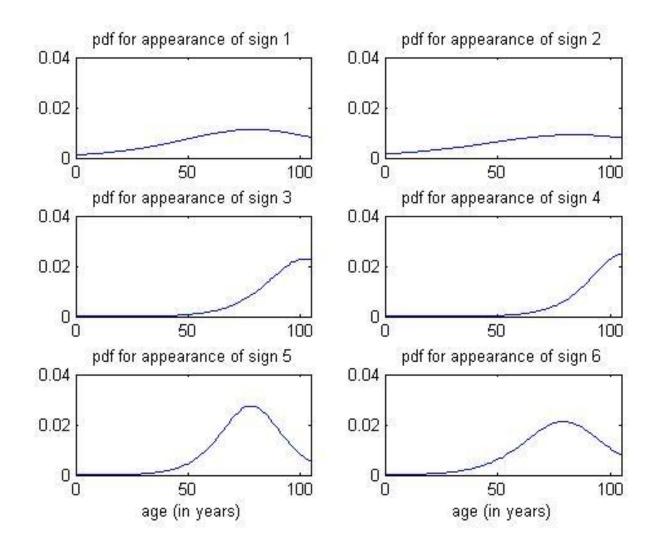
A Poisson-Like Model of Sub-Clinical Signs from the Neurological Examination of Healthy Aging Subjects

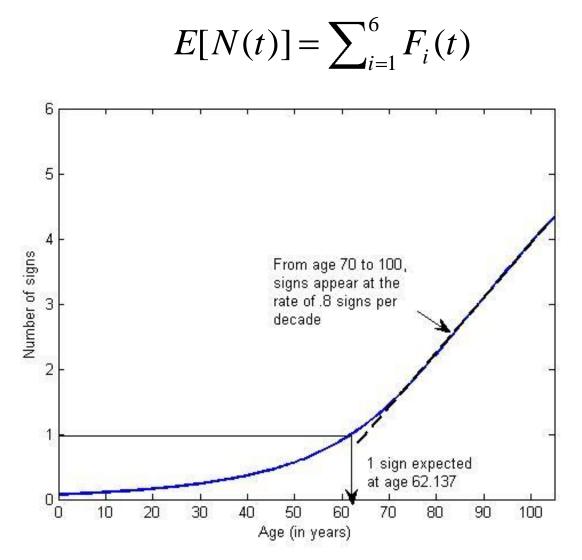
Stephen J. Merrill Department of Mathematics, Statistics & Computer Science Marquette University Milwaukee, Wisconsin

Clinical Application

- Healthy aging individuals age 53-84.
- Given a "standard neurologic exam"
- Complicated clinical data ("sign" present or not) in a neurologic exam which examined a large number characteristics.
- From these characteristics 6 <u>aspects</u> were created (combinations of the characteristics that were assumed to be independent).
- <u>The goal was to characterize normal neurologic</u> <u>aging</u>. [to compare groups or test effects of drugs]

The Model

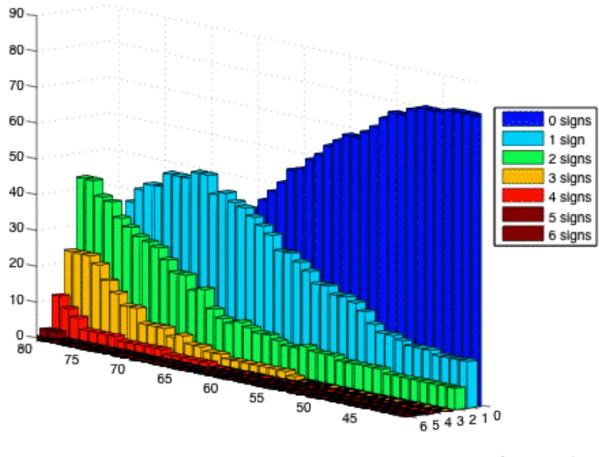

- Assume that each of the 6 signs were arriving independently and at <u>different rates</u>
- The rates were determined through logistic regression.
- To describe normal aging, we would like to compute the number of signs N(t) present at time t. This requires the determination of the distributions P(N(t)=n_i, n_i=0, 1, ..., 6) at different times t.


Logistic Regression

In logistic regression, the log odds ratio of the probability that a sign of that type is present at age t is fit to the data. The result was that for each of the six categories, the probability F_i(t) that a sign of type i has appeared by age t, was determined.

$$F_i(t) = \frac{\exp(a_i + b_i t)}{1 + \exp(a_i + b_i t)}$$

The six pdf's


Expected number of signs at time t is the sum of the distribution functions.

Longitudinal Simulation of 100 Individuals

• For each compute the age at which each of the 6 signs will appear. This gives us a 100x6 matrix.

$$\begin{bmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 \end{bmatrix}$$

 Zero a 100x6 array. At each time t, assign a 1 if t > t_i. For each row, sum across to count the number of signs present. In this way, at each time a distribution of counts is created.

age

signs present

Reference and Acknowledgements

S.J. Merrill¹, B. Myklebust², J. Myklebust³, N. Reynolds⁴, and E. Duthie^{5,6}, A Poisson-like model of sub-clinical signs from the examination of healthy aging subjects, *Aging Clinical and Experimental Research*, **20** (2008), 368-375.

1 Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI

2 School of Engineering and Applied Science, The George Washington University, Washington, DC

3 Office of Science and Engineering Laboratories, FDA/CDRH, Silver Spring, MD

4 Department of Neurology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI

5 Department of Medicine (Geriatrics and Gerontology), Medical College of Wisconsin

6 Zablocki Veterans Affairs Medical Center, Milwaukee, WI

TABLE 2: HEALTHY AGING SUBJECTS TESTED BY NEUROLOGIC EXAMINATION

CATEGORIES	SUBJECT GROUPS				
OF THE NEUROLOGIC EXAM	53 - 57 years (54.4 ± 1.9)	58 - 62 years (59.9 ± 1.1)	63 - 67 years (65.5 ± 1.1)	68 - 72 years (69.4 ± 1.4)	73 - 84 years (76.7 ± 4.2)
	n=5 3 males	n=12 2 males	n=19 9 males	n=20 14 males	n=10 5 males
SENSORY DEFICIT	0	5 5/12 = 0.42	6 6/12 = 0.50	8 8/20 = 0.40	5 5/10 = 0.50
DTR DEFICIT	1 1/5 = 0.20	2 2/12 = 0.17	8 8/19 = 0.42	9 9/20 = 0.45	3 3/10 = 0.30
INCREASED TONE	0	0	1 1/19 = 0.05	1 1/20 = 0.05	1 1/10 = 0.10
DECREASED STRENGTH	0	0	1 1/19 = 0.05	0	1 1/10 = 0.10
CEREBELLAR SIGNS	1 1/5 = 0.20	2 2/12 = 0.17	4 4/19 = 0.20	5 5/20 = 0.25	6 6/10 = 0.60
FRONTAL RELEASE SIGNS	0	0	5 5/19 = 0.26	11 11/20 = 0.55	2 2/10 = 0.20