = C(p) = D(p), where C(p) satisfies ii) and D(p) satisfies i). If
I, B(T), then B(p) satisfies iii). So assume I';t+ B(T). We shall prove that B(p)
satisfies i). We easily see that 4; ,, - B(T) — g and 4, ,, + B(T) — B(g). It remains to
show 4, ,, - B(q) = B(T). Let I', = I, U {B(T)}. Then A(p) has a lower bound over
Il; thus 4., ; = dg2n-2 U {B(T)} - A(q) or 45,2+ A(g)«>g. Substitute
g = A>""%(p). Then I,B(T)— A* '(p). Let 45,, = 4,5,V {B(9)}. Then

2 g~ D(T). Since I+ (B(T)« D(T)) and I+ (B(T)—> A"~ 1(p)), we have

7w q— A" (p). Thus 4;,,+ A*"(p) > A*"~!(p). Apply Lemma 1.2. Then we
get A7,,+A*(p). Thus 45,,Fq and A, = 4,5, {B(g)} - D(T). Thus
As,2n H B(q) g B(T)

This completes the proof of the induction steps. [

ExaMPLE (PIET RODENBURG). Let A(p) = ((p — a) = a) v (a — p) and let B(p) =
p — a. Then we have -A4(T) A 4%(p) and for all s we have

A(T), A%(p), A*(p) > g+ (B(g) = B(T)) A (B(T) = g).
If we replace A%(p) - q by A(p) — g, then we can substitute g = A(p) and s = 2,
and we conclude that
+B(A(p)) — a.

Substitute p = L. Then we get m—1—1a — a. Contradiction. So the statement does
not hold if we replace 42(p) — q by A(p) — 4.

1.5. COROLLARY. For each formula A(p) there is an m € N such that for all s e N
we have

A(T), A%(p) = A™(p)-
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Proor. Take I' = &, B(p) = A(p)and ¢ = A%"(p)in Theorem 1.4. Then one of the
following holds:

A(T), A%(p) - A>"* Y (p) A A*(p),
A(T), A(p) = A>"* Y (p) & A%"(p),
A(T), A%(p) - 4> (p).
So by Lemma 1.2 we have
A(T), A(p)- 4" Y(p). O

1.6. LEMMA. Given A(p) and m such that for all s we have A(T), A*(p) - A™(p). Then
A(T) = A™(p) > 4™ (p).
PrOOF. By Lemma 1.2 we have A(T)+ A™(p) - A™*!(p). Now take s = m + 1:
AT A™(p)o A" (p). O

1.7. LEMMA. For all A(p), m and n we have
i) A2 Y(T)FA"(T),

i) A2™*2(T) = A2(T).

PRrOOF.

) A )i Ay e O

A0 q) AD )
APM(T) = A(T) (4 APmH(T) - A(T)
AP(T) o A(T) AP (T e A(T)
AP(T) o 43(T) AP (T) e AX(T)
AX(T) AX(T) )
APn(T) A(T)
A(T)
A(T)

(*) Use = A2™(T)+>(A%™(T)«> T) and substitution.
(#) Apply Lemma 1.2i) withp = T.
(%) Apply Lemma 1.2i) to A%(T) or use iterated substitution. [J
Observe that 1.7ii) is not an easy corollary of 1.7i). With Lemma 1.7 we can prove
theorems like - A(T) e A3(T).
1.8. LEMMA. Given A(p) and m such that A(T)+ A™(p) <> A™*(p), then we have

F"Am+ l(p)(_)Am+3(p).

Proor. The places in the derivations below where we use our assumption
A(T)F A™(p) > A™* !(p) are marked by (*). Observe that (*) is equivalent to: for all
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n > m we have A(T)F A"(p) < A™(p). First we show =A™ 1(p) - A™*3(p)

aip® amp ) i@ e )

A (4) AD @)
Am+2(1’) (1) A™(p) (3)

A™(p) > A" 2(p)  A™*2(p) - A™(p)

A™(p) > A™**(p) (#)
A’”+1(p)<—>A'”+3(p) ($)
Am+3(p) (4)
A™*1(p) > A™*3(p)

(#) Use substitution.
($) Use assumption (4).
Next we show —4™*3(p) » A™*(p):

a3 amp) ),

am3(p) ) amr(p) 811) 4%(T) (Lemma 1.7)
A0 (4)
Am+2(p) (3)

A (1) )
A™(p) )

A" (p)—> A™(p)  A™(p)— A" *(p)

Am(P)""Am+2(P)(#)
Am+ l(p)HAm+3(p)($)
Am+1(p) (4)
Am+3(p)—>Am+l(p)

(3) Use substitution.
(8) Use assumption (4). [J
1.9. THEOREM (FINITE ORDER THEOREM). For all A(p) there is an m € N such that

FA™(p) & A™*(p).

ProOF. Combine 1.5, 1.6 and 1.8. [
Observe that we also get a bound on m in Theorem 1.9. We say that A(p) has

bound n if A(p) has bound n over I' = . Then by 1.4, 1.5 and 1.6 we get after
substituting ¢ = A2*(p) and B(p) = A(p) that A(T)F A>"*!(p)e A2"*2(p). By

Lemma 1.8 this gives
FAZ"”(p)«—»Az"”(p).
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§2. Examples. In this section we shall give some examples which show that the
value m in Theorem 1.9 cannot be bounded.
2.1. ExampLE. Consider the formula

A(p) = (@, v (@1 > D) A (@ V (@ > D) A+ A (4, V (@~ D).

Then we can show +A(T) and +A4"*!(p), but also H A"(p). Thus we do not have
FA4"(p) > A"**(p). We only show I-A"(p).
Consider the following Kripke model.

Optyq s
| p,ay,a,,a,,...,a,
A
| ay,a,,a5,...,a,
n—1 %
| ay,as,...,a,
an—l’an
% :
a
al i n
Ay !

Then o; |- A™(p) if and only if i + m > n + 1, so a, |I- A"(p). Observe that we have
FA(T)and A" Y(p) e A" 3(p).

2.2. ExampLE. For B(p) = A(p) A (a, v (p — a,)), where A(p)is as in 2.1, and for
the Kripke model of 2.1 we again have «; |- B¥p) if and only if i + k >n + 1
(k < n + 1). But we only have «, |- B"*!(p) and «, [-B"(p) <> B"*?(p), and not o |
B*(p).

For special classes of formulas we can find a uniform bound on n such that for all
formulas of that class we have -A4"(p) <> A"*?(p).

2.3. PROPOSITION. Let A(p) have no extra variables or constants but T and L. Then
we have

FA4%(p) > A%(p).

PROOF. First proof. The formula A(p) is equivalent to a formula of the Rieger-
Nishimura lattice. For almost all of these formulas we have - A(T) and - A2(p).
The remaining cases are easy to verify. Of special interest are A(p)=—"p v
T171p (HA4%(p) & A%(p) and A(p) = T1p (FA(p) = A*(p),ie. FTIpe>—111p).

Second proof. We immediately see that a formula A(p) with no variables but p has
bound 1. For this special class of formulas when we go through the proof of
Theorem 1.4 we find that we can take m = 0 instead of m = 2n, since if I, i+ B(T)
then I'; = —1 B(T). It follows that A(T), A%(p) = A(p) for all 5. Then apply 1.5, 1.6 and
1.8: FA%(p)— A%(p). O

2.4. THEOREM. Let A(p) have at most one sort of extra variable a and T,and no L.
Then we have

FA3(p) > A3(p).

Proor. The formula A(p) is built up by a, p, T and the connectives. Therefore we
have FA(T) or FA(T) e a.
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Assume HA(T)«<>a. Then we have A(T)F A(p)e>p or A(T)F A(p). By
Lemma 1.6 and Lemma 1.8 we get HA?%p)— A*p) and by substitution
FA43(p) > A%(p).

Assume HA(T). The formula A(p) has bound 1. By Corollary 1.5 this implies
A*(p)+ A%(p) for all s. Take s=5 and use Lemma 12i). Then we get
FA¥p)A%(p). O

2.5. ExampLE. The following shows that Theorem 2.4 does not hold if we allow L
to occur in A(p). Letr_,,rq,7;,75,...and sy, 5, 5,,. .. be the following sequences of
formulas:

ro,=1, ro=a, so="1a, ry=av a,
"'m = Sm-1V Sm-2 (m22),
sm = sm—l —’rm—Z (m 2 1)

If we add T, then these sequences form the Rieger-Nishimura lattice with the order-
ing induced by .

T
ANEVARN
e NSON
N /7
Tla-a=s, -/ >-<r2=-1av-1—1a
av—1a=r1>-< >-sl=—1—~‘ia
—la=s, "\ >-/r0=a
\-/r_1=_L

Now take as A(p) the following formula, which only uses a, p, L and the
connectives:

A(p)=(ro vV (ro=p) Alry v (r;=p) A Ay, V (r2n—=D)). .

Then for odd k < 2n(includingk = — 1) we have —A(r,) < 1., , and A" *%(p) (thus
FA"*2(p) A"*%(p)).
So if we include L we no longer have a uniform bound on n as in Theorem 2.4.
2.6. ExaMPLE. In the classical situation we have

FcA(p) = A%(p).

This provides us with uniform interpolants: if we have A(p)F B, then
A(p) ¢ A(A(T)) and A(A(T)) k¢ B. The interpolant A(A(T)) in which p does not
occur does not depend on the choice of B.
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This procedure no longer works in the intuitionistic case. Let A(p) be the
following formula:
A(p)=(a; V(@ =»p) A Al@Vv@->p)A(p->bArlp->a)vic—p Vo
Consider the following Kripke model.
U3 | p,ay,a,,...,a,,b,c
Ot 2 | a,,az,...,a,,b,c
Oyt 1 | a,,...,a,,b,c

Oy lan—bamb»C
o3 - a,,b,c

a, ‘b
o | c
% |

Then we have o, |- A%(p) = a,for 1 <k < n,aq A" (p), ag FA"™(p) b for
odd m>0 and aq |- A"*™*1(p)c for even m > 0. So this model shows that
A" Y(p) i A(T) v AX(T). Thus also A(p) + A%(T). In the model we have o, |- A(a,),
so there still is the possibility that \/ s ,) 4(B(T)) works as a uniform interpolant,
where B(p) ranges over the subformulas of A(p).
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