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§0. Introduction

Heyting’s formalization of intuitionistic mathematics started many discussions about the
meaning of the logical connectives in terms of proof and construction. We focus on the ideas
and results related to the interpretation of implication and on formal systems that have different
rules for implication. Some of these systems are not intended to contribute to the discussions
mentioned above, but are related to the Basic Calculus introduced in §§3 and 4.

The set-theoretic paradoxes of the turn of the century shocked many mathematicians into
realizing that their simple intuitions about sets and logic were inconsistent. Constructive
mathematics along the lines of Brouwer, Markov, and Bishop is not intended to resolve this
issue, and doesn’t. The most common solutions favored by mathematicians involve reducing
one’s attention to a hierarchical class of sets, thereby excluding the paradoxical ones. A
few mathematicians and logicians kept searching for the Holy Grail of set theory with full
comprehension by changing the rules of equality or logic. Of special interest to the Basic
Calculus and the set theory F of §5 is Fitch’s system with the additional implication hierarchy
introduced by Myhill. It seems that this approach replaces a hierarchy of sets by a (simpler)
hierarchy of implications.

In an attempt to find a non-circular proof interpretation for the logical connectives, we
change from Heyting’s axiomatization to a subsystem of intuitionistic logic with a limited
modus ponens: Basic Calculus. In set theory with full comprehension over this subsystem,
Russell’s Paradox turns into a proof of Löb’s Rule, a rule that is relatively inconsistent with
modus ponens.

§1. The proof interpretation

L. E. J. Brouwer’s introduction of intuitionistic mathematics was not a reaction to the
paradoxes, although its influence may have been felt; it offered an alternative to the formalist
and logicist approaches. Consequently, a näıve extension of intuitionistic mathematics to set
theory with full comprehension does not solve the paradoxes. Brouwer’s Ph.D. thesis of 1907,
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and later work, expounded the intuitionist’s point of view (see [11]). One aspect of this point
of view was a proscription of the use of logical principles as a guide to mathematics, the most
well-known among these being the Principle of the Excluded Middle. The Principle of the
Excluded Middle holds in verifiable ‘finite’ situations, but cannot be generalized to a rule of
mathematics. Brouwer even introduced new principles that contradict Excluded Middle; they
imply, among other things, that all real-valued functions are continuous. These additional
principles have been criticized by other constructivists (see, for example, [9, p. 9]). Brouwer
avoided the use of formal language, perhaps not because of its unreliability, but as a matter of
personal style [12, p. xi].

In 1927 the Dutch Mathematical Society published a prize question concerning a formal-
ization of intuitionism. Brouwer’s student A. Heyting wrote an essay on it and was awarded
the prize in early 1928. It appeared in the Sitzungsberichte der preußischen Akademie von
Wissenschaften as [38], [39] and [40], although it was originally intended to appear in Math-
ematische Annalen [63, p. 48]. In these same papers Heyting introduced Heyting Arithmetic
HA, the intuitionistic equivalent of Peano Arithmetic, and an incomplete axiomatization of
analysis, the theory of choice sequences.

In modern notation, using sequents, the axiomatization of Intuitionistic Predicate Calculus
IQC can be stated as follows. We use Latin letters to refer to substitution places for formulas,
and Greek letters for actual formulas of a first-order language with logical constants ⊤, ⊥;
binary connectives ∧, ∨, →; and quantifiers ∀, ∃. We also assume our language to have
an equality predicate = (there are only a few occasions where one wishes to do without =).
Negation ¬A is introduced as an abbreviation for A → ⊥; bi-implication A ↔ B, as an
abbreviation for (A→ B)∧ (B → A). IQC is given by sequent rules and sequent axioms. For
the rules a thin horizontal line means that if the sequents above the line hold, then so do the
ones below the line. A fat line means the same, but in both directions.

A ⊢ A

A ⊢ B B ⊢ C

A ⊢ C

A ⊢ ⊤ ⊥ ⊢ A

A ⊢ B A ⊢ C

A ⊢ B ∧ C

B ⊢ A C ⊢ A

B ∨ C ⊢ A

A ∧B ⊢ C

A ⊢ B → C

A ⊢ Bx

A ⊢ Bt
†

A ⊢ Bx

A ⊢ ∀xBx
‡

Bx ⊢ A

∃xBx ⊢ A
‡

⊤ ⊢ x = x
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x = y ⊢ Ax→ Ay ∗

We allow the substitution of new variables for bound variables. In case †, the variable x is not
free in A and the term t does not contain a variable bound by a quantifier of B; in cases ‡, the
variable x is not free in A; and in case ∗, the variables x, y are not bound by a quantifier of A.

The subsystem of IQC without quantifiers, terms, or equality is Intuitionistic Propositional
Calculus IPC. Extensions of IQC may be constructed by adding additional rules and sequent
axioms. Extensions are called theories. All theories are inductively defined unless explicitly
presented otherwise (see PIPC below). A theory T is called an extension of a theory S if
T satisfies all rules and sequents of S. Thanks to modus ponens, additional sequents may be
assumed to be of the form ⊤ ⊢ A, usually abbreviated as ⊢ A or, if no confusion is possible,
as A. Examples are Classical Predicate Calculus CQC equals IQC extended with ⊢ A ∨ ¬A,
and CPC, which is the similar extension of IPC. The theory PIPC of propositional prime
extensions of IPC is the extension of IPC with the rule

⊢ A ∨B

⊢ A or ⊢ B
.

The ‘or’ in the new rule makes the definition of PIPC non-inductive. Note that IPC doesn’t
satisfy this rule: In its extension CPC both ⊢ A and ⊢ ¬A fail for some A. On the other hand,
if ϕ ⊢ ψ holds in PIPC, then it also holds in IPC [33]. So PIPC is a proper extension of
IPC because PIPC has fewer extensions. There exists a theory PIQC of prime extensions
of IQC similar to PIPC if sufficiently many constant symbols are available: PIQC extends
IQC and PIPC with the non-inductive rule

⊢ ∃xAx

⊢ A(c) for some constant c
.

Let Γ be a set of formulas, sequents, and rules and ϕ be a formula. We write Γ ⊢ ϕ, Γ
proves ϕ, if there exists a finite subset ∆ ⊆ Γ ∪ {⊤} such that

∧
δ∈∆

δ ⊢ ϕ is a consequence
of the system IQC plus the additional sequents and rules of Γ. So IPC ⊢ ϕ if and only if
PIPC ⊢ ϕ, for all ϕ.

In a letter to Oskar Becker, Heyting explains his discovery of the axiomatization of (a system
equivalent to) IQC by going through Principia Mathematica [70] and making a new system
out of the acceptable axioms and rules.

Brouwer did not explicitly give interpretations for the logical connectives, so Heyting and
others had to discover an interpretation for them independent of Brouwer or to extract their
meaning from their use in Brouwer’s papers. Heyting, and independently A. N. Kolmogorov,
developed a proof interpretation for the logical operators [41], [47]. Their interpretations are
essentially equivalent. Following [65] it is more appropriate to speak of ‘explanation’ rather
than of ‘interpretation.’ Unfortunately, ‘interpretation’ has become widely used, so we will
adhere to that terminology.

A statement ϕ is true only if we have a proof p for it satisfying the requirements mentioned
below. We assume the quantifiers ∃ and ∀ to range over a sufficiently simple domain.

(1) p proves ϕ ∧ ψ just in case p consists of a pair q, r of proofs of ϕ and ψ.
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(2) p proves ϕ∨ ψ just in case p consists of a pair n, q such that either n = 0 and q proves
ϕ or n = 1 and q proves ψ.

(3) p proves ϕ → ψ just in case it provides a construction q that transforms proofs s of ϕ
into proofs qs of ψ.

(4) p proves ∃xϕx just in case p consists of a pair q, r such that q is a construction that
yields an element c such that r is a proof of ϕc.

(5) p proves ∀xϕx just in case it provides a construction q such that for all c in the domain,
qc is a proof of ϕc.

Negation ¬ϕ is an abbreviation for ϕ → ⊥; there is no proof for ⊥. The interpretation is
known as the Brouwer-Heyting-Kolmogorov (BHK) interpretation [68, pp. 9–10].

The proof interpretation is not reductive: It doesn’t express the interpretations of implica-
tion and universal quantification in simpler terms.

S. C. Kleene’s realizability [45], although not conceived for that purpose, can be considered
a formal justification of the proof interpretation with respect to intuitionistic arithmetic HA.
Kleene’s motivations came from the finitistic interpretation of the connectives in [42] (see [46]),
but it takes little to understand the realizability interpretation of HA–formulas as modeling
the BHK interpretation.

Consider the first-order language of arithmetic including a (primitive) recursive pairing
function 〈x, y〉 with projections p1x and p2x, and the partial function {x}y, the Kleene bracket
expression of applying the xth partial function to y. We write !{x}y as an abbreviation for
∃z({x}y = z). Number realizability is a translation A 7→ xrA of formulas A not containing x,
inductively defined by

xr⊤ = ⊤;

xr⊥ = ⊥;

xr(t = u) = (t = u), t, u terms;

xr(A ∧B) = p1xrA ∧ p2xrB;

xr(A ∨B) = (p1x = 0 → p2xrA) ∧ (p1x 6= 0 → p2xrB);

xr(A→ B) = ∀y(yrA→ !{x}y ∧ {x}yrB);

xr(∃yAy) = p2xrA(p1x); and

xr(∀yAy) = ∀y(!{x}y ∧ {x}yrAy).

If it were the case that A is true in HA if and only if nrA is true for some number n, then this
translation could be considered an explication of the proof interpretation, as such an n encodes
the reasons why A is true along lines in accord with the proof interpretation. However, we
may be able to show nrA for some n without being able to prove A within HA.

We call a formula almost negative if it is built up from formulas of the form ∃x(t = u) using
∧, →, and ∀. The axiom schema ECT0, the extended Church’s thesis, states

∀x(Ax→ ∃yB(x, y)) ⊢ ∃z∀x(Ax → !{z}x ∧B(x, {z}x)),
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where A is almost negative. We may interpret ECT0 as saying that all functions of arithmetic
are recursive. By [66, p. 196], we have

HA+ECT0 ⊢ A↔ ∃x(xrA)

and

HA+ ECT0 ⊢ A if and only if HA ⊢ ∃x(xrA).

So nrA says that if we limit ourselves to a recursive universe, then n encodes evidence for
the truth of A. Many constructivists suspect that everything that one will ever encounter in
constructive arithmetic is recursive; however, the proposition that everything in constructive
arithmetic is recursive is not constructive and therefore not acceptable.

The following variation on number realizability, q–realizability, circumvents the limitations
of a recursive universe. The translation A 7→ xqA for formulas not containing x is defined
inductively by

xq⊤ = ⊤;

xq⊥ = ⊥;

xq(t = u) = (t = u), t, u terms;

xq(A ∧B) = p1xqA ∧ p2xqB;

xq(A ∨B) = (p1x = 0 → A ∧ p2xqA) ∧ (p1x 6= 0 → B ∧ p2xqB);

xq(A→ B) = ∀y((A ∧ yqA) → !{x}y ∧ {x}yqB);

xq(∃yAy) = A(p1x) ∧ p2xqA(p1x); and

xq(∀yAy) = ∀y(!{x}y ∧ {x}yqAy).

q–realizability doesn’t have the straightforward connection with a formal system that number
realizability has with HA+ECT0. In fact, q–realizability is not closed under deduction [66, p.
205]. The expression nqA only provides, following [46], missing information about a proof of A
from HA. For example, using q–realizability, we can show that if HA ⊢ ∀x(Ax → ∃yB(x, y))
with A almost negative, then HA ⊢ ∀x(Ax→ !{e}x∧B(x, {e}x)) for some e. As an explanation
for the proof interpretation q–realizability fails for another reason as well. The translations for
∨, →, and ∃ refer to proofs of HA and therefore the explanation is not reductive. This final
argument especially applies to the variant of q–realizability in [68, p. 243].

One problem with the BHK proof interpretation is its circularity in the explanation of
implication, as observed by G. Gentzen. This argument [31, §11], set in the context of HA,
involves finitist interpretations of the connectives and is directed towards a consistency proof
of arithmetic. It applies more generally. Gentzen notes that if we want to explain the meaning
of ‘p is a proof of ϕ → ψ’ in the sense of the BHK proof interpretation, then implication
introduction

A ∧B ⊢ C

A ⊢ B → C
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is perfectly permissible as A ∧ B ⊢ C merely expresses that a proof of C from B, given A, is
available. The restricted application of modus ponens

⊢ A A ⊢ B

⊢ B

is in harmony with the BHK interpretation since A ⊢ B expresses that we have an actual
proof for B if we assume A. Restricted modus ponens is a special case of transitivity. On the
other hand, implication elimination, the reverse of implication introduction, is equivalent to
the full modus ponens axiom

A ∧ (A→ B) ⊢ B.

In this case, the existence of a proof of B from A is expressed in terms of → by the assumption
A→ B, hence the explanation for implication is circular.

Negation ¬A is equivalent to A → ⊥, so its BHK interpretation suffers from a drawback
similar to that for implication. Additionally, there is the problem of interpreting the meaning
of ⊥. Replacement of ⊥ by the statement 0 = 1 resolves the issue in the special case of HA;
the problem remains for the general situation.

Universal quantification is considered in [31, §10]. According to Gentzen, a sentence ∀xBx
may be understood finitistically as ‘B0 and B1 and B2 and . . . ’ as long as Bx is fairly simple.
Moreover, in the rule

A ⊢ Bx

A ⊢ ∀xBx

with x not free in A, the justification of the rule is elementary only if the formula A is quan-
tifier free. Unfortunately, Gentzen’s approach to universal quantification is insufficient as a
justification of the BHK interpretation, as we will make abundantly clear when discussing
BQC below.

M. Okada attempts to resolve the circularity in the axiomatization of → by considering
subsystems of intuitionistic logic with weakened implication introduction [55], [56]. The propo-
sitional logic WLJ of [55] is equivalent to the intuitionistic propositional calculus IPC except
that the rule

A ∧B ⊢ C

A ⊢ B → C

holds only forA that are conjunctions of implicationsDi → Ei. This is unexpected, particularly
because Gentzen suggests problems with implication elimination, not implication introduction.
Okada’s approach may produce a subsystem for which a Gentzen-style consistency proof works,
but it lacks a sound philosophical motivation. Okada introduces a validity concept for sequents
and shows that all sequents derivable in WLJ are valid, thereby justifying the validity of WLJ
under his constructive semantics. Valid sequents, however, need not be derivable in WLJ .

In [56] we find a first-order extension RLJ of WLJ with unrestricted universal quantifi-
cation. Gentzen’s semantics [31] gives a justification for a complete set of inference rules for
RLJ . A justification along the lines of the BHK proof interpretation fails.
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In [48] we find the following suggested modifications of (3) and (5) of the BHK proof
interpretation:

(3′) p proves ϕ → ψ just in case p consists of a pair q, r such that q is a construction that
transforms proofs s of ϕ into proofs qs of ψ and such that r is a proof that q is such a
construction.

(5′) p proves ∀xAx just in case p consists of a pair q, r such that for all c in the domain, qc
is a proof of Ac, and such that r is a proof that q is so.

Kreisel’s version has been treated as a viable alternative to Heyting’s proof interpretation (see,
e.g., [67] and [21]); more recently it seems to have slid into the background [68, pp. 9, 31].

The revised interpretation in [48] comes from an attempt to set up a formal system in terms
of which the formal rules of intuitionistic predicate calculus can be interpreted. According to
Kreisel an intuitionistic statement A is understood if we have a construction rA that decides
for each construction c whether or not it is a proof of A. Moreover it is assumed that we
recognize a proof when we see one.

Kreisel introduces the relation Π(c, A) as formal notation for

Construction c proves A.

The decidability of Π(c, A) requires the additional clauses of (3′) and (5′). Expressions Π(c, A)
themselves are treated as formulas in the same way as A, allowing for composite expressions
like Π(d,Π(c, A)) [65].

P. Aczel observed that we ought to add that Kreisel’s system tacitly assumes the existence
of a universe to which everything belongs [65]. In particular, the existence of the constructions
rA seems to assume the existence of a universe of all possible constructions because the rA
universally quantify over all such constructions. G. Sundholm states in [65, p. 155] that it is
the equivalence

A if and only if ∃p(p is a proof of A)

that presupposes the existence of a universe of ‘everything.’ This argument seems slightly
weaker since the quantifier may range over an incomplete universe.

In [6, pp. 403ff], M. J. Beeson illustrates the difficulties one encounters when trying to for-
malize Kreisel’s predicate Π(c, A) using a simple straightforward approach; his resulting system
C is conservative over HA, but refutes the decidability of Π. In a subsequent discussion Bee-
son suggests that one possible cause is trying to unite two incompatible intuitive concepts—a
universe and decidability of Π.

In [8] E. Bishop calls the ‘numerical’ meaning of implication the most urgent foundational
problem of constructive mathematics. In [9] there is an interpretation of implication P → Q
that differs somewhat from the BHK definition: ‘. . . the validity of the computational facts
implicit in the statement P must insure the validity of the computational facts implicit in the
statement Q . . . ’, but Bishop expresses dissatisfaction with this. Fortunately, in [9], in each
instance where (even nested) implication is used, the ‘numerical’ meaning is clear, although
there is no general interpretation for implication.
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As a point of departure for finding a general interpretation for implication, Bishop, in ex-
amining some of his theorems in constructive analysis that involve implication, notices the
following pattern. A complete mathematical statement—a theorem including all its prerequi-
sites such as definitions and proofs of theorems on which it depends—essentially asserts that
a given constructive function f with constructive domain S vanishes, that is, fx = 0 for all
x ∈ S. Bishop’s theorems involve incomplete mathematical statements, statements that assert
that there exists a constructive set T such that if we construct an element y ∈ T , then P (y) is
a complete statement. Thus incomplete statements are of the form ∃y∀xA(x, y) where A is a
decidable predicate. If this is taken as a rule, then implications are of the form

(1) ∃y∀xA(x, y) → ∃v∀uB(u, v).

The similarity with [35] is obvious, and Bishop bases his argument on Gödel’s interpretation.
In the formal system of [35] it is possible to convert a proof of (1) into a proof of

∃v̄∃x̄∀y∀u(A(x̄(y, u), y) → B(u, v̄(y))).

Bishop speculates that one day this ‘numerical’ implication may replace ordinary implication.
Unfortunately, his later studies of implication are left as only fragmentary notes [9, p. 13].

§2. Paradoxes

G. Frege’s naive logical notion of set is inconsistent [28], [29]. B. Russell showed in 1901 that
in Frege’s system the set R = {x | x /∈ x} is an element of itself if and only if it is not. This
argument is elementary and needs only a small fragment of Frege’s system: The ‘property’ R
is a set since {x | ϕ(x)} is a set for all ϕ; and a ∈ {x | ϕ(x)} holds if and only if ϕ(a) holds.
So if ϕ(x) is the formula x /∈ x, then R ∈ R if and only if R /∈ R.

The correspondence between Russell’s Paradox and the Liar Paradox is well-known. J. van
Benthem points out the logical nature of Russell’s Paradox [7]; Russell’s R cannot be a set
because of the tautology

¬∃x∀y(Pyx↔ ¬Pyy).

This tautology is essentially non-propositional.
The most popular solutions to the Russell Paradox use hierarchical models like Russell’s

type theory or Zermelo-Fraenkel set theory with choice ZFC. In these systems sets come after
their elements. So R cannot be a set.

Russell’s Paradox is related to G. Cantor’s paradox on the entity of all sets. In [13] Cantor
showed that the power set of a set is bigger than the original set in the sense that there
exists no map from a set S onto the power set PS. For suppose f :S → PS is onto. Let
R = {x ∈ S | x /∈ fx}. Since f is onto, R = fv for some v. So v ∈ fv if and only if v /∈ fv.

If, by the assumption of Cantor’s Paradox, there exists a set V of all sets, then y ∈ V if and
only if y ⊆ V . So the identity maps V onto PV , a contradiction.
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In Cantor’s view the paradoxes concerning the collection of all sets or the collection of all
ordinals (Burali-Forti Paradox, 1896/1897) show only that certain constructs {x | ϕ(x)} do
not represent sets. The same idea is reflected in the modern set/class distinction.

There is a version of λ–notation similar to set notation where we write λx.f(x) for {x | f(x)}.
The λ–calculus dates back to the combinatory algebras of [59] and [17] and the ‘extended’ λ–
calculus of [15], [16]. Kleene and J. B. Rosser showed that A. Church’s system is inconsistent,
essentially by deriving Richard’s Paradox [44]. Modern pure λ–calculus is a consistent deriv-
ative of Church’s system [3, I.1.1]. The typed combinatory algebra (it is similar for the typed
λ–calculus) has basic entities IA, KA,B , and SA,B,C for all A,B,C. Each object (function)
has a type B ⇐ A, and if f and g are functions of types C ⇐ B and B ⇐ A respectively, then
fg has type C ⇐ A. Application represents modus ponens: If f has type B ⇐ A and a has
type A, then f(a) has type B. In [19] it is pointed out that the types of IA, KA,B, and SA,B,C ,
being A ⇐ A, (A ⇐ B) ⇐ A, and ((A ⇐ C) ⇐ (B ⇐ C)) ⇐ ((A ⇐ B) ⇐ C), respectively,
constitute a complete set of axioms for intuitionistic implicational logic.

Russell’s Paradox then can be presented in the form

λX.¬X(X)(λX.¬X(X))

if and only if

¬λX.¬X(X)(λX.¬X(X)).

In [18] H. B. Curry interprets inconsistency as the ability to derive all statements. This enables
him to remove negation as an ingredient of Russell’s Paradox: For arbitrary B, let F be the
term λX.(X(X) → B). Then F (F ) equals F (F ) → B. Following the notation of [7, p. 54]
Curry argues that F (F ) → F (F ) holds, and thus F (F ) → (F (F ) → B). By absorption we
have F (F ) → B which equals F (F ). So by modus ponens, B.

Van Benthem mentions two reactions to Curry’s Paradox. P. T. Geach suspects the special
application of the absorption rule A → (A → B) ⊢ A → B [30, pp. 210–211], but presents
insufficient motivation, while F. B. Fitch blames modus ponens. But most mathematicians
consider modus ponens ‘the logician’s best friend’ ([7, p. 55]; J. Myhill in a private discussion
in 1983). In this paper we attempt to show that modus ponens need not be our best friend.

Curry sought to solve the paradoxes by adding illative notions to pure combinatory logic
[19], [20]; both Curry and Aczel add a ‘proposition’ condition to the objects, making paradoxi-
cal objects non-propositions [1] (see [3] for more references). Extensions of [1], and consistency
for these extensions, are presented in [24], [25], and [26].

Fitch has a system that is related to the approaches followed by Curry and Aczel. It
avoids Curry’s Paradox, and obtains consistent systems, by reducing the rules for implication
[22], [23]. Fitch’s earlier systems are weak in that many properties can only be expressed in
an ‘external’ way; e.g., being a function from the reals to the reals must be expressed in the
metalanguage [53, p. 181]. The weak implications that are added later on are cumbersome and,
according to Myhill, philosophically unnatural [53, p. 182]. Myhill proposes another solution
to the Curry Paradox while remaining close to Fitch’s system. Essentially, Myhill’s solution
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entails introducing indexed implications →1,→2,→3, . . . in place of a simple implication →.
The resulting axiom system consists of a set of axioms and rules T0 that includes neither
introduction or elimination rules nor axioms for implication. The system T0 may include
set-theoretical axioms including full comprehension and other axioms involved in some of the
traditional set-theoretic paradoxes. We have an ascending sequence T0 ⊆ T1 ⊆ T2 ⊆ . . . of
extensions such that Tn satisfies the additional introduction rule

A ∧B ⊢ C follows from Tn−1

A ⊢ B →n C

and the elimination rule
A ⊢ B →m C with m ≤ n

A ∧B ⊢ C
.

Myhill’s system is similar to the union of the systems Tn. The system in [53] includes a special
treatment of negation: System Tn includes the axioms

A ∧ ¬B ⊢ ¬(A→n B) and¬(A→n B) ⊢ A ∧ ¬B.

If T0 is a sufficiently rich language, then we can construct the object R = {x | x ∈ x →1 B}
for some B. With extensionality we derive

R ∈ R ⊢ R ∈ R→1 B,

and thus
R ∈ R ⊢ B

in T1 but not in T0. So only
⊢ R ∈ R→2 B

holds and no Russell Paradox results.

In [50] M. H. Löb answered a question of L. Henkin on the provability in Peano Arithmetic
PA of sentences that assert their own provability. Let A be short for ProvPA(⌈A⌉). Then
does PA ⊢ A↔ A imply PA ⊢ A? Löb’s affirmative answer is a corollary of the remarkable
Löb’s Rule. Provability satisfies the axiom schemas

(A→ B) ⊢ A→ B;(1)

( A→ A) ⊢ A (Löb’s Axiom);(2)

and the rule

(3)
⊢ A

⊢ A
.

The schema

(4) A ⊢ A
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and Löb’s Rule
⊢ A→ A

⊢ A

follow from these axioms and rule and Intuitionistic Propositional Calculus IPC. This invites
us to define a modal logic PrL (by [62]; G. Boolos calls it G [10]) by extending the system
CPC with the axioms and rule (1), (2), and (3) for the modal operator. We may replace Löb’s
Axiom by Löb’s Rule without changing the strength of PrL; the proof of the equivalence even
works when we replace CPC by IPC.

R. M. Solovay discovered that the axioms for PrL are complete in the sense described below
[64]. Each map Φ that maps atoms p of the language of PrL to sentences Φp of the language of
PA can be extended to a map on the collection of all formulas of PrL by induction: Φ⊤ = ⊤;
Φ⊥ = ⊥; Φ(A ◦B) = ΦA ◦ ΦB for ◦ ∈ {∧,∨,→}; and Φ( A) = ProvPA(⌈ΦA⌉). Then

PrL ⊢ ϕ if and only if PA ⊢ Φϕ for all Φ.

From the Explicit Fixed Point Theorem for PrL ([10, p. 141], [62, p. 79]) it follows that for
every B there exists A such that

(5) ⊢ A↔ ( A→ B).

holds in PrL. Löb, conversely, uses (5) to derive his Rule: (5) holds in PA by the Fixed Point
Lemma for PA. Axioms and rule (1), (3), (4), and (5) are given as directly following from
PA. Assume ⊢ B → B. Then (5) and (3) give us ⊢ (A → ( A → B)) for some A, and
thus ⊢ A → ( A → B). So ⊢ A → B and, using the assumption, ⊢ A → B. By
(5), ⊢ A; and thus ⊢ B. This proof shows the immediate connection with Curry’s Paradox;
the referee to [50] points out that if we replace by ‘true’, then this argument implies that
every sentence is true.

§3. Basic Propositional Calculus

Intuitionists generally consider intuitionistic logic to be a description of regularities that are
observed in intuitionistic mathematical practice. It is also generally maintained that first-order
intuitionistic calculus IQC is a proper reflection of these regularities; Heyting developed the
formalization and proof interpretation, and Brouwer appreciated this clarification of intuition-
ism. We believe, however, that a ‘truly’ constructive logic should have an interpretation that is
non-circular and constructive in itself. We have not found an interpretation for IQC satisfying
this constraint. One way to obtain a system with non-circular interpretation is by reversing
the approach usually taken: Start with the proof interpretation and derive logical rules that
are acceptable following this interpretation.

We assume the existence of a universe of proofs U . The term universe is not to be understood
as meaning ‘set’. We have only limited knowledge about what constitutes a proof, and therefore
only limited knowledge about the complexity of U . A sequent ϕ ⊢ ψ expresses that there exists
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a proof that derives ψ from the assumption ϕ. So proofs depend on assumptions ϕ as much as
they prove statements ψ. Next we present examples of some existence and closure properties
of U . If we assume ϕ, then we accept this very assumption as a proof of ϕ. So ϕ ⊢ ϕ holds for
all ϕ. Axiom schemas like A ⊢ A and A ∧ (B ∨ C) ⊢ (A ∧ B) ∨ (A ∧ C) express the existence
of certain proofs in U . If p is a proof of ϕ ⊢ ψ, and q is a proof of ψ ⊢ θ, then there exists a
composition pq that constitutes a proof of ϕ ⊢ θ. So rules like

A ⊢ B B ⊢ C

A ⊢ C

or
A ⊢ B A ⊢ C

A ⊢ B ∧ C

express that U satisfies certain closure rules.
And now about implication. A formula ϕ → ψ expresses that there exists a proof in U of

ϕ ⊢ ψ. The occurrence of → in a sequent means that the sequent makes a statement about
the existence of proofs. Therefore ϕ ⊢ ψ → θ follows from ϕ∧ ψ ⊢ θ. The reverse closure rule,
equivalent to modus ponens, fails. It implies ⊤ → ϕ ⊢ ϕ which says that from the assumption
of a proof of ϕ in U we derive the existence of an actual proof of ϕ in U . This is different
from a statement (⊤ ⊢ ϕ) ⊢ ϕ which says that if there were an actual proof of ϕ, then we have
an actual proof of ϕ. Axioms ϕ ⊢ ψ where ϕ contains implication, may change the meaning
of → relative to ⊢. For example, when we consider intuitionistic logic with modus ponens,
then a proof p of an implication ϕ → ψ includes a construction q that converts proofs s of
ϕ into proofs qs of ψ. In basic logic, p should only include a proof q of ψ using ϕ as an
assumption. Closure rules for U give rise to sequents involving implication. A valid sequent
like (ϕ → ψ) ∧ (ψ → θ) ⊢ ϕ → θ says that if we assume the existence of proofs of ϕ ⊢ ψ and
ψ ⊢ θ, then we may assume the existence of a proof of ϕ ⊢ θ.

We start by constructing a propositional logic BPC. The interpretations of disjunction
and conjunction are considered straightforward and beyond question. Following [31], we also
favorably regard implication introduction as saying that A ∧ B ⊢ C merely expresses that we
can construct a proof of C from B if we are given A. This results in the following axioms and
rules being acceptable.

A ⊢ A

A ⊢ B B ⊢ C

A ⊢ C

A ⊢ ⊤ ⊥ ⊢ A

A ⊢ B A ⊢ C

A ⊢ B ∧ C

B ⊢ A C ⊢ A

B ∨ C ⊢ A

A ∧B ⊢ C

A ⊢ B → C
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A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)

These axioms and rules form a system BPC0. The distributivity axiom schema is essential
since we don’t have modus ponens. The constants ⊤ and ⊥ are included but are not essential to
our system: ⊤ is equivalent to all sequents of the form A→ A, while in many systems we have
a natural candidate to replace ⊥ by (for example by 0 = 1 in arithmetic). In a forthcoming
paper we show that for some model-theoretic results it is essential to exclude ⊥ as part of the
axiom system.

To get BPC we must now add implications A → B in the proper way whenever we can
derive A ⊢ B; implication must reflect provability as tightly as possible without introducing a
circular argument. If, for example, we have a (derived) rule

σ1 ⊢ τ1 σ2 ⊢ τ2
σ ⊢ τ

,

then we must add the axiom

(σ1 → τ1) ∧ (σ2 → τ2) ⊢ σ → τ .

For each (derivable) sequent σ ⊢ τ we must add the schema A ⊢ σ → τ ; this, however,
immediately follows from the rule for ∧, transitivity of ⊢, and implication introduction. So
once BPC0 has been built, we only add axioms for → that are associated with rules. For
example, for transitivity, conjunction introduction, and disjunction introduction we add the
axiom schemas

(A→ B) ∧ (B → C) ⊢ A→ C

(A→ B) ∧ (A→ C) ⊢ A→ (B ∧ C)

(B → A) ∧ (C → A) ⊢ (B ∨ C) → A

The analogous axiom schemas that accompany the remaining rules of BPC0 follow from BPC0

extended with these three axiom schemas. For example, B ⊢ A → A follows from B ∧ A ⊢ A
using implication introduction; and (B ∨ C) → A ⊢ B → A follows from ⊢ B → (B ∨ C) and
the added transitivity axiom for →. It suffices to add new axioms for the defining rules of
BPC0 only, as all derived rules then follow by transitivity. This extended system we call Basic
Propositional Calculus BPC. The extension BPC involves new axioms and no new rules, so
there is no need to repeat the process of looking for additional axioms for →. Intuitionistic
Propositional Calculus IPC is equivalent to BPC extended with implication elimination

A ⊢ B → C

A ∧B ⊢ C
.

It turns out that the system BPC is equivalent to A. Visser’s system BPL [69]. A preprint
of that paper initiated the author’s original research into BPC, resulting in [57].

From the construction of BPC we derive
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3.1 Proposition. Let T be a theory consisting of additional sequents only. Then

T ∪ {σ1 ⊢ τ1, . . . , σn ⊢ τn} ⊢ (σ ⊢ τ)

implies
T, (σ1 → τ1) ∧ · · · ∧ (σn → τn) ⊢ σ → τ . ⊣

Note that if we wish to add new rules to T , then, to preserve the availability of Proposition
3.1, we are required to add matching sequents to T .

[69] mentions two substitution methods; a substitution rule and a substitution sequent.
Both hold for BPC. Using Proposition 3.1, the substitution sequent

A↔ B ⊢ C[A] ↔ C[B]

follows immediately from the substitution rule

A ⊢ B B ⊢ A

C[A] ⊢ C[B] and C[B] ⊢ C[A]
.

3.2 Proposition (Functional Completeness). Let T be a theory consisting of addi-
tional sequents only. If T satisfies

T, (⊢ ϕ) ⊢ (σ ⊢ τ),

then
T, ϕ ∧ σ ⊢ τ .

Proof: A straightforward induction on proof complexity. ⊣

Consistency of BPC is straightforward as it is a subsystem of intuitionistic propositional
calculus IPC. Moreover, BPC does not satisfy modus ponens (or equivalently: implication
elimination):

3.3 Proposition. BPC + (⊢ A→ B) is consistent.

Proof: Replace all occurrences of implication in the axiomatization of BPC by ⊤. The
resulting axiom system still is a subsystem of intuitionistic logic. ⊣

So BPC doesn’t even satisfy the rule

⊢ ⊤ → B

⊢ B
.
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In the system of Proposition 3.3 implication → fails to reflect derivability of that system; →
does not faithfully reflect ⊢. A theory T is faithful if T satisfies the reverse of Proposition 3.1,
that is,

T, (σ1 → τ1) ∧ · · · ∧ (σn → τn) ⊢ σ → τ ,

implies
T, (σ1 ⊢ τ1), . . . , (σn ⊢ τn) ⊢ (σ ⊢ τ),

Obviously, all extensions of IPC are faithful. Proposition 3.7 below shows that BPC is faithful
too.
BPC satisfies a weaker version of modus ponens:

3.4 Proposition. BPC satisfies the rule

A ⊢ B → C

A ∧B ⊢ ⊤ → C

and, equivalently, the axiom
A ∧ (A→ B) ⊢ ⊤ → B.

Proof: If A ⊢ B → C, then A ∧B ⊢ (⊤ → B) ∧ (B → C). ⊣

So IPC is equivalent to BPC plus the schema ⊤ → A ⊢ A. Thus IPC satisfies the condi-
tions for T in Propositions 3.1 and 3.2.

The paper [69] includes a class of Kripke models and a completeness theorem. For complete-
ness’s sake we include these results, since though the general theory of Kripke models itself is
not constructive, the Completeness Theorem 3.6 enables us to get a better understanding of
BPC relative to other propositional logics, as it provides simple proofs for some properties of
BPC without the necessity of having to go through proof theoretical technicalities.

A (generalized) Kripke model of BPC consists of a tuple K = 〈PK, IK〉 where

(1) PK = P = (P,≺) consists of a set of nodes P with a transitive binary relation ≺ on P ,
that is, if α ≺ β ≺ γ then α ≺ γ.

(2) IK = I assigns to each atom p of BPC a subset Ip ⊆ P that is upward closed, that is,
if β ≻ α ∈ Ip, then β ∈ Ip.

We write α|⊢p for α ∈ Ip. The canonical extension of |⊢ to all formulas of BPC is inductively
defined by

α|⊢⊤;

α|⊢ϕ ∧ ψ ⇐⇒ α|⊢ϕ and α|⊢ψ;

α|⊢ϕ ∨ ψ ⇐⇒ α|⊢ϕ or α|⊢ψ; and

α|⊢ϕ→ ψ ⇐⇒ β|⊢ϕ implies β|⊢ψ for all β ≻ α.

We write � for the reflexive closure of ≺. We extend |⊢ to sequents by defining

α|⊢(ϕ ⊢ ψ) ⇐⇒ β|⊢ϕ implies β|⊢ψ for all β � α.
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A Kripke model K satisfies a rule

σ1 ⊢ τ1 . . . σn ⊢ τn
σ ⊢ τ

,

if for all nodes α, if α|⊢(σi ⊢ τi) for all i, then α|⊢(σ ⊢ τ). We write K |= (ϕ ⊢ ψ) if α|⊢(ϕ ⊢ ψ)
for all nodes α. Obviously, if β ≻ α|⊢(ϕ ⊢ ψ), then β|⊢(ϕ ⊢ ψ). We easily verify

3.5 Proposition [69]. If β ≻ α|⊢ϕ, then β|⊢ϕ. ⊣

So α|⊢ϕ if and only if α|⊢(⊢ ϕ).
Let Σ be a set of sequents and rules. Then for all Kripke models K we write K |= Σ if

K |= (σ ⊢ τ) for all σ ⊢ τ ∈ Σ, and K satisfies all rules of Σ. We write Σ |= (ϕ ⊢ ψ) if K |= Σ
implies K |= (ϕ ⊢ ψ), for all K.

3.6 Theorem (Completeness Theorem) [69]. Let Γ ∪ {ϕ ⊢ ψ} be a set of sequents.
Then Γ ⊢ (ϕ ⊢ ψ) if and only if Γ |= (ϕ ⊢ ψ)

Proof: We present a sketch of the proof. For details, see [69]. Soundness is proved by
a straightforward induction on the complexity of proofs. For the completeness part, suppose
Γ 6⊢ (ϕ ⊢ ψ). It suffices to construct a model K such that K |= Γ and K 6|= (ϕ ⊢ ψ). Let
PBPC, prime BPC, be the extension of BPC with the rule

⊢ A ∨B

⊢ A or ⊢ B
.

This new rule makes PBPC non-inductive. A theory ∆ is called closed if all sequents derivable
from ∆ are elements of ∆. As set of nodes P we choose the collection of all consistent closed
theories extending PBPC + Γ; there exists a ∆ such that (ϕ ⊢ ψ) /∈ ∆ [69], so this collection
is nonempty. We set ∆ ≺ ∆′ if λ ∧ µ ⊢ ν ∈ ∆′ whenever λ ⊢ µ → ν ∈ ∆. For atoms p, set
Ip = {∆ | (⊢ p) ∈ ∆}. By induction on the complexity of sequents one shows that ∆|⊢(σ ⊢ τ)
if and only if σ ⊢ τ ∈ ∆. Thus K |= Γ and K 6|= (ϕ ⊢ ψ). ⊣

Visser uses a derived completeness theorem to show that BPC is decidable; BPC ⊢ (ϕ ⊢ ψ)
if and only if K |= (ϕ ⊢ ψ) for all finite K of a size limited by the number of subformulas of
ϕ ∧ ψ.

Although modus ponens fails even in the limited way described above, BPC does reflect the
fact that → embodies provability, as the second claim below illustrates.

3.7 Proposition.

(1) ⊢ σ ∨ τ holds in BPC if and only if ⊢ σ or ⊢ τ hold. So PBPC ⊢ (ϕ ⊢ ψ) if and only
if BPC ⊢ (ϕ ⊢ ψ).

(2) BPC is faithful.

Proof: Obviously, if BPC ⊢ ϕ or BPC ⊢ ψ, then BPC ⊢ (ϕ ∨ ψ). Conversely, suppose
K1 6|= ϕ and K2 6|= ψ for some models K1 and K2. Construct a new model K by adding a new
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node α to the disjoint union of the models K1 and K2, with α ≺ β for all nodes β from K1

and K2, and α /∈ Ip for all atoms p. Then α 6 |⊢ϕ and α 6 |⊢ψ, so α 6 |⊢ϕ∨ψ. Thus BPC 6⊢ ϕ∨ψ.
Suppose (σ1 → τ1) ∧ · · · ∧ (σn → τn) ⊢ σ → τ holds in BPC, and let K be a model such

that K |= (σi ⊢ τi) for all i. Form a new model L by adding a new bottom node α to K with
α ≺ β for all nodes β of K, and α /∈ Ip for all p. Then α|⊢(σ1 → τ1) ∧ · · · ∧ (σn → τn), and so
α|⊢σ → τ . Thus K |= (σ ⊢ τ). ⊣

Examples: Let ⊤ → ϕ ⊢ σ → τ hold in BPC. By Proposition 3.7, (⊢ ϕ) ⊢ (σ ⊢ τ) holds.
So by Proposition 3.2 BPC satisfies ϕ ∧ σ ⊢ τ .
BPC satisfies the first two of the Curry-Feys axioms: A ⊢ A and A ⊢ B → A. The axiom

C → (B → A) ⊢ (C → B) → (C → A) fails since it implies C → (B → A) ⊢ B → (C → A).
The following is a counterexample to that sequent. Let K be the Kripke model with three
nodes α ≺ β ≺ γ and ≺ is anti-reflexive. Set Ip = ∅, Iq = {β, γ}, and Ir = {γ}. Then
K |= r → (q → p) and K 6|= q → (r → p).

Besides IPC there is another BPC–extension of note: Formal Propositional Calculus FPC
(FPL in [69]), obtained by adding the rule

A ∧ (⊤ → B) ⊢ B

A ⊢ B
(Löb’s Rule).

Obviously, IPC and FPC are relatively inconsistent. We easily show that FPC is equivalent
to the system BPC augmented by the axiom schema

(⊤ → A) → A ⊢ ⊤ → A (Löb’s Axiom):

use the transitivity of → to obtain ((⊤ → A) → A)∧(⊤ → (⊤ → A)) ⊢ ⊤ → A and then apply
Löb’s rule. Conversely, suppose A ∧ (⊤ → B) ⊢ B. Then A ⊢ (⊤ → B) → B and, applying
Löb’s Axiom, A ⊢ ⊤ → B. Hence A ⊢ A ∧ (⊤ → B), so transitivity of ⊢ gives us A ⊢ B. So
FPC satisfies the conditions for T in Propositions 3.1 and 3.2.

A striking property of FPC is

3.8 Theorem (Explicit Fixed Point Theorem). For all A[p], FPC satisfies the se-
quents

A[A[⊤]] ⊢ A[⊤] and

A[⊤] ⊢ A[A[⊤]].

Proof: See [69]. ⊣

Since FPC is faithful, Theorem 3.8 is equivalent to

FPC ⊢ A[⊤] ↔ A[A[⊤]].
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We consider the relation between Theorem 3.8 and the Explicit Fixed Point Theorem of
PrL below, when we discuss translations into modal logic.

3.9 Proposition.

(1) ⊢ σ ∨ τ holds in FPC if and only if ⊢ σ or ⊢ τ hold.
(2) FPC is faithful.

Proof: The model constructions in the proof of Proposition 3.7 turn models of FPC into
models of FPC. ⊣

Provability is usually considered in the context of modal logic. Translations of IPC into
the modal logic date back to [34]. Now we form a translation from the language of BPC into
the language of K4 ([10]; [62] calls it BML). The translation A 7→ A′ is inductively defined
by

⊤′ = ⊤;

⊥′ = ⊥;

p′ = p ∧ p, p an atom;

(A ∧B)′ = A′ ∧B′;

(A ∨B)′ = A′ ∨B′; and

(A→ B)′ = (A′ → B′).

The system K4 is axiomatized by CPC, the axioms

(A→ B) ⊢ A→ B, and

A ⊢ A,

and the rule
⊢ A

⊢ A
.

The extension S4 satisfies the additional

A ⊢ A;

and PrL equals K4 plus the extra schema

( A→ A) ⊢ A.

Note that the additional sequents defining IPC and FPC as extensions of BPC are translated
into the additional sequents defining S4 and PrL as extensions of K4.

The connection between IPC and S4 can be generalized to
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3.10 Proposition.

BPC, ϕ ⊢ ψ if and only if K4, ϕ′ ⊢ ψ′

IPC, ϕ ⊢ ψ if and only if S4, ϕ′ ⊢ ψ′

FPC, ϕ ⊢ ψ if and only if PrL, ϕ′ ⊢ ψ′

Proof: Exercise. ⊣

Proposition 3.10 for FPC versus PrL and a special case of the Explicit Fixed Point Theo-
rem [62, p. 78] imply the Explicit Fixed Point Theorem 3.8 for FPC.

§4. Basic Predicate Calculus

The extension of BPC to first-order Basic Predicate Calculus BQC presents us with the
same challenges as BPC, plus one: universal quantification. The extra problem shows simi-
larities to the use of partial elements in the original [38], [39]. In the discussion below we use
the related additional existence predicate E of [60] as a starting point.

In [60] variables are allowed to range over partial elements like 1/x over the reals when we
don’t know whether x is invertible or equals 0 or is somewhere in between. The expression
Ex stands for ‘x exists.’ For intuitionistic predicate logic IQC—with full modus ponens—this
leads to the following rules defining ∃ and ∀:

A ⊢ Ex→ C

A ⊢ ∀xC

Ex ∧B ⊢ A

∃xB ⊢ A

where x is not free in A.
The existence predicate E allows for a different interpretation. For IQC with total elements

only, Ex equals ⊤. This implies that we may eliminate the subexpressions Ex from the rules
altogether. For BQC with total elements only, this is true for the rules concerning existential
quantification but not for universal quantification.

Although x is ‘total’, its existence is ‘partial’ in the sense that it depends on its context. A
proof of ϕ(x) ⊢ ψ(x) consists of having a proof of ψ(x) assuming the existence of an element x
and assuming ϕ(x). Therefore the usual rule for existential quantification is acceptable. The
sequent ϕx ⊢ ∃xϕx, for example, is acceptable since the assumption ϕx and the assumption
that x is an element immediately imply ∃xϕ(x). We tacitly assume that there exists at least
one element in the domain.

Universal quantifier elimination is not acceptable: the formula ∀xϕ(x) expresses ⊢ ϕ(x),
that is, it expresses that from the assumption that x is an element we derive ϕ(x). So the
sequent ∀xϕ(x) ⊢ ϕ(x) is unacceptable: from an assumed proof of ϕ(x) from assuming that x
is an element, and the assumption that x is an element, we conclude the existence of an actual
proof of ϕ(x). Even the assumption ⊢ ∀xϕ(x) is not sufficient to get ⊢ ϕ(x). The most we can
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derive from ∀xϕ(x) is ⊤ → ϕ(x). More generally, let ∀x:ϕ(x).ψ(x) be the formula expressing
ϕ(x) ⊢ ψ(x). Then ∀x:ϕ(x).ψ(x) entails ϕ(x) → ψ(x).

For the language of BQC we use ∀x:B.C as standard notation; ∀xC is an abbreviation for
∀x:⊤.C. Similarly, the expression ∃x:B.C is equivalent to ∃x(B ∧ C).

The extension BQC0 of BPC is formed by the following axioms and rules; the interpretation
of existential quantification is considered straightforward.

Ax ⊢ Bx

At ⊢ Bt
†

A ⊢ B → C

A ⊢ ∀x:B.C
‡

B ⊢ A

∃xB ⊢ A
‡

A ∧ ∃xB ⊢ ∃x(A ∧B) ‡

⊤ ⊢ x = x

(x = y) ∧Ax ⊢ Ay ∗

The special form of the substitution rule and the extra axiom for the existential quantifier are
essential because we don’t have modus ponens. As with BPC0, we need additional axioms for
the new rules. The following two suffice to complete the axiomatization of BQC:

A→ (B → C) ⊢ A→ ∀x:B.C ‡

(B → A) ⊢ ∃xB → A ‡

We allow the substitution of new variables for bound variables. In case †, the term t does not
contain a variable bound by a quantifier of A or B; in cases ‡, the variable x is not free in A;
and in case ∗, the variables x, y are not bound by a quantifier of A.

The presence of variables makes associating sequents with rules slightly more complicated.
For example, the sequent associated with the substitution rule reads

∀x:Ax.Bx ⊢ At→ Bt

and immediately follows from universal quantifier elimination and the substitution rule.
Because of the relative weakness of implication →, nested universal quantifications ∀x∀y . . .

are weaker than a single quantification over strings ∀(x, y, . . . ). Therefore we allow strings x =
(x1, x2, . . . , xn) as replacement for x in the rule and sequent axioms for universal implication:

A ⊢ B → C

A ⊢ ∀x:B.C
and

A→ (B → C) ⊢ A→ ∀x:B.C,
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where none of the variables in the string x is free in A. So when we write ∀x, y ϕ we mean
something essentially different from ∀x∀yϕ.
BQC satisfies the equivalent of Proposition 3.1. However, a proper formulation requires us

to use universal closures if any of the sequents σi ⊢ τi share free variables. Suppose all free
variables that occur in the formula ϕ → ψ are among the variables x = (x1, . . . , xn). Then
the universal closure of ϕ→ ψ is the sentence ∀x:ϕ.ψ. Now the equivalent of Proposition 3.1
reads: If T is a theory of sequents such that

T ∪ {σ1 ⊢ τ1, . . . , σn ⊢ τn} ⊢ (σ ⊢ τ),

then
T, (∀x: σ1.τ1) ∧ · · · ∧ (∀x: σn.τn) ⊢ ∀x: σ.τ .

A faithful theory satisfies the reverse implication.
BQC satisfies the equivalent of Proposition 3.2 if ϕ and σ ⊢ τ don’t share any free variables.

A (generalized) Kripke model of BQC consists of a triple K = 〈PK, DK, IK〉 where

(1) PK = P is a transitive structure as in propositional Kripke models,
(2) DK = D assigns to each node α a nonempty set Dα, and to each ordered pair α ≺ β

a function σα
β :Dα→ Dβ such that if α ≺ β ≺ γ, then σβ

γσ
α
β = σα

γ , and

(3) IK = I assigns to each n-ary predicate p a function Ip on domain P such that Ipα is
a subset of (Dα)n, and (σα

β )n(Ipα) ⊆ Ipβ whenever α ≺ β. To each n-ary function

symbol g, I assigns a function Ig on domain P such that Igα: (Dα)n → Dα is a function
satisfying σα

β (Igα) = (Igβ)(σα
β )n whenever α ≺ β. Constant symbols are treated as

0-ary functions.

To each term t we assign a function It on P that, for each α, is the composition of functions
Igα where the g are the function symbols that make up term t. For atomic sentences p(t)
we write α|⊢p(t) exactly when Itα ∈ Ipα. Augment the language of BQC with new constant
symbols for all the elements of all the nodes Dα. Then we write ϕα if all constants in ϕ are
from elements in Dα; given α ≺ β and ϕα, then ϕβ is the sentence constructed from ϕα by
replacing all constant symbols cα by σα

β (cα). The canonical extension of |⊢ to all sentences of
BQC is inductively defined in the familiar way for ⊤, ∧, and ∨, and by the additional

α|⊢c = d⇐⇒ c, d ∈ Dα and c = d;

α|⊢(ϕ→ ψ)α ⇐⇒ β|⊢ϕβ implies β|⊢ψβ, for all β ≻ α;

α|⊢(∀x:ϕ(x).ψ(x))α ⇐⇒ β|⊢ϕ(c)β implies β|⊢ψ(c)β for all β ≻ α and c ∈ (Dβ)n; and

α|⊢(∃xϕ(x))α ⇐⇒ α|⊢ϕ(c)α for some c ∈ Dα.

For formulas ϕ(x)α and ψ(x)α, we write α|⊢(ϕ(x) ⊢ ψ(x))α if β|⊢ϕ(c)β implies β|⊢ψ(c)β, for
all β � α and c ∈ (Dβ)n.

4.1 Proposition. If β ≻ α and α|⊢ϕα, then β|⊢ϕβ . If β ≻ α and α|⊢(ϕ ⊢ ψ)α, then
β|⊢(ϕ ⊢ ψ)β.
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Proof: By induction on the complexity of formulas. ⊣

Borrowing the notation and definitions for |= from BPC we get

4.2 Theorem (Completeness Theorem). Let Γ ∪ {ϕ ⊢ ψ} be a set of sequents. Then
Γ ⊢ (ϕ ⊢ ψ) if and only if Γ |= (ϕ ⊢ ψ).

Proof: We present only a hint of a proof. Soundness follows from a straightforward
induction on the complexity of proofs. Conversely, suppose Γ 6⊢ (ϕ ⊢ ψ). To construct a model
K of Γ such that K 6|= (ϕ ⊢ ψ), we take as the set of nodes the collection of consistent and
closed theories extending PBQC + Γ, where PBQC, prime BQC, is the extension of PBPC
and BQC with the rule

⊢ ∃xAx

⊢ Ac for some constant c
.

The language has to be repeatedly augmented with additional constants. These technicalities
are beyond the scope of this paper; rather, cf. [61, pp. 330ff]. We set ∆ ≺ ∆′ if λ∧µ ⊢ ν ∈ ∆′

whenever λ ⊢ µ→ ν ∈ ∆. Define

D∆ = {c | c is a constant existing at node ∆}/ ∼ ,

where c ∼ d is the equivalence relation ∆ ⊢ c = d. The resulting Kripke model satisfies Γ but
fails to satisfy ϕ ⊢ ψ. ⊣

The extension IQC of Intuitionistic Predicate Calculus equals IPC +BQC; the extension
FQC of Formal Predicate Calculus equals FPC+BQC; CQC equals IQC+(⊢ A∨¬A). The
systems PIQC and PFQC are obtained by replacing BQC by PBQC in the two definitions
above. PCQC = PIQC + CQC is the theory of complete theories.

4.3 Proposition (Explicit Definability). Let ∃xϕ(x) be a sentence. Then

(1) BQC ⊢ ∃xϕ(x) if and only if BQC ⊢ ϕ(t) for some term t without variables bound by
a quantifier of ϕ.

(2) IQC ⊢ ∃xϕ(x) if and only if IQC ⊢ ϕ(t) for some term t without variables bound by
a quantifier of ϕ.

(3) FQC ⊢ ∃xϕ(x) if and only if FQC ⊢ ϕ(t) for some term t without variables bound by
a quantifier of ϕ.

Proof: The implications from right to left immediately follow from the derivability of
ϕ(t) ⊢ ∃xϕ(x). Conversely, suppose that for all suitable terms t there is a model Kt such that
Kt 6|= ϕ(t). We may assume the Kt’s to have smallest nodes αt such that αt 6 |⊢ϕ(t(c)) for
some substitution of constants c from Dαt for the variables of t. Construct a new model L by
adding a new node α to the disjoint union of the models Kt, with α ≺ β for all nodes β from
the Kt. Dα consists of the terms of the language, augmented with sufficiently many constant
symbols to cover the new constants in all the t(c) (countably many will do); the σα

β are defined

accordingly. We make sure that each term t(c) of Dα is mapped to some t(c) ∈ Dαt with
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αt 6 |⊢ϕ(t(c)). Set α 6 |⊢p(t(c)) for all predicates p and terms t(c) over Dα. Then α 6 |⊢∃xϕ(x).
Thus BPC 6⊢ ∃xϕ(x).

The case for IQC is well-known. The proof for FQC is identical to the proof for BQC since
if the Kt are models for FQC, then so is L. ⊣

There is a translation between BQC and the first-order extension QK4 of K4 satisfying the
equivalent of Proposition 3.10. The system QK4 is axiomatized by K4+CQC. The translation
A 7→ A′ from the language of BPC into the language of K4 is extended to the quantifiers by

(∀x:A.B)′ = ∀x(A′ → B′) and

(∃xA)′ = ∃xA′.

One easily shows that
BQC,ϕ ⊢ ψ if and only if QK4, ϕ′ ⊢ ψ′.

Weakening some of the logical connectives of IQC to get BQC could have made the first-
order Basic Calculus too weak to be useful. We show that it isn’t. On one hand, most
intuitionistic first-order mathematics (and classical first-order mathematics) extends to basic
first-order mathematics; on the other hand, Basic Arithmetic BA, the equivalent of Heyting
Arithmetic HA and Peano Arithmetic PA, is still a powerful theory.

A formula sequent is geometric if it does not contain any occurrences of → or ∀. A set of
sequents is called a geometric theory if it contains geometric sequents only.

4.4 Proposition. Let T be a geometric theory, and ϕ ⊢ ψ a geometric sequent. Then
T ⊢ (ϕ ⊢ ψ) if and only if CQC, T ⊢ (ϕ ⊢ ψ).

Proof: Each node Dα of a Kripke model K, with its structure borrowed from K, is a
classical CQC model for the language of BQC. A trivial induction on the complexity of for-
mula sequents shows that if σ ⊢ τ is a geometric sequent, then K |= (σ ⊢ τ) if and only if
Dα |= (σ ⊢ τ) for all nodes α of K. ⊣

A glance through [52] convinces that a substantial portion of its contents can be generalized
from IQC to BQC without major revisions. A significant part is geometric, and another
significant part assumes equality to be decidable.

For BQC, decidability of = means that there is a relation 6= such that both ⊢ (x = y)∨(x 6=
y) and (x = y) ∧ (x 6= y) ⊢ ⊥ hold. Many interesting structures in constructive mathematics
don’t have a decidable equality. The expression x = y → ⊥ is considerably weaker than the
equivalent ‘denial inequality’ of IQC and therefore less useful. Instead, we take the relation 6=
to be primitive, with an appropriate axiomatization. What axiomatization for 6= is right for
BQC? We propose a generalized theory of inequality along the lines of [58]; the idea behind
the theory of difference relations in that paper is to include a geometric theory for inequality
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that is as strong as possible.

Basic Arithmetic BA is the basic calculus equivalent of Heyting Arithmetic HA and Peano
Arithmetic PA. It has axioms

Sx = 0 ⊢ ⊥

Sx = Sy ⊢ x = y

⊢ x+ 0 = x

⊢ x · 0 = 0

⊢ x+ Sy = S(x+ y)

⊢ x · Sy = (x · y) + x

and rule
A(x) ⊢ A(Sx)

A(0) ⊢ A(x)

where x is not free in A(0). The sequent schema ∀x:A(x).A(Sx) ⊢ A(0) → A(x) that is
associated with the induction rule follows from BA: apply the induction rule to the formula
A(0) → A(x). So the equivalent of Propositions 3.1 and 3.2 applies to BA.

We employ the usual abbreviations 1 for S0, 2 for S1, etc. We easily verify that BA satisfies
the schema 1 = 0 ⊢ A, so we can replace ⊥ by 1 = 0. Note thatHA equalsBA+((⊤ → A) ⊢ A).

4.5 Proposition.

(1) (Explicit Definability) BA ⊢ ∃xϕ(x) if and only if BA ⊢ ϕ(n) for some numeral n.
(2) BA ⊢ ϕ ∨ ψ if and only if BA ⊢ ϕ or BA ⊢ ψ.
(3) BA is faithful.

Proof: (1). Let K0,K1, . . . be a sequence of models of BA such that Kn 6|= ϕ(n). Form
a new model L by adding a new bottom node α to the disjoint union of the Kn’s, and set
Dα = N = {0, 1, 2, . . .}. Then L |= BA and α 6 |⊢∃xϕ(x).

Explicit Definability implies the disjunction property: replace ϕ∨ψ by ∃x((x = 0∧ϕ)∨(x =
1 ∧ ψ)) and apply (1).

(3). Suppose BA, (∀x: σ1.τ1) ∧ · · · ∧ (∀x: σn.τn) ⊢ ∀x: σ.τ , and let K |= BA be such that
K |= (σi ⊢ τi) for all i. Form a new model L by adding a new bottom node α with Dα = N.
Then L |= BA, and α|⊢σi → τi for all i; hence α|⊢σ → τ , and thus K |= (σ ⊢ τ). ⊣

Let FA be the system of Formal Arithmetic BA+FQC. One easily verifies that the model
constructions in the proof of Proposition 4.5 preserve FA. So FA satisfies the corresponding
properties of Explicit Definability and faithfulness. Similar statements for Intuitionistic Arith-
metic (Heyting Arithmetic) HA are well-known.

Beside the fact that BA is a ‘nice’ theory, we need it to be a ‘strong’ theory. We show
that the equality relation is decidable and that a substantial part of standard arithmetic is
derivable.
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Formulas ϕ and ψ are called complements over a theory T if T ⊢ ϕ ∨ ψ and T, ϕ ∧ ψ ⊢ ⊥.
Define x < y to be an abbreviation for ∃z(x + Sz = y), and x 6= y, inequality, to be an
abbreviation for x < y ∨ y < x.

4.6 Proposition. BA satisfies the Trichotomy Law x < y ∨ x = y ∨ y < x. So = and 6=
are complements over BA.

Proof: The proof consists of a few trivial applications of the induction rule. We men-
tion some intermediate stages, leaving the details as exercises. Prove by induction the as-
sociativity, and then the commutativity, of addition. A straightforward calculation proves
BA, x < y ⊢ Sx < Sy. By induction one shows BA ⊢ 0 = x ∨ 0 < x. Then derive
(Sx < y ∨ Sx = y ∨ y < Sx) from each of the three assumptions x < y, x = y, and y < x, and
apply induction. ⊣

Formulas of PA can be embedded into the language of BA by first writing them in prenex
normal form where the quantifier-free part is a combination of equalities =, inequalities 6=, dis-
junctions ∨, and conjunctions ∧. Then translate this prenex form by replacing the occurrences
of 6= with 6= defined in the language of BA. A strengthening of Proposition 4.4 shows that a
large portion of BA immediately follows from PA = BA+ CQC using this translation.

Let β be a node of a Kripke model K. Then Kβ denotes the submodel of K with set of un-
derlying nodes all α � β. We write β, (σ1 ⊢ σ2)|⊢(τ1 ⊢ τ2) if β|⊢(σ1 ⊢ σ2) implies β|⊢(τ1 ⊢ τ2).
Recall that we also write Dα for the classical structure above a node α of a Kripke model K.

4.7 Proposition. Let β be a node of a Kripke model K, and let σ ⊢ τ be a geometric
sequent whose free variables are among the ones in the sequence x = (x1, . . . , xn). Then
β|⊢(σ ⊢ τ) if and only if Dα |= ∀x: σ.τ for all nodes α of Kβ .

Proof: β|⊢(σ ⊢ τ) if and only if α|⊢(σ(c)α ⊢ τ(c)α) for all nodes α of Kβ and c ∈ (Dα)n.
Apply the proof of Proposition 4.4. ⊣

4.8 Corollary. Let β be a node of a Kripke model K, and let σ1 ⊢ σ2 and τ1 ⊢ τ2 be
geometric sequents whose free variables are among the ones in the sequence x = (x1, . . . , xn).
Then β, (σ1 ⊢ σ2)|⊢(τ1 ⊢ τ2) if and only if Dα |= ∀x: σ1.σ2 for all nodes α of Kβ implies
Dα |= ∀x: τ1.τ2 for all nodes α of Kβ . ⊣

4.9 Theorem. Let T be a faithful theory, and let σ1 ⊢ σ2 and τ1 ⊢ τ2 be geometric
sequents whose free variables are among the ones in the sequence x = (x1, . . . , xn). Then
T, ∀x: σ1.σ2 ⊢ ∀x: τ1.τ2 if and only if for all K |= T and nodes β of K, if Dα |= ∀x: σ1.σ2 for
all nodes α of Kβ , then Dα |= ∀x: τ1.τ2 for all nodes α of Kβ .

Proof: Since T is faithful, T, ∀x: σ1.σ2 ⊢ ∀x: τ1.τ2 if and only if T, (σ1 ⊢ σ2) ⊢ (τ1 ⊢ τ2).
Apply Corollary 4.8. ⊣

BA is faithful, so by Theorem 4.9, the theory of all nodes of all Kripke models of BA satisfies
the Π0

2 induction rule of PA. So again by Theorem 4.9, BA satisfies the Π0
2 fragment of the
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theory of the nodes.

§5. Russell’s Paradox revisited

Basic Calculus was not designed with the intent of offering a solution to Russell’s Paradox
or to any other set-theoretic paradox. Therefore it came as a little bit of a surprise that over
Basic Calculus the proof of Russell’s Paradox turns into a valuable theorem. The results below
are partially influenced by the indexed implications →1,→2, . . . of [53]. In fact, if we define
A →1 B = A → B, and A →n+1 B = ⊤ → (A →n B) for all n, then Myhill’s demonstration
of how to circumvent Russell’s Paradox gets close to the proofs below.

We introduce an incomplete set theory F with full comprehension. The only axiom schemas
and rules that are included in this theory are those that at the least should be valid and that
allow us to derive our main theorem. So the goals of this section are modest compared to the
ones of a paper like [26]. At this moment we don’t have a consistency proof for F .

The language of F is a BQC–style language with binary relation ∈, and such that for each
formula ϕ we have a term {x | ϕ}. The construction of these new terms is iterated countably
many times so that the ϕ themselves may contain constructions of the form {y | ψ}. The only
logical axioms and rules of F are the ones of BQC. Following Frege, the terms {x | ϕ} are
such that F satisfies

A ⊢ y ∈ {x | Bx}

A ⊢ By
,

where x and y are not bound by a quantifier of B. The sets are completely determined by
their elements, so F satisfies the rule of extensionality

A ∧ x ∈ y ⊢ x ∈ z A ∧ x ∈ z ⊢ x ∈ y

A ⊢ y = z
,

where x is not free in A.

The symbol ⊥ is redundant if we have a constant symbol ∅ satisfying the schema x ∈ ∅ ⊢
x ∈ y. Let V = {x | ⊤}. Then we can replace ⊥ by the sentence ∅ = V .

Rather than constructing ways to circumvent Russell’s Paradox, the following procedure
converts its traditional proof into a useful theorem.

Let ϕ be a formula in which x does not occur. Define ⌈ϕ⌉ = {x | x ∈ x→ ϕ}.

5.1 Lemma. F satisfies the schema ⌈A⌉ ∈ ⌈A⌉ ⊢ ⊤ → A.

Proof: Use
⌈ϕ⌉ ∈ ⌈ϕ⌉ ⊢ (⊤ → ⌈ϕ⌉ ∈ ⌈ϕ⌉) ∧ (⌈ϕ⌉ ∈ ⌈ϕ⌉ → ϕ)
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and transitivity of →. ⊣

5.2 Corollary. F satisfies the schema ⊢ ⌈A⌉ ∈ ⌈⊤ → A⌉. ⊣

5.3 Theorem. F satisfies Löb’s Axiom Schema (⊤ → A) → A ⊢ ⊤ → A.

Proof: Let ϕ be a formula and let x be a variable that does not occur in ϕ. Then (x ∈
x → (⊤ → ϕ)) ∧ ((⊤ → ϕ) → ϕ) ⊢ x ∈ x → ϕ. So x ∈ ⌈⊤ → ϕ⌉ ∧ ((⊤ → ϕ) → ϕ) ⊢ x ∈ ⌈ϕ⌉.
Obviously, x ∈ ⌈ϕ⌉ ⊢ x ∈ ⌈⊤ → ϕ⌉, hence (⊤ → ϕ) → ϕ ⊢ ⌈ϕ⌉ = ⌈⊤ → ϕ⌉. So by Corollary
5.2, (⊤ → ϕ) → ϕ ⊢ ⌈ϕ⌉ ∈ ⌈ϕ⌉. Thus by Lemma 5.1, (⊤ → ϕ) → ϕ ⊢ ⊤ → ϕ. ⊣

The systems FQC and IQC are relatively inconsistent, so Theorem 5.3 implies that F+IQC
is inconsistent, which is Russell’s Paradox. Thus Theorem 5.3 presents new evidence that BQC
is a better foundation than IQC.

Many studies of Frege-style systems are less concerned with a proper foundation than with
consistency. In light of Theorem 5.3 it is, therefore, an important question whether there are
faithful, consistent, and preferably maximal, extensions of FPC and FQC that may be added
to F . A natural candidate is the addition of the axiom schema of linearity

⊢ (A→ B) ∨ (B → A).

FPC plus linearity is a maximal faithful consistent theory.

Acknowledgements: The importance of Albert Visser’s [69] is self-evident. A paper
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[62] C. Smoryński, Self-Reference and Modal Logic, Universitext, Springer, 1985.
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