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Domain and Features

• Scalar series being considered here – vector values also 
ok, but need much more data for that

• Discrete time
• Interested in cases where the usual approaches, ARIMA 

models and FFT, for instance, fail to describe the series in 
some sense – or one wishes to detect that the process 
generating the series has changed

• Would like an approach that would create a model that 
one could use to simulate other series with the same 
dynamic properties

• As few assumptions as possible – a nonparametric 
approach
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Basic Assumptions

• Considering a time series,           , assume that 
the values are correlated – not independent 
as in a sequence of random numbers.

• The Markov assumption holds – only the 
current value is needed to determine the 
probability distribution for the next (order 1)

• There is sufficient data to approximate these 
probability distributions.
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Approach

• Discretize the state space into n states. The 
choice of n is limited by the data available. 

• Estimate 1 step transition probabilities by looking 
at relative frequencies.

• Use the nxn matrix                

for simulation and analysis
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The Transition Matrix  P

• Current state -> row. 

• Possible next state -> columns

• Each row represents a pdf given a current 
value in that state.
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• Of interest will be the nature of the 
eigenvalues of P. 1 is always an eigenvalue 
and all others are on or in the unit circle in the 
complex plane. 
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Meaning of the eigenvalues

• The eigenvalues describe the approach to a 
limit distribution (more on this later)

• The eigenvalues also describe the modes that 
are available – these depend on the nature of 
the digraph of transitions.
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Simulation of Markov Chains

• Starting with an initial state, use the 
associated row of the transition matrix to 
determine the next row.

• Below are two sequences of length 10 
generated from P starting at 1

• 1     2     3     1     2     3     1     2     3    3

• 1     2     1     2     3     3     3     1     2    3
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Empirical Markov chains
• Now from data (a sample path of length 100 

generated from P), lets estimate P (actual):

>> x=generate(1,P,100);

>> Dt=transi(x,3)

Dt =

0    1.0000         0

0.5758 (.5)    0    0.4242 (.5)

0.3939 (.33)   0    0.6061 (.67)
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And the eigenvalues
>> eig(Dt)

ans =

-0.6667

1.0000

0.2727

>> eig(P)

ans =

-0.6091

1.0000

0.2791
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What role does sequence length play? 

• Look at the norm of the difference between 
the matrices as a function of sequence length
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Verifying the assumptions

• One way is to examine the autocorrelation 
function applied to the original sequence and 
a sequence generated from the empirical 
Markov chain.  We have found using lags up to 
5 or 6 is sufficient. As an example, we took a 
time series of length 500 from the original 
series and another of length 500 from the 
chain and computed the following results. 
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Detecting Bifurcations
• In this context, bifurcations are seen as a change 

in the nature of the eigenvalues of the transition 
matrix
 the appearance or loss of complex eigenvalues

(change in the approach to the limit distribution)
 the appearance of the roots of unity

(indicating new loops appearing)
 eigenvalues moving toward the unit circle

(a change is coming)
In general, bifurcation indicates a change in the 

topology of the digraph which determines P
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Bifurcation Example
• Bifurcation in the discrete logistic equation

• Summary of behavior: is always an 
equilibrium, stable if           .

is an equilibrium that is stable when
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Transition Matrix   
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3.8 

Nonzero entries in the 
transition matrix with 10  
states (10x10 matrix)
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Bifurcation to a period 2 point 

• Transition matrix computed with 10 states at

and eigenvalues computed

• At 2.9, {-.81, .81, 1, lots of 0’s}

• At 3.0, {-.92,.917, 1, lots of 0’s}

• At 3.05, {-1,1, lots of 0’s}

• From the above, it appears that a bifurcation 
took place just before 3.05. Moreover, because 
of the -1, it is a period 2 point. 
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The next bifurcation 

• Transition matrix computed with 10 states at
and eigenvalues computed

• At 3.5, {-1, 1, lots of 0’s}

• At 3.503, {-1,1, 0.0000 + 0.1010i, 0.0000 - 0.1010i, lots of 0’s}

• At 3.6, {-1,1, i, -i, lots of 0’s}

• From the above, it appears that a bifurcation took 
place just before 3.6. Moreover, because of the , it is 
a period 4 point. 
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Comments

• Similar to some applications Hidden Markov 
Models (HMM), although the dynamics get 
hidden in that process (it seems), and one can 
test to see if the description is faithful. 

• There are some issues with the choices of 
state description (where the boundaries lie), 
the number of states, and the amount of data 
needed. 
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Typical Applications

• Changes in Heart Rate Variability (HRV)

• Cognitive changes with age

• Detection of epileptic seizure

• Bipolar disorder

• Dynamics of heart movement

• Testing effect of drugs (e.g. Parkinson’s)
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