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Domain and Features

• Scalar series being considered here – vector values also 
ok, but need much more data for that

• Discrete time
• Interested in cases where the usual approaches, ARIMA 

models and FFT, for instance, fail to describe the series in 
some sense – or one wishes to detect that the process 
generating the series has changed

• Would like an approach that would create a model that 
one could use to simulate other series with the same 
dynamic properties

• As few assumptions as possible – a nonparametric 
approach
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Basic Assumptions

• Considering a time series,           , assume that 
the values are correlated – not independent 
as in a sequence of random numbers.

• The Markov assumption holds – only the 
current value is needed to determine the 
probability distribution for the next (order 1)

• There is sufficient data to approximate these 
probability distributions.
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Approach

• Discretize the state space into n states. The 
choice of n is limited by the data available. 

• Estimate 1 step transition probabilities by looking 
at relative frequencies.

• Use the nxn matrix                

for simulation and analysis
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The Transition Matrix  P

• Current state -> row. 

• Possible next state -> columns

• Each row represents a pdf given a current 
value in that state.
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• Of interest will be the nature of the 
eigenvalues of P. 1 is always an eigenvalue 
and all others are on or in the unit circle in the 
complex plane. 
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Meaning of the eigenvalues

• The eigenvalues describe the approach to a 
limit distribution (more on this later)

• The eigenvalues also describe the modes that 
are available – these depend on the nature of 
the digraph of transitions.
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Simulation of Markov Chains

• Starting with an initial state, use the 
associated row of the transition matrix to 
determine the next row.

• Below are two sequences of length 10 
generated from P starting at 1

• 1     2     3     1     2     3     1     2     3    3

• 1     2     1     2     3     3     3     1     2    3
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Empirical Markov chains
• Now from data (a sample path of length 100 

generated from P), lets estimate P (actual):

>> x=generate(1,P,100);

>> Dt=transi(x,3)

Dt =

0    1.0000         0

0.5758 (.5)    0    0.4242 (.5)

0.3939 (.33)   0    0.6061 (.67)
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And the eigenvalues
>> eig(Dt)

ans =

-0.6667

1.0000

0.2727

>> eig(P)

ans =

-0.6091

1.0000

0.2791
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What role does sequence length play? 

• Look at the norm of the difference between 
the matrices as a function of sequence length
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Verifying the assumptions

• One way is to examine the autocorrelation 
function applied to the original sequence and 
a sequence generated from the empirical 
Markov chain.  We have found using lags up to 
5 or 6 is sufficient. As an example, we took a 
time series of length 500 from the original 
series and another of length 500 from the 
chain and computed the following results. 
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Detecting Bifurcations
• In this context, bifurcations are seen as a change 

in the nature of the eigenvalues of the transition 
matrix
 the appearance or loss of complex eigenvalues

(change in the approach to the limit distribution)
 the appearance of the roots of unity

(indicating new loops appearing)
 eigenvalues moving toward the unit circle

(a change is coming)
In general, bifurcation indicates a change in the 

topology of the digraph which determines P

4/20/2010 EECE Colloquium 14



Bifurcation Example
• Bifurcation in the discrete logistic equation

• Summary of behavior: is always an 
equilibrium, stable if           .

is an equilibrium that is stable when
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Transition Matrix   
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Nonzero entries in the 
transition matrix with 10  
states (10x10 matrix)
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Bifurcation to a period 2 point 

• Transition matrix computed with 10 states at

and eigenvalues computed

• At 2.9, {-.81, .81, 1, lots of 0’s}

• At 3.0, {-.92,.917, 1, lots of 0’s}

• At 3.05, {-1,1, lots of 0’s}

• From the above, it appears that a bifurcation 
took place just before 3.05. Moreover, because 
of the -1, it is a period 2 point. 
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The next bifurcation 

• Transition matrix computed with 10 states at
and eigenvalues computed

• At 3.5, {-1, 1, lots of 0’s}

• At 3.503, {-1,1, 0.0000 + 0.1010i, 0.0000 - 0.1010i, lots of 0’s}

• At 3.6, {-1,1, i, -i, lots of 0’s}

• From the above, it appears that a bifurcation took 
place just before 3.6. Moreover, because of the , it is 
a period 4 point. 
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Comments

• Similar to some applications Hidden Markov 
Models (HMM), although the dynamics get 
hidden in that process (it seems), and one can 
test to see if the description is faithful. 

• There are some issues with the choices of 
state description (where the boundaries lie), 
the number of states, and the amount of data 
needed. 
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Typical Applications

• Changes in Heart Rate Variability (HRV)

• Cognitive changes with age

• Detection of epileptic seizure

• Bipolar disorder

• Dynamics of heart movement

• Testing effect of drugs (e.g. Parkinson’s)
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