Using Markov chains to identify bifurcations in time series

Stephen J Merrill Department of MSCS Marquette University

Domain and Features

- <u>Scalar series</u> being considered here vector values also ok, but need much more data for that
- Discrete time
- Interested in cases where the usual approaches, ARIMA models and FFT, for instance, <u>fail to describe the series in</u> <u>some sense – or one wishes to detect that the process</u> <u>generating the series has changed</u>
- Would like an approach that would create a model that one could use to simulate other series with the same dynamic properties
- As few assumptions as possible a nonparametric approach

Basic Assumptions

- Considering a time series, $\{x_n\}_{n=1}^N$, assume that the values are correlated not independent as in a sequence of random numbers.
- The Markov assumption holds only the current value is needed to determine the probability distribution for the next (order 1)
- There is sufficient data to approximate these probability distributions.

Approach

- Discretize the state space into *n* states. The choice of *n* is limited by the data available.
- Estimate 1 step transition probabilities by looking at relative frequencies.

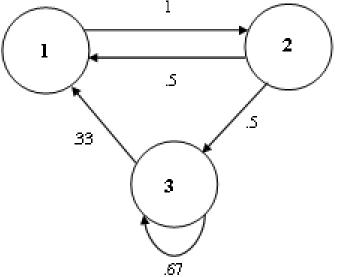
$$p_{ij} = \left\{ \frac{\text{number of times that } x_{k+1} = j}{\text{total number of times that } x_k = i} \right\}$$

• Use the *nxn* matrix $P = (p_{ij})$ for simulation and analysis

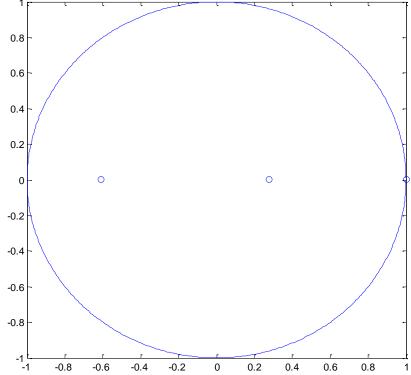
The Transition Matrix P

- Current state -> row.
- Possible next state -> columns
- Each row represents a pdf given a current value in that state.

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ .5 & 0 & .5 \\ .33 & 0 & .67 \end{pmatrix}$$

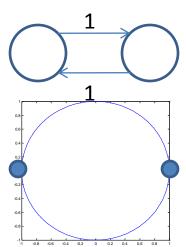


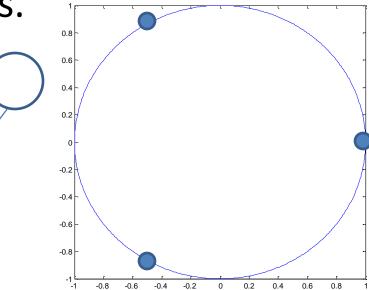
 Of interest will be the nature of the eigenvalues of P. 1 is always an eigenvalue and all others are on or in the unit circle in the complex plane.



Meaning of the eigenvalues

- The eigenvalues describe the approach to a limit distribution (more on this later)
- The eigenvalues also describe the modes that are available – these depend on the nature of the digraph of transitions.





Simulation of Markov Chains

- Starting with an initial state, use the associated row of the transition matrix to determine the next row.
- Below are two sequences of length 10 generated from P starting at 1
- 1 2 3 1 2 3 1 2 3 3
- 1 2 1 2 3 3 3 1 2 3

Empirical Markov chains

- Now from data (a sample path of length 100 generated from P), lets estimate P (actual):
 - >> x=generate(1,P,100);
 - >> Dt=transi(x,3)

Dt =

 0
 1.0000
 0

 0.5758
 (.5)
 0
 0.4242
 (.5)

 0.3939
 (.33)
 0
 0.6061
 (.67)

And the eigenvalues

>> eig(Dt)

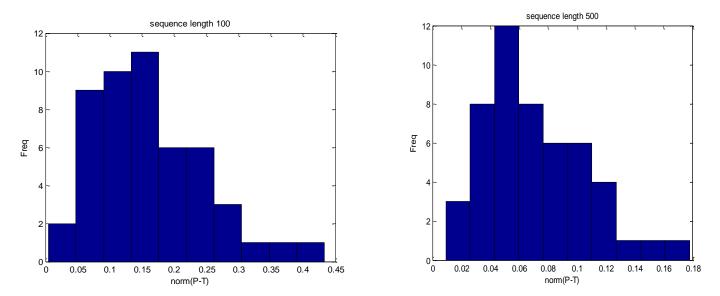
ans = -0.6667 1.0000 0.2727

>> eig(P)

ans = -0.6091 1.0000 0.2791

What role does sequence length play?

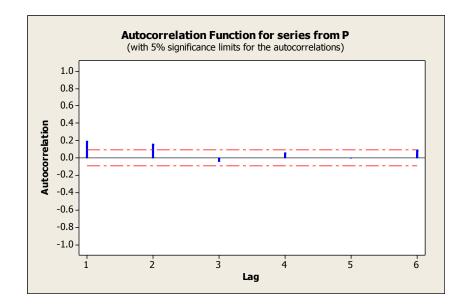
 Look at the norm of the difference between the matrices as a function of sequence length

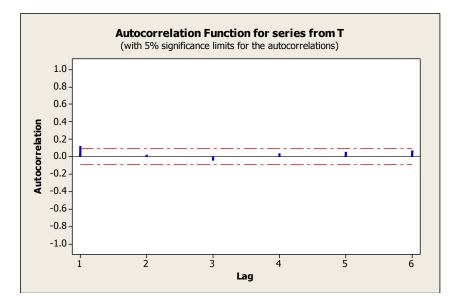


Distributions of norms of differences with different time series lengths to determine the approximate transition matrix.

Verifying the assumptions

 One way is to examine the autocorrelation function applied to the original sequence and a sequence generated from the empirical Markov chain. We have found using lags up to 5 or 6 is sufficient. As an example, we took a time series of length 500 from the original series and another of length 500 from the chain and computed the following results.





EECE Colloquium

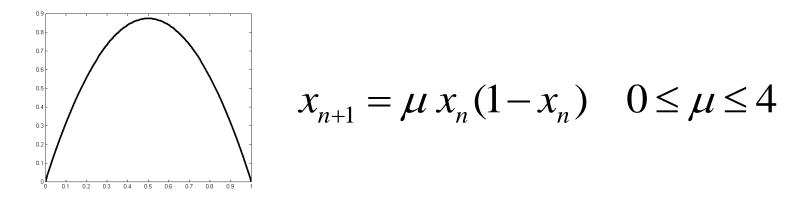
Detecting Bifurcations

 In this context, <u>bifurcations are seen as a change</u> in the nature of the eigenvalues of the transition <u>matrix</u>

 \rightarrow the appearance or loss of complex eigenvalues (change in the approach to the limit distribution) \rightarrow the appearance of the roots of unity (indicating new loops appearing) \rightarrow eigenvalues moving toward the unit circle (a change is coming) In general, bifurcation indicates a change in the topology of the digraph which determines ${f P}$

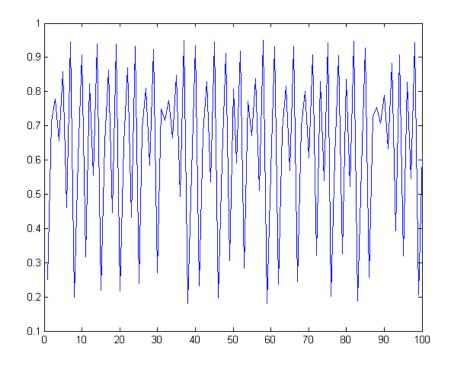
Bifurcation Example

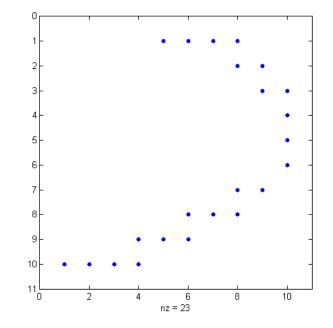
• Bifurcation in the discrete logistic equation



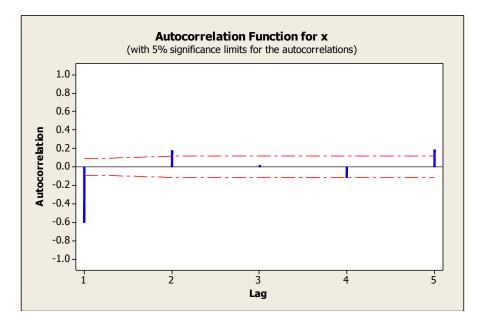
• Summary of behavior: x = 0 is always an equilibrium, stable if $\mu < 1$. $x = 1 - \frac{1}{\mu}$ is an equilibrium that is stable when $1 < \mu < 3$

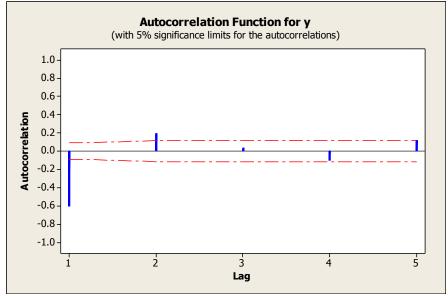
Transition Matrix $\mu = 3.8$





Nonzero entries in the transition matrix with 10 states (10x10 matrix)





Bifurcation to a period 2 point

- Transition matrix computed with 10 states at $\mu = 2.9, 3.0, \text{ and } 3.05$ and eigenvalues computed
- At 2.9, {-.81, .81, 1, lots of 0's}
- At 3.0, {-.92,.917, 1, lots of 0's}
- At 3.05, {-1,1, lots of 0's}
- From the above, it appears that a bifurcation took place just before 3.05. Moreover, because of the -1, it is a period 2 point.

The next bifurcation

- Transition matrix computed with 10 states at μ = 3.5, 3.503, and 3.6 and eigenvalues computed
- At 3.5, {-1, 1, lots of 0's}
- At 3.503, {-1,1, 0.0000 + 0.1010i, 0.0000 0.1010i, lots of 0's}
- At 3.6, {-1,1, i, -i, lots of 0's}
- From the above, it appears that a bifurcation took place just before 3.6. Moreover, because of the , it is a period 4 point.

Comments

- Similar to some applications Hidden Markov Models (HMM), although the dynamics get hidden in that process (it seems), and one can test to see if the description is faithful.
- There are some issues with the choices of state description (where the boundaries lie), the number of states, and the amount of data needed.

Typical Applications

- Changes in Heart Rate Variability (HRV)
- Cognitive changes with age
- Detection of epileptic seizure
- Bipolar disorder
- Dynamics of heart movement
- Testing effect of drugs (e.g. Parkinson's)

References

- Johnson, S.L. and Nowak, A. (2002). Dynamical Patterns in Bipolar Depression, *Pers Soc Psychol Rev* **6**: 380-387.
- Lancashire, I and Hirst, G. (2009) Vocabulary changes in Agatha Christie's mysteries as an indication of dementia: A case study, preprint.
- Merrill, S.J. (2010) Markov chains for identifying nonlinear dynamics, to appear.
- Merrill, S.J. & Cochran, J.R. (1997) Markov chain methods in the analysis of heart rate variability, *Fields Inst Comm* **11**:241-252.
- Ratnakumar, S. (2008) Markov chain modeling of ECG gates live left atrial fluoroscopy variability to establish a well-defined basis for rigid registration to a 3D CT image, *Ph. D. Dissertation, Marquette University.*
- Vincent, K., Merrill, S., Struble, C. & Hecox, K, Markov chain analysis of pediatric ictal EEGs, poster at the American Epilepsy Society Annual Meeting (AES2009), Dec. 2009, Boston.