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Domain and Features

Scalar series being considered here — vector values also
ok, but need much more data for that

Discrete time

Interested in cases where the usual approaches, ARIMA
models and FFT, for instance, fail to describe the series in
some sense — or one wishes to detect that the process
generating the series has changed

Would like an approach that would create a model that
one could use to simulate other series with the same
dynamic properties

As few assumptions as possible — a nonparametric
approach




Basic Assumptions

i ) . . N
* Considering a time series, {x,} ., assume that
the values are correlated — not independent
as in a sequence of random numbers.

 The Markov assumption holds — only the
current value is needed to determine the
probability distribution for the next (order 1)

* There is sufficient data to approximate these
probability distributions.



Approach

* Discretize the state space into n states. The
choice of n is limited by the data available.

e Estimate 1 step transition probabilities by looking
at relative frequencies.

{ number of times that x, ., = j }

Pi =1 Total number of times that X, =i

e Use the nxn matrix P :( pij)
for simulation and analysis



The Transition Matrix P

e Current state -> row.
 Possible next state -> columns

* Each row represents a pdf given a current
value in that state.

(0 1 0
P=| 5 0 5
.33 0 .67,




e Of interest will be the nature of the
eigenvalues of P. 1 is always an eigenvalue
and all others are on or in the unit circle in the
complex plane.
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Meaning of the eigenvalues

* The eigenvalues describe the approach to a
limit distribution (more on this later)

* The eigenvalues also describe the modes that
are available — these depend on the nature of
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Simulation of Markov Chains

Starting with an initial state, use the
associated row of the transition matrix to
determine the next row.

Below are two sequences of length 10
generated from P starting at 1

1 2 3 1 2 3 1 2 3 3
1 2 1 2 3 3 3 1 2 3



Empirical Markov chains

* Now from data (a sample path of length 100
generated from P), lets estimate P (actual) :

>> x=generate(l,P,100) ;
>> Dt=transi (x, 3)
Dt =

0 1.0000 0
0.5758 (.5) 0 0.4242 (.5)
0.3939 (.33) 0 0.6061 (.67)



And the eigenvalues

>> eig (Dt)
ans =
-0.6667
1.0000
0.2727
>> eig (P)
ans =
-0.6091
1.0000

0.2791



What role does sequence length play?

* Look at the norm of the difference between
the matrices as a function of sequence length

sequence length 500
T

sequence length 100
T T

0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0 002 004 006 008 01 012 014 016 0.18
norm(P-T) norm(P-T)

Distributions of norms of differences with different
time series lengths to determine the approximate
transition matrix.



Verifying the assumptions

* One way is to examine the autocorrelation
function applied to the original sequence and
a sequence generated from the empirical
Markov chain. We have found using lags up to
5 or 6 is sufficient. As an example, we took a
time series of length 500 from the original
series and another of length 500 from the
chain and computed the following results.



Autocorrelation Function for series from P
(with 5% significance limits for the autocorrelations)
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Detecting Bifurcations

* In this context, bifurcations are seen as a change
in the nature of the eigenvalues of the transition
matrix

— the appearance or loss of complex eigenvalues
(change in the approach to the limit distribution)
—> the appearance of the roots of unity
(indicating new loops appearing)
—> eigenvalues moving toward the unit circle
(a change is coming)

In general, bifurcation indicates a change in the
topology of the digraph which determines P




Bifurcation Example
e Bifurcation in the discrete logistic equation

Xn+1::an(1_Xn) OSIUSLI'

 Summary of behavior: x = 0Q is always an

equilibrium, stable if u<1.

x=1-— is an equilibrium that is stable when

H 1< <3
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Autocorrelation Function for x

(with 5% significance limits for the autocorrelations)
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Autocorrelation Function for y

(with 5% significance limits for the autocorrelations)
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Bifurcation to a period 2 point

Transition matrix computed with 10 states at
u=2.9,3.0,and 3.05 and eigenvalues computed
At 2.9, {-.81, .81, 1, lots of O’s}

At 3.0, {-.92,.917, 1, lots of O’s}

At 3.05, {-1,1, lots of 0’s}

From the above, it appears that a bifurcation
took place just before 3.05. Moreover, because
of the -1, it is a period 2 point.



The next bifurcation

Transition matrix computed with 10 states at
1 =3.5, 3.503, and 3.6 and eigenvalues computed

At 3.5, {-1, 1, lots of O’s}

At 3.503, {-1,1, 0.0000 + 0.1010i, 0.0000 - 0.1010i, lots of O’s}
At 3.6, {-1,1, i, -i, lots of O’s}

From the above, it appears that a bifurcation took
place just before 3.6. Moreover, because of the, it is
a period 4 point.



Comments

* Similar to some applications Hidden Markov
Models (HMM), although the dynamics get
hidden in that process (it seems), and one can
test to see if the description is faithful.

 There are some issues with the choices of
state description (where the boundaries lie),
the number of states, and the amount of data
needed.



Typical Applications

Changes in Heart Rate Variability (HRV)
Cognitive changes with age

Detection of epileptic seizure

Bipolar disorder

Dynamics of heart movement

Testing effect of drugs (e.g. Parkinson’s)
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