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What is “linear”
 Proportional response  in rates, probabilities, or something else –

solutions to linear differential equations are exponential and 
trigonometric

 The mathematics tends to be straightforward and in elementary 
courses. As an undergrad – one thinks the world “linear”

 Constants in models likely to have units that are meaningful and 
measureable

 Associated data can be analyzed by familiar statistical 
techniques (e.g. linear regression)

 Linear tends to be easy to approximate well over long times or 
quite large ranges in states

 Simulation tends to be straightforward to accomplish – results 
can be easily described
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What is “nonlinear”?  NOT Linear
 NOT Proportional response  in rates, probabilities, or 

something else
 The mathematics tends to NOT be straightforward
 Constants likely to have units that are NOT meaningful 

and measureable
 Associated data can NOT be analyzed by familiar 

statistical techniques (e.g. regression)
 Linear may NOT approximate data well over even short 

times or small ranges in states
 Simulation might NOT be easy to accomplish – results are 

often NOT easy to interpret
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How do you know that a process is
NOT linear?

 Linear models do not “fit”
 The time series tests out as chaotic (not possible for a linear process)
Testing for nonlinearity in time series: the method of surrogate data
J Theiler, S Eubank, A Longtin, B Galdrikian, D. Farmer… - Physica D: 
Nonlinear …, 1992 - Elsevier
Abstract We describe a statistical approach for identifying nonlinearity 
in time series. The method first specifies some linear process as a null 
hypothesis, then generates surrogate data sets which are consistent 
with this null hypothesis, ... construct a statistical test.
Cited by 2926 Related articles All 6 versions Cite Save
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How do you know that what you 
are observing is random and not 
nonlinear?

 What of a process is deterministic and what is random? (Most 
“deterministic” processes have random aspects – either within the 
dynamics or as measurement noise.)

 Also of interest in a signal is when it is primarily stochastic (random) 
but has a nonrandom (nonlinear) structure within.

 There is also a large literature on nonlinear time series.
A good example to study here is standard (linear) ARIMA time series 
models when the randomness is within the dynamics. It is a regression 
problem otherwise.
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Nonlinear thinking often uses models 
to express them. What is a model?

 Fashion model– a person who is employed to display, advertise and 
promote commercial products (notably fashion clothing)

 Civil Engineering – scale model to test design aspects of a structure.
 Biology – animal model which mimics important aspects of the human 

in disease or drug response
 Mathematics – mathematical models employing gross simplifications 

but hopefully retaining important aspects. “First principles” builds the 
model

 Simulation models – models nearing the complexity of the system being 
studied. Used as a way to describe the data in this system. Data 
validates the model.

 Statistical models – model descriptions created from regression (for 
instance). Data builds the model.
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More “models”
 Hybrid models – combinations of the above; e.g., a mouse with a human 

immune system or a simulation model with some mathematical models 
embedded

 Physical model – physical representation of an object often for visualization

 3D modelling – 3D polygonal representation of an object, usually displayed with 
a computer, e.g., FEM.

 Model building – hobby centered around the construction of material replicas, 
usually scale models.

 Solid modelling – study of very accurate representations of the solid parts of an 
object, as in CAD.

 Conceptual Models – analogies used to aid understanding (my definition)

 Role models and Thesis directors – an example for others

 Crash Test Dummy – see above

 Flight simulator – to provide repetitions and situations to increase experience
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Some common themes for models
 A real system, or collection of real things that are of interest.

For instance, it may be “all bridges that could be built using a particular 
design”

 Context of use (purpose and setting for which it was constructed). The nature of 
the specific use varies with the model.

 The “model” represents idealized and simplified version of the real system. The 
level of simplification is dictated by the type of model.

 The model allows uses not possible in the real system. 
For instance, testing of a device under different failure modes.

 A test (sometimes heuristic, usually data driven) to determine if the model is 
sufficient at the current stage of development. If not, “improvements” are 
made and the test reapplied. This could be more than a validation.

 An understanding that the model is not the system – the nature of its differences 
and what difficulties those differences may cause.
The model is  often confused with the real system in models that have been 

used for a long time.
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Choosing a type of model
 Each type of model has its strengths and weaknesses.

For instance, a simulation model is at nearly the complexity of the 
system it was designed to describe (which may have been too 
complicated to understand).
 Whether the model is a “good” one depends on the intended use. If 

one can address the questions that motivated the model – it is a good 
model. Note that it need not reproduce data perfectly as a criteria 
(unless that is a requirement).

 Limitations of data place real limits on the complexity of a model. Data 
gaps can force too many arbitrary decisions or parameter values to 
make the results believable for a complex model.

 The type of model that is appropriate for a given situation is often 
determined by the system under study and the nature of the questions –
not the “bias of training.”
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Other aspects
 Legacy models – created in the past, found useful, and continue to be 

used. Often associated with large projects.
Often associated with confusing the system with the model. e.g. 

chemistry as described in CHEM001 where they are actually teaching a model 
of the real interactions.
 Single use (disposable) models – created to answer a specific question – it 

did its job, and now is no longer used.
An example would be competing models created to see which one gave 

best fit.
 Deterministic model – every simulation with the same parameters and initial 

conditions should result in the same result.
 Stochastic model – randomness, usually in addition to deterministic aspects, 

plays a role in the results.
A good example is (again) autoregressive (AR) time series models.
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Some examples illustrating these ideas
 Clinical course in autoimmune thyroiditis (Hashimoto’s)

Limited data, individual differences, interesting question
 Heart rate variability classification using Markov Chains

Method to identify patterns and changes in patterns (like stats 
model)
 Early stages in HIV infection

Stochastic model – identify key parameters
 Dynamics of engraftment in hematopoietic stem cell transplants

Data in the context of a model – discovery of dynamical surprise
 Spatial variation in cDNA microarray

simple description – complicated result
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Hashimoto’s – autoimmune Destruction 
of the thyroid
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HPT Axis



The Question
• Can we determine if the patient will eventually develop 

chronic hypothyroidism?
(If so, when do we start treatment to minimize effects of 
the disease)

The Data
• 119 patients with autoimmune antibody in Sicily. Each 

patient has 2-7 measurements of TSH and free T4 at 
irregular intervals over years.

• Although there are models of the HPT axis, none exist for 
this situation where the response of the thyroid is 
disrupted.
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Possible Responses
• Impossible – need more data
• Impossible – individual differences reduce the usefulness 

of even the little data available
• Maybe a simple model 

can tell us something
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Results
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1. Dynamics are simple – depending on only a few parameters
2. For each patient, an approach to the equilibrium can be 

determined
3. The position of the equilibrium will determine if (and when) 

treatment is needed.



HRV using Markov chains
• Heart Rate Variability (HRV) describes the beat-
to-beat variation in the time interval between 
beats as seen on ECG (R-R interval). 

• It is described by many different indices.
• The variability is due to several different control 
mechanisms in the systems

• Operation of the controls are affected by
drugs (specifically here, anesthesia)
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The Question
• Design a real-time monitor to detect a patient heading 

toward sudden cardiac arrest

The Data 
• pediatric patients 
undergoing surgery
• Patient 29

2.5 years old
• Patient 55

7.5 years old
Early with halothane
Late with atropine
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Lag 1 maps
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Model of R-R interval data
• Create an empirical Markov chain. Data is in the form of 

sequence of numbers and lag 1 maps indicate first order 
structure.

• Need to define the bin size corresponding to the length of the
data set (usual number of bins used was 10). Then estimating
transition probabilities to get a transition matrix. Note that
many possible transitions are not observed.

• Transient aspects of the chain are of interest (not asymptotic
behavior). Characterization of the dynamics (or the resulting
matrix) is desired.

• Basic idea is to use properties of the matrix (such as 
eigenvalues) to distinguish between cases.
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Eigenvalue maps
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Early HIV infection
• Long term time-course of the infection depends on
the “set point” -- related to the state of the
infection at the time the immune response controls
the initial acute infection.

• Interested in computing the incubation-time
distribution (defined as the time from infection to a
fixed clinical marker such as seroconversion -- the
appearance of anti-HIV antibodies).
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The Question
• What is the nature of this distribution (for instance its 

mean) and what are the critical parameters.

The Data
• Existing statistical descriptions of the distribution built 

from large numbers of patients (censoring is a problem 
here)
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The Model
• Branching process with
immigration. The basic
quantity tracked is the
number of infected T cells.
• Only data that exists is the
distributional information
• Model designed to see
what happens in the initial
stages.

Sample Paths of branching model -- no immigration
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Simulations

7/29/2015 SCTPLS Examples  2015 13

1000 simulations
of model,
recording the
time at which the
number of
infected cells
reach some fixed
Value (stopping time 
distribution)



Dynamics of Engraftment
• Hematopoietic stem cells can be collected from 
blood (or bone marrow) for later infusion 
(transplantation) after high-dose chemotherapy.

• In autologous transplants, no rejection is present.
• Interested in monitoring engraftment (return to 
normal levels) of each cell type – primarily 
leukocytes (WBC in early counts), lymphocytes, 
platelets, and red cells.
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The Question
• From daily blood counts, estimate “time to engraftment” 

and detect possible problems before they occur.

The Data
• Daily counts from 32 women following transplantation
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The Model

• Reciprocal plot shows hyperbolic growth
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Results
• Estimating the position of the asymptote 
(and as it changes with each days data) 
allows the estimation of the time to 
engraftment -- and resulting release from 
the hospital.

• Changes in the estimates indicate 
problems, represented in a control chart.

• Similar results for lymphocytes. For 
platelets, polynomial growth was observed.
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Final Result – a Control Chart
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Spatial variation in the microarray
• cDNA microarray used to identify genes that are
differentially under or over expressed in a sample (as
seen through mRNA).
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The Question
• Why are my edges bright? Or what “normalization” is the 

right one to use for this process.
• What is the source of the variability – how should 

replicates be done (and what statistics should be used)

The Data
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A bit of the process – one version
• the slide or chip is printed with a library of genes including

those of special interest  
• collect mRNA under two different conditions. Using RT 

and two different fluorescent dies, samples of labeled 
(“red” and “green”) DNA are produced.

• incubate the samples with the slide under a cover slip.
• scan the result to measure the amount of red and green

fluorescence at each spot to measure the relative amount
of mRNA present in the two samples.
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The Model of microarray hybridization
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• Using the natural grid of
positions on a slide, a Markov
corresponding to each of the
16,000 dots is constructed. The
goal being to compute the
probability of absorption as a
function of the transition
number. Assume all dots are 
same.

• The transition probabilities are
based on the “taxi-cab” metric
on the grid.



12 hours of hybridization
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Variance after 12 hours
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Conclusions
• The idea of “model” is complicated.
• Important aspects:

1.Definition of the Real System (context of use of the model) 
– what does it cover and what does it not cover.

2.Specific use – questions that the model is designed to 
address

3.Tests – validation and refinement 
4. If the model is to be used over a period of time, software 

design principles should be used.
• Questions and nature of the system dictate the model form
• It is often a great surprise that (simple) models tell us 

anything about the real system
• The process of modeling (and solving problems in general) 

is a complicated one.
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Outline
• Descriptions of dynamic systems
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• Time-delay reconstruction
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– Correlation dimension
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Dynamical Systems

• System whose behavior evolves over time
– Typically subject to differential equations

• Random, deterministic
• Linear, nonlinear
• Behaviors

– Random, fixed point, periodic, quasi-periodic, 
chaotic

Introduction to phase space



Cross-correlation,Autocorrelation

• Correlation coefficient r is a measure of the degree of 
(linear) correlation between two random variables.

• Generalization to measure correlation between two signals, 
when one is shifted in time relative to the other
– Cross-correlation function between two functions x(t) and y(t):

• Autocorrelation function:
– Cross-correlation of signal x(t) with itself:

)]()([)( ττ += tytxERxy

Introduction to phase space
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Frequency Spectrum
• Fourier transform converts to frequency domain

• Magnitude (power) spectrum

• Phase spectrum

• Power spectrum is also the Fourier transform of the 
autocorrelation function
– Contains no phase information

Introduction to phase space
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Time, Frequency Domain
Introduction to phase space

Figure 3.4.1a



Time, Frequency Domain
Introduction to phase space

Figure 3.4.1b



Phase Space Examples

Introduction to phase space

Figure 4.1.1

Damped oscillator



Phase Space Examples

Introduction to phase space

Figure 4.7.1

Lorenz attractor



Time-delay reconstruction

• Advantages to phase-space description
– Intuition
– Utilize known information
– Clear depiction of dynamical behaviors

• But what are the state variables?
– What if they are unknown or not measurable?

Time-delay reconstruction



Time-delay reconstruction

• Miracle cure: time-delay reconstruction
– Do not have to know the state variables (but they must 

be dynamically related!)
– Do not require high-order differentiation (position, 

velocity, acceleration,…)
– Straightforward extension to high dimensions

• Each point in M-dimensional phase space is 
formed from M time-delayed values of signal x(t)
– y(1) = [ x(1)  x(1+L)  x(1+2L) … x(1+(M-1)L) ]
– y(2) = [ x(2)  x(2+L)  x(2+2L) … x(2+(M-1)L) ]

Time-delay reconstruction



Time-delay reconstruction

Time-delay reconstruction

Figure 4.1.2



Why does it work?

• Intuitive answer:
– Time delay approximates differentiation

• Rigorous answer:
– Topology

Time-delay reconstruction
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Example – Lorenz Attractor

Time-delay reconstruction

Figure 4.7.1



How to select parameters

• The dirty little secret (fudge factors): 
selection of embedding parameters

• Time delay L
– Mutual information
– Return time
– Small multiple of correlation time

• Embedding dimension M
– Saturation of dimension measurement
– False nearest neighbors (FNN)

Time-delay reconstruction



False Nearest Neighbors

• Concept:
– If M is too small, attractor is not fully unfolded

• Points not actually close together may appear close 
together (false neighbors)

• Approach:
– Find nearest neighbors in dimension M
– Find increase in distance between neighbors in 

dimension M+1
– If distance increase is large, M is too small

False nearest neighbors



False nearest neighbors

Figure 4.4.1



Recurrence Analysis

• Recurrence plot
– graphical display of spatial correlations in an 

attractor
– in terms of relative time
– demonstrates periodicities, nonstationarity, and 

determinism



Recurrence Plot

• reconstruct the attractor reconstruction
• select a reference point x(i)
• center a ball of radius r on that point
• if x(j) is within the ball (within distance r of 

x(i))
– place a dot at coordinates (i,j) on the recurrence 

plot
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• Isolated recurrent points can arise at random.
• Periodic structure is evident in repeating patterns.
• Diagonal line segments (parallel to the main diagonal) 

represent recurring paths, as in a deterministic system.
• Diagonals orthogonal to the main diagonal represent 

nearby paths that move in opposite directions with time.
• For chaotic systems, line segments are short due to rapid 

divergence of trajectories.
• Horizontal and vertical lines result from a path that is 

recurrent for several consecutive points with a single point 
at some other time, as in looping around a point.

• Nonstationarity or drift is reflected in decreasing density 
away from the main diagonal.

• A transient results in recurrence gaps. 



RQA
• Percent recurrence.

– percentage of points that are defined as recurrent
– periodic components should lead to more recurrent points
– care must be exercised in using comparable attractor reconstructions (M, L, etc.) and 

recurrence plot constructions (in particular selection of the threshold distance)
• Percent determinism.

– percentage of recurrent points that are in line segments parallel to the main diagonal
– normalized representation of the number of recurrent points that are derived from trajectory 

paths that follow each other closely, as in a deterministic system
• Entropy.

– measure of  “complexity” 
– quantifies the distribution of the lengths of deterministic line segments (those parallel to the 

main diagonal)
– Shannon entropy is defined as: 

• Pi is probability of a line segment having a length that falls into bin i of a histogram of 
segment lengths

• Ratio. 
– ratio of percent determinism to percent recurrence.

• Trend
– reduction in density away from the main diagonal, due to attractor drift
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Dimensions

• Euclidean dimension
– Number of independent coordinates needed to 

specify location
• Topological dimension

– Point: dimension 0
– Others: dimension is one greater than the 

dimension of (finite number) of other objects 
that can cut it into pieces

Dimensions



Topological Definitions

• Topological Dimension is a Topological 
Invariant
– Not altered under a homeomorphic 

transformation

Dimensions



Dimension - Scaling

• Coastline of Britain
• Power-law scaling

– N ∝ ε-D

– log(N) = log(Kε-D) = log(K) – D log (ε)
– Plot of log(N) vs. log(ε) → slope = D

Dimensions



Dimension - Scaling

• Line of length L
– Cover N with segments of length ε
– Let ε get very small
– N(ε) = L/ε = Lε-D ∝ ε-D, with D=1

• Plane of area A
– Cover with segments of area ε2

– N(ε) = A/ε2 = Aε-D ∝ ε-D, with D=2

Dimensions



Dimension - Scaling
• Middle-thirds Cantor set

• D = 0.6309…

Dimensions

Figure 5.2.1
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Dimension - Scaling
• Koch curve

• D = 1.2619…

Dimensions

Figure 5.2.2
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Box-counting Dimension

• Number of ε-boxes needed to cover object

Dimensions

)/1log(
)log(

lim)/1log(
)log()log(

lim

0
)/1log(

)log()log(
0)/1log()log()log(

0)/1()(

00 εε

ε
ε

εε
εεε

εε

NkND

askND

asDkN
asN D

→→
=

−
=

→
−

=

→+=
→∝



Spectrum of Dimensions

• Box-counting dimension
– Based on number of small boxes visited by attractor

• Information dimension
– Based on length of time attractor visits a given box

• Correlation dimension
– Based on distances between attractor points

Dimensions



Computing Dc

• Find slope of correlation integral C(r)

Dimensions
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Computing Dc

Dimensions

http://complex.upf.es/~josep/Chaos.html



Computing Dc

Dimensions

http://complex.upf.es/~josep/Chaos.html

reference point



Computing Dc

Dimensions

http://complex.upf.es/~josep/Chaos.html

Count points within ball of radius r



Computing Dc

Dimensions

http://complex.upf.es/~josep/Chaos.html

Increase r

Correlation Integral = C(r) = sum of pairs of points within distance r



Recipe for Computing Dc
• C(r) increases as a power-law function of r.
• C(r) versus r on log-log plot is straight line.

• Reconstruct attractor in M-dimensional embedding space.
• Choose reference distance r.
• Select a reference point y(i).
• For every other point y(j), find distance between this point 

and reference point
• If distance < r, add 1to the correlation integral.
• Choose next point as reference, and repeat.
• Divide the summation, the accumulated number of point 

pairs that are closer than r, by N(N-1).
• Repeat for another reference distance r.
• Plot log[C(r)] versus log(r).
• Slope is the dimension Dc.

Dimensions



Example - Lorenz

Dimensions
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Example - Lorenz

Dimensions

Figure 5.4.2
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Interpretation

• Number of state variables
• Complexity
• Useful as a comparative measure

Dimensions



Error Bars for Dimensions
• How reliable is the dimension estimate?
• Can we put error bars on it?

– Need to know statistics of the data, propagate the error 
through the computations

– Not feasible
• Alternate approach

– Surrogate data
– Generate data sets from the original data, based on a 

null hypothesis
– Place error bars on surrogates
– Dimension estimate from original data should be 

“significantly different” from that of surrogates to reject 
null hypothesis

Surrogate data



Surrogates as a Form of
Statistical Hypothesis Testing

• Surrogates are random signals
– Generated by randomizing some aspect of the original signal
– Noise has infinite dimension
–  Surrogates should have increased dimensions

• How confident are we that the surrogates are different from the original?
– Generate n-1 surrogate signals (total of n dimension values)
– n! ways to arrange n dimension values
– In 1/n arrangements, original dimension will be less than all surrogates

• Totally by chance, original dimension will be less than all others with probability 
1/n

– If original dimension is less than all others, this could have happened by 
chance with probability 1/n

•  statistical significance level
– Example: 39 surrogates, n=40, significance level is 1/40=0.025
– This is a one-tailed test (expect original dimension < surrogates)

• If we just want original dimension to be outside the range of the surrogates, 
significance level is doubled.



Random Surrogates

• Null hypothesis: data come from random 
system with same distribution of values
– Shuffle the data

• Null hypothesis: data come from Gaussian 
random system with same first-order 
statistics
– Draw values from Gaussian pdf

Surrogate data



Phase-Randomization Surrogate

• Null hypothesis: data come from random 
system with same autocorrelation (linear 
correlations, power spectrum)
– Test for nonlinearity
– Autocorrelation: linear correlation structure
– Power spectrum = Fourier transform of 

autocorrelation
– Randomize signal but retain linear correlations

• Shuffle the phase spectrum of the data

Surrogate data



AAFT Surrogate
Amplitude Adjusted Fourier Transform

• Null hypothesis: data come from random 
system with same autocorrelation as the 
original (linear correlations, power 
spectrum) passed through a static 
monotonic nonlinearity

Surrogate data

h(·)
y(t)                                         x(t)



AAFT Surrogate

• Note that h(·) does not change the rank 
ordering of y(t)
– y(t) “follows” x(t) in amplitude
– If x(t) is generated by a Gaussian signal through 

h(·), as hypothesized, then so will the surrogate 
x′(t)

• x′(t) has same amplitude distribution as x(t)
• we can generate x′(t) by reordering x(t)

--- But what determines the new ordering? ---

Surrogate data

h(·)
y(t)                                         x(t)



AAFT Surrogate

• New ordering of x′(t) is determined by a phase-randomized 
Gaussian signal y′(t)
– (since this is the hypothesized underlying signal that produced x(t))

• Therefore need to create phase-randomized signals y′(t), 
which have same autocorrelation as x(t) before it went 
through h(·).

• Get this by reordering a GWN signal so that it “follows” 
x(t).
– This represents x(t) after going through h(·):

• It’s Gaussian (as is underlying y(t))
• It follows x(t) and can be considered as x(t) passed through a static 

monotonic function (the inverse of h(·))

Surrogate data

h(·)
y(t)                                         x(t)



AAFT Surrogate
the gory details

1. Generate Gaussian signal (GWN) y(t).
2. Reorder the values of y(t) to match the rank order of x(t). This 

produces yR(t), which “follows” x(t) but is Gaussian. This is meant 
to represent the hypothesized “original” signal, call it xpre(t), before 
it was rescaled by h to become x(t).

3. At this point, yR(t)=xpre(t)=h-1[x(t)].
4. Now take the Fourier transform of the signal xpre(t) or yR(t), 

randomize the phases, and take the inverse Fourier transform to get 
a random time series y′(t). This can be done any number of times to 
generate as many surrogates as desired. Each y′(t) is a random signal 
that represents a Gaussian linearly correlated time series before 
passing through h(·). (Note that yR(t) and y′(t) are linearly 
correlated Gaussian signals with identical autocorrelation functions 
and power spectra but different phase spectra.)

5. Finally, reorder the values of x(t) so that they follow the rank order 
of the values of y′(t). This produces the surrogate x′(t), which has 
the same amplitude distribution as the original x(t) but mimics 
passing a linear Gaussian signal through h(·).

Surrogate data

Section 6.6



Pseudo-periodic Surrogate

• Null hypothesis: data can be modeled as a 
periodic process driven by uncorrelated 
noise (may change periodicity from cycle to 
cycle)
– Pseudo-periodic surrogate
– Generate M-dimensional surrogate attractor:

• match original attractor in large scale (periodic and 
near-periodic orbits)

• disrupt small-scale structure with noise

Surrogate data



1. Randomly select starting point on the original attractor
2. Find a close neighbor to that point
3. Project neighbor one step ahead, this is next point on surrogate

attractor
4. Repeat

• Maintains large-scale flow
• Disrupts correlations between nearby points

Pseudo-periodic Surrogate



Multivariate Surrogate
• Null hypothesis:

– Each signal can be modeled as linearly correlated 
Gaussian noise (autocorrelation function)

– Only linear correlations between the signals (described 
by cross-correlation functions)

• Retain linear correlations within xi(t)
– Retain power spectrum
– Randomize phases in frequency spectrum

• Retain linear correlations between xi(t) and xj(t)
– Retain the cross-spectrum for all pairs (i,j)

• Add the same random set of phases to the phase 
spectrum of each of the xi(t)

Surrogate data



Multivariate Surrogate
Why does this work?
• Power spectrum Ai(f )
• Phase spectrum φi(f )
• Cross-spectrum:

Surrogate data
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Surrogate Examples – Time Domain
Surrogate data

Figure 6.11.1



Surrogate Examples – Correlation Integral
Surrogate data

Figure 6.11.2
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Example - OKN
Eye-movement example

Figure 4.5.1
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Attractor Reconstruction
Eye-movement example

Figure 15.1.1

• Stereo view of OKN attractor
– N=2000 pts
– L=0.3 sec
– M=3
– Sampled at 500 Hz



Correlation Dimension

Eye-movement example

Shelhamer, Biol. Cybern. 76: 237 (1997)



Dimension – change over time
Eye-movement example

Shelhamer, Biol. Cybern. 76: 237 (1997)



Dimension – effects of filtering
Eye-movement example

Shelhamer, Biol. Cybern. 76: 237 (1997)



Surrogates

Eye-movement example

Figure 15.1.5
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• Test specific 
hypothesis about 
the structure of 
OKN
– Random?
– Linear?
– Fast-slow 

couples?
– Slow-fast 

couples?
– Population of 

slow & fast?



Surrogates
Eye-movement example

Table 15.1.2

Surrogate Correlation dimension
(mean±sd)

Magnitude relative to original 
OKN

OKN 3.46

Shuffle  

Gaussian  

Phase-randomize 5.10±0.21 10/10 > 3.46
AAFT  

Pseudo-periodic 4.15±0.13 10/10 > 3.46
Fast-Slow shuffle 3.43±0.08 3/10 > 3.46
Slow-Fast shuffle 3.47±0.06 6/10 > 3.46
Fast & Slow shuffle 3.31±0.06 10/10 < 3.46
Periodic  

Random 1 2.88±0.11 10/10 < 3.46
Random 2 2.69±0.16 10/10 < 3.46



OKN Conclusions

• Dimension ~2.8
• Decreases with continued stimulation 

(decreased volitional component?)
• Increases with filtering
• Surrogates

– Slow phase does not determine next fast phase
– Fast phase does not determine next slow phase
– Population of fast & slow phases important

Eye-movement example



Summary
• Phase space

– Visualization of system dynamics
– Intuition about system behavior

• Time-delay reconstruction
– Generate phase space without knowing s.v.
– Allows work in high dimension
– Use care in parameter selection

• Dimension
– Scaling process (bulk as function of measurement scale)
– Requires care in computations
– Interpret as number of state variables, comparative level of complexity

• Surrogates
– Error bounds for dimension estimates
– Testing of hypotheses:

• Dynamical: random, deterministic, linear, nonlinear
• Physiological
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Overview
• Timing of predictive saccades

– Inter-trial correlations
• Fractals

– Math
– Physiology

• Saccade amplitudes
– Predictive amplitude control
– Prediction/Adaptation

• VOR
– Prediction/Adaptation

• Vestibular afferents
– Correlations over long times



Predictive Saccade Timing



Transition between reactive and predictive 
tracking is abrupt not smooth



Power Spectra and Autocorrelation 
Functions for predictive saccade latencies
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• Latencies of reactive saccades are 
uncorrelated (white noise).

Are the correlations constant 
in terms of time or in terms of 

trials?

• Latencies of predictive saccades 
are correlated.

• Inter-trial correlations imply a parametric 
feedback mechanism

– Performance of previous saccades influences 
programming of future saccades



Autocorrelations
Define correlation window as time over which 

correlations are ≥ 0.2.
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Correlation window is constant in 
terms of time not trials.

Two-second correlation window for previous 
saccades

Thin lines: window in terms of trials.
Thick lines: window in terms of time (sec).



Outline of a model for predictive 
saccades

Predictive saccades are made when two or more 
saccades fall into preceding 2-second window

? Saccade timing 
trigger

Saccade timing 
trigger

Target 
pacing

Saccade 
times

Correlation 
window

Predictor 
output



Extended Tracking
Increases Correlations

Autocorrelation functions for 
four non-overlapping quarters 
(250 points each) from 1000 

consecutive predictive 
saccade latencies.

Correlation window sizes. 
Correlation window increases 

as tracking continues.
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Variable timing

Autocorrelations and correlation 
windows (horizontal lines) as ISI 

variability increases.

Correlation window as ISI 
variability increases, for all 
subjects (mean in bold).

Response to different levels of stimulus (ISI) variability.



What is the nature of the correlations 
between predictive saccades?

• 1/fα power spectrum
• Slow decay of autocorrelation

– Power-law (τ-β) rather than exponential (e-aτ)
• Nonlinear forecasting decay

– Ability to forecast future values decays 
exponentially fast

• Hurst exponent consistent with spectral 
decay



Fractals



Overview – Fractals in Neurophysiology

Physiological relevance and functional role of fractal structure
is not known.

• Fractal behavior has been observed in
• sequences of reaction times [Wing et al. 2004]
• stride intervals in gait [Hausdorff 2007, Peng et al. 2000]
• sequences of predictive saccades
• visual search [Aks et al. 2002, Stephen & Anastas 2011]

• Distributed processing provides a plausible mechanism for 
generation of correlations over multiple time scales.

• Fractal structure (correlations) breaks down in pathology and 
disease [see West 2006].

• Epiphenomenon of fractal ion channel dynamics 
[Bassingthwaighte et al. 1994]?



Fractals
A deterministic fractal – the Mandelbrot Set

http://commons.wikimedia.org/wiki/Image:Mandel_zoom_00_mandelbrot_set.jpg



Random Fractals - Coastline

http://commons.wikimedia.org/wiki/Image:Britain-fractal-coastline-combined.jpg

B Mandelbrot (1967) How Long Is the Coast of Britain? Statistical Self-Similarity and 
Fractional Dimension. Science 156:636-638.

• Coastline is a fractal – variation on many length scales [Mandelbrot].
• Measured length changes as length of “ruler” changes:

– No characteristic length scale  produces the “correct” answer.
• Change in measured length with ruler size described by a scaling law.
• Scaling law yields fractal exponent (slope on log-log plot), indicating 

power-law relationship:
(Measured Length) = (Ruler Size)-α



Dimension - Scaling

• Power-law scaling
– Length ∝ (measurement unit)-D

– L ∝ ε-D



Fractal Scaling

• Middle-thirds Cantor set

• D = 0.6309…
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Fractal Scaling

• Koch curve

• D = 1.2619…
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Quantifying Fractal Scaling
Spectral Analysis
• The power spectrum Sxx(f):

– Fourier transform of autocorrelation function Rxx(τ)  
• If autocorrelation decays as a power law:

Rxx(τ) ~ τ-β

power spectrum will have the form:
Sxx ~f-α
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Aspects of power-law scaling
Power-law decay of 

autocorrelation
Power-law decay of 

spectrum 
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• Variability changes with size (duration) of measurement window.
• Reflected in frequency domain as power-law decay:

- Sxx(f) ~ 1/fα
- shift in frequency by Δf changes power by (Δf)-α

• Non-integrable in either domain:
• Substantial low-frequency energy:

- implies long-term correlations.
- makes parameter measurement difficult.

∫∫ ∞→∞→ )()( fSR xxxx τ



Back to Saccades



Reactive and Predictive 
Latencies
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Variance is not well-behaved for predictive saccades



Signal Paths and Fractal Scaling
• Do varied and shifting neural pathways 

produce fractal responses?
• Time constants of eyeball dynamics 0.012 to 

7.8 sec
• Variation on short time scales: trial-to-trial 

monitoring of performance
• Variation on longer time scales: monitoring of 

stimulus structure and history
• Cerebellum: timing, hundreds of milliseconds
• Basal ganglia: timing, several seconds
• Cortex: learning & memory, several minutes



Cortical areas involved in the control of saccades

C Pierrot-Deseilligny, D Milea, R Müri (2004) Eye movement control by the 
cerebral cortex. Current Opinion in Neurology 17:17-25.



What about saccade amplitudes?

• Predictive saccades must anticipate not 
only when but where a target will 
appear

• Predictive amplitudes must be 
controlled

• More biologically relevant than timing?



• Form of motor learning
– Automatic, non-cued phenomenon
– Example of error-based learning
– Stationary process, no induced gain change

Predictive saccades
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Long-term Adjustment
• Long-term, inter-trial 

correlations
– Wide correlation window
– Power-law decay of power 

spectrum
– Verified by Hurst exponent 

and ARFIMA modeling
– Bootstrap analysis: 

correlations may extend 
as many as ~70 trials in 
the past
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Correlation window modulates with stimulus 
reliability

• Extended tracking 
increases 
correlations



Correlation window modulates with stimulus 
reliability

• Stimulus variability 
decreases 
correlations

• Consistent with 
Bayesian 
optimization



So What?

• Do these fractal fluctuations have any 
value or meaning?

• Model suggests fractal structure is only 
apparent.

• Prevailing paradigm for 1/f noise:
– System on edge of criticality
– Maximizes flexibility while maintaining 

organization
– Can we test this?



Prediction and Adaptation
• In the same session, 

subjects performed a 
predictive-saccade and 
adaptation task

• Prediction α values and 
adaptation rates are tightly 
correlated

• Adaptation rate is not 
related to variability per se, 
but to the structure of the 
fluctuations



What is the fractal structure during 
adaptation?

• Remove linear adaptation 
trend:
– Fractal structure of residuals  

increases as adaptation rate 
decreases

– Adaptation faster if more of the 
underlying fractal process is 
engaged



Possible meaning of fractal 
correlations in motor control

• Optimize “new information” with each 
trial, constrained by the need to retain 
information between trials.

• “…1/f noise represents an optimal 
compromise between efficient transfer 
of information (maximized by white 
noise) and immunity to error.” – Gilden 
et al. 1995



How to Model this?

• True long-memory implies storage over 
very long time periods
– Not so realistic for biological systems

• Other modeling approaches:
– Sum of simple linear systems with wide 

range of time constants.
– Fast (trial-to-trial) process with learning 

parameter modulated by slower process.



Model for Amplitude Control



Comparison to Two-State Model
• Popular model for motor learning:

• Slow process: adapts slowly, forgets slowly
• Fast process: adapts quickly, forgets quickly
• Explains savings
• Smith et al., Interacting adaptive processes with different 

timescales underlie short-term motor learning. PLoS Biol 
4: e179, 2006.

• Does not reproduce 1/f spectrum



Vestibulo-Ocular Reflex



VOR Paradigm
• Before adaptation

– 420 active head yaw movements
– Viewing a point target
– Gain measured for each movement
– Gains form a time series. Find slope of power spectrum.

• Adaptation
– 0.5X lenses, 20 minutes
– Active sinusoidal head rotations, 1.5 Hz, in the light
– Adaptation extent = difference between baseline and post-

adaptation gains



Inter-trial Correlations Predict
VOR Adaptation

Pre-adaptation alpha



Differences from Saccades
• Association is in the “wrong” direction

– Weaker correlations correspond to better VOR 
adaptation

• Unlike saccades, VOR error (retinal slip) is 
available constantly and in real time
– No need to store error from one movement to the 

next
• Best strategy may be to forget previous error 

as quickly as possible since it represents 
outdated information
– Make maximum use of current information
–  Reduced correlations are better



Vestibular Afferents



Teich and colleagues, 1980:

• Fractal scaling in spontaneous firing activity of 
cat auditory afferents

• Not in vestibular afferents.
• Source ?

• Ion channels in cell membranes open and 
close in a fractal pattern

• Resulting ion currents are fractal, leading to 
fractal firing patterns.



• Vestibular afferents
– Mice
– Resting activity
– Fractal behavior only on longer time scales

Figure 1.



Surrogate analysis
• Solid lines are from the afferent data.
• Lower dotted lines: randomized-order surrogates, (null 
hypothesis: point process, independent intervals).
• Upper dotted lines: random values from exponential 
distribution, retaining temporal ordering of ranks of 
intervals (null hypothesis: results arise from ordering of 
intervals, regardless of distribution).



• Fractal structure apparent only <~1.0 Hz, >1.0 sec
• beyond range of normal head movements

• Fractal structure is “permitted” outside the range of 
normal movements.

• Value of fractal structure might be in long-term 
behavior – several seconds or longer. 

Functional relevance 



Velocity storage
• Cupula and afferent time constant (~6 sec) extended to 
time constant of the VOR (~20 sec).
• Afferent information relevant to velocity storage (1-10 sec 
or more) within the fractal regime: “partially integrated.”
• Balance between quick action for transient head motion 
and perseveration (storage) for longer movements.

Compensation for unilateral deactivation
• Acute imbalance in tonic activity, corrected minutes - days.
• Long-range correlations might help track long-term activity 
to maintain balance.

Neural integrator function
• Velocity information in premotor neurons transformed to a 
signal with position component to drive motoneurons.
• Integrator must avoid integrating baseline firing rate.
• Correlations could help integrator track baseline rate.
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How to measure variability in a time series
• Fractal time series has variability that changes with size 

(duration) of measurement window – this leads to a statistical
rather than deterministic fractal.

• Reflected in frequency domain as power-law decay:
- Sxx(f) ~ 1/fα
- shift in frequency by Δf changes power by (Δf)-α

• Substantial low-frequency energy:
- implies long-term correlations.
- makes parameter measurement difficult.
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How to measure the length of a coastline

• Coastline is a fractal – variation on many length scales [Mandelbrot].
• Measured length changes as length of “ruler” changes:
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• No characteristic length scale  
produces the “correct” answer.

• Variation in measured coastline 
length with ruler size is best 
described by a scaling law.

• Scaling law yields fractal exponent 
(slope on log-log plot), indicating 
power-law relationship:

(Measured Length) = (Ruler Size)-α



A fractal is self-similar: 
repeated pattern at different scales

Geometric self-similarity
Scale invariance (power-law scaling relationship)

Statistical self-similarity
Power spectrum scales as a power law

What is a fractal? 

Sxx( f )~f -(2H+1)

DεL −∝

)()( xfxf k ⋅= λλ



Dimension - Scaling

• Power-law scaling
– N ∝ ε-D

– log(N) = log(Kε-D) = log(K) – D log (ε)
– Plot of log(N) vs. log(ε) → slope = D



CONCLUSION
Horizontal saccades: dot versus vertical line
Vertical line exaggerates persistence in vertical direction
 Less certainty about orthogonal "error" affects inter-trial 
learning
 This increases residual information remaining in the 
orthogonal endpoint errors
 No change in primary saccade accuracy requirements
 Subjects exhibit a greater difference between primary and 
orthogonal endpoint-error behavior

Oblique saccades 
• Primary and orthogonal directions show similar trend (N/S).
• Due to the increased variance of oblique saccades?



ANALYSIS IN THE TIME DOMAIN
 Hurst exponent H

Quantify variability over different time scales

(Variability) = (ΔT)H

Variability measured in an unusual way

Another form of scaling
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Summary α AND H
Horizontal saccades    

Target: dot

Vertical saccades 

Target: dot

Horizontal  saccades 

Target: vertical line

Oblique saccades  

Target: dot

Subject α primary  / α orthogonal

H primary  / H orthogonal

α primary  / α orthogonal

H primary  / H orthogonal

α primary  / α orthogonal

H primary  / H orthogonal

α primary  / α orthogonal

H primary  / H orthogonal

1 0.002 / 0.264 *
0.664 /0.681  

-0.006 / 0.469 *
0.605 / 0.693

0.052 / 0.506 *
0.664 / 0.707 

0.237 / 0.369 *
0.633 / 0.692 

2 0.018 / 0.158 *
0.648 / 0.747

0.079 / 0.215 *
0.637 / 0.698

0.276 / 0.456 *
0.652 / 0.822 

0.077 / 0.326 *
0.592 / 0.691 

3 0.071 / 0.551 *
0.615 / 0.824

0.425 / 0.155 *
0.718 / 0.690 

-0.044 / 0.717 *
0.640 / 0.750 

0.476 / 0.178 *
0.684 / 0.629 

4 0.219 / 0.275 *
0.687 /0.711

-0.001 /0.198 *
0.643 / 0.665

0.137 / 0.725 *
0.651 / 0.785 

0.210 / 0.386 
0.802 / 0.651 

5 0.286 / 0.346 
0.643 /0.622

0.183 /0.208 *
0.569 / 0.627

0.324 / 0.610 *
0.714 / 0.838 

0.017 / 0.204 *
0.651 / 0.737 

6 -0.009 / 0.417 *
0.585 /0.722

0.303 / 0.484 *
0.643 / 0.665

0.139 / 0.550 *
0.660 / 0.780 

0.339 / 0.315  *
0.675 / 0.654 

7 0.423 / 0.218 *
0.697 / 0.694

0.088 / 0.631 *
0.701 / 0.861

0.408 /0.856 *
0. 724/ 0.874 

0.588 / 0.426
0.734 / 0.754 

9 -0.077 / 0.624 *
0.590 / 0.790 

10 0.163 / 0.488 *
0.582 / 0.744 



Nonlinear forecasting
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Forecasting suggests that 
scaling is fBm
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For fBm:

• log(1-r) vs. log(forecasting step) is linear

• AA Tsonis, JB Elsner (1992) Nonlinear prediction as a way of distinguishing 
chaos from random fractal sequences. Nature 358: 217-220.



No-Correction Zone
• Range of intervals and latencies which are considered 

adequate.
• When most recent intervals and latencies are in this no-

correction-zone there is no effect of error on timing of 
subsequent saccade.

• Size of no-correction-zone increases with stimulus-timing 
variability.



SD-0 SD-0.5

SD-1 SD-2

Latency vs. Preceding Inter-Saccade Interval

• all data
• four different levels of stimulus variability



SD-0 SD-0.5

SD-1 SD-2

Latency vs. Preceding Inter-Saccade Interval

• only trials where there is little or no interval 
correction on subsequent trial

• four different levels of stimulus variability



SD-0 SD-0.5

SD-1 SD-2



Detrended Fluctuation Analysis (DFA)
• DFA: measure of variability on different time scales

– integrate data x(n) in window of size k
– fit line to integrated data y(k)
– determine fluctuations F(n), for a given window size n (length of 

data series), by RMS variation about the fitted line
– slope of F(n) versus n, on log-log plot, yields scaling exponent α.

• DFA on saccade latency increments.
• Shuffle surrogates and phase-randomization surrogates (C).



DFA on latencies
• Three subjects at four frequencies (0.6, 0.8, 1.0, 1.2 Hz).
• Scaling exponents increase with increasing frequency.

– inter-trial correlations become stronger, and extend over 
more trials, as pacing frequency increases.

– increase in correlations at higher frequencies suggests 
that the predictive tracking system can adjust 
parameters as necessary for stimulus conditions.



Predictive saccadic tracking: Pacing Perturbation

• PredictivePredictive transition (top, 0.9  1.0 Hz)
• PredictiveReactive transition(bottom, 1.0  0.2 Hz)



Forecasting Results
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Forecasting of predictive-saccade latencies.

Linear decay of forecasting on log-log plot
• confirms power-law loss of information
• indicated fBm

Unable to forecast reactive saccades 



Forecasting of predictive-saccade latencies & surrogates

• Forecasting of shuffle surrogates (A-D, gray)
- worse than forecasting of original latencies.

• Forecasting of phase-randomization surrogates (E-H, gray)
- similar to forecasting of original latencies.

 Temporal correlations create pattern of forecasting ability



Modulation of the correlation window

• Inter-trial correlations extend further in time as pacing 
duration increases.
• Reflects increasing confidence in past behavior.
• Variable time course interacting with trial-to-trial error (fBm).
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150 trials at 1.0 Hz (75 sec)
significant correlations 
over 5-10 trials (2.5-5 sec)

1000 trials at 0.9 Hz (556 sec)
significant correlations
over ~20 trials (11 sec)



Extended tracking

Autocorrelation functions for 
four non-overlapping quarters 
(250 points each) drawn from 

a set of 1000 consecutive 
predictive saccade latencies.

Correlation window sizes. 
Correlation window increases 

as tracking continues.



Variable Timing
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Implications of fBm

• Also found in:
– Cardiac inter-beat intervals
– Stride intervals while walking

• Correlations break down under pathology



Variable timing
Variance of inter-saccade intervals (ordinate) is the sum of the 
inherent variance and the ISI variance.



Self-Organized Criticality?

• Is this an SOC system?
• Characteristics of SOC:

– Self-organization: no external tuning of parameters
– Criticality: 

• heavily interconnected
• extensive interactions

– Scale-invariance
– Self-similarity
– 1/f spectral signature



Interval Correction is based on
only most recent latency



Effect of latency and interval errors on 
next interval decreases with variability



Simplified trial-to-trial model of predictive timing

I(i) = a L(i-1) + 
b1 I(i-1) + b2 I(i-1) + b3 I(i-1) + b4 I(i-1) + ….

L=latency, I =interval
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Tuning to criticality
• Spontaneous transitions

Spontaneous 
transitions 
between 
predictive and 
reactive states



Example of self-organization in prediction

Rapid transitions into and between predictive states.

0.9 Hz 1.0 Hz

Predictive-predictive transition

0.2 Hz 1.0 Hz

Reactive-predictive transition



1.0 Hz 0.2 Hz

Example of self-organization in prediction

Preference for predictive state:
Predictive tracking continues on transition from predictive to 

reactive pacing.



Perturbations into Predictive Mode
• inter-saccade intervals
• pacing abruptly changes to predictive rate (1.0 Hz)
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Perturbations into Reactive Mode
• inter-saccade intervals
• pacing abruptly changes to reactive rate (0.2 Hz)



Clock
Scalar Property. Distributions of inter-saccade intervals at 
predictive pacing rates vary around the ISI and the variance 
increases with interval length (A). Predictive distributions (red 
& green) overlap when divided by mean interval (B).

 



Saccades continue after halt in pacing
Further demonstration of 2-sec window
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Clock
• This model results in a neural clock for generating inter-
saccade intervals during predictive tracking.
• Further evidence for a clock:
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A Mathematical Model for
Predictive Saccade Sequences

Goal – develop a model that reproduces observed behaviors:
• Reactive and predictive tracking
• Abrupt transition to predictive tracking above ~0.5 Hz
• Hysteresis in reactive-predictive transition
• Correlated predictive saccades
• Scalar property
• Extended tracking increases correlations
• Continue predictive tracking after perturbation
Basis:
• Integrate-to-threshold neural activity (LATER model, 

Carpenter et al.)
• Feedback of timing errors within a specific window adjusts 

the threshold of the integrator



Model

(1)Large ISI: consecutive target jumps not in window  reactive saccade (2).
(3) Small ISI: consecutive target jumps in window  predictive saccade (4).

Feedback of intervals (αi) (5) and latencies (εi) (6) within correlation window 
adjusts threshold (7) of integrate-to-threshold system.

Timing of next saccade αNEW (8) is determined by integration of noisy neural 
signal to threshold.



• Integration of a noisy signal to threshold.
• Longer interval, longer integration of noisy signal.
• Variability of interval estimate proportional to ISI.
• Scalar Property

Scalar Property of Time Estimation



The Model in Action
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Simulation Results
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Simulation Results

• Variability increases with rate (B).
• Predictive distributions overlap.

• Tracking continues when stimulus 
timing changes (A) or stops (C).

 



Latency Distributions in 
Transition Range
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At ~0.5 Hz, 
tracking switches 
between reactive 
and predictive



• Model implements internal clock with integrate-to-
threshold mechanism (Buhusi and Meck, 2005).

• Internal clock is internal representation of stimulus 
timing, modified by feedback from previous inter-
saccade intervals and latencies.

• Feedback occurs within a time window estimated from  
inter-saccade intervals during reactive-to-predictive 
transition in tracking.

• Model reproduces:
• Phase transition and hysteresis.
• Interval/latency adjustments.
• Bimodal tracking in transition range.
• Continuation despite perturbations.
• Scalar Property.

Model Summary



Implications of fBm

• “Long-term correlation”
– Gradual decay of inter-trial interactions

• Slow decay of power spectrum
– Substantial low-frequency components
– Variations on many time scales

• Suggests “self-organized criticality” (SOC)
– System organizes itself to be stable yet quickly 

responsive to changes
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Lack of correspondence between 
predictive-saccade timing and amplitude









An adaptable forward model
• Adaptation reaches an 

asymptote, but the 
retinal error size does 
not change

• This can be explained 
by an adaptable forward 
model (predictions 
incorporate the target 
behavior)

Forward Model

Sensory System

Delay

Motor SystemController

Comparator

Wong and Shelhamer 
2010



Constant-Error Adaptation
Hypothesis: Motor Correction



Constant-Error Adaptation
Hypothesis: Target Behavior



Stimulus Variability and the 
Correlation Window



• For SCA6, slope in block 1 
is less steep than in block 
10

• In controls, slope is already 
close to ideal

• Initially SCA6 behavior 
poorly matches target 
behavior, but improves with 
training

• This is achieved by 
decreasing saccade gain 
(easier?)

SCA6: Learning a slope?

Plotted: 
 



Early endpoint error
• Slope corrections 

arise from decreasing 
gain early, not 
increasing gain late

• Slope-matching may 
arise as a strategy to 
complete an implicit 
task, which can 
supersede adaptation

Taylor et al. 2010;
Mazzoni and 



Prediction variability versus 
adaptation rate



Model prediction: Relationship 
between Prediction and Adaptation

• As parameters vary, both 
prediction (α value) and 
adaptation (rate) change

• These changes describe the 
differential use of current 
and prior information to 
drive future performance

• This predicts a relationship 
between motor prediction 
and adaptation tasks in 
human subjects



Adaptation Simulation
• Simulation of a 

conventional 
adaptation 
paradigm

• Model responds 
reasonably well
– Exponential 

learning curve
– Smooth but rapid 

washout



Simulation of predictive saccades
• Model output could 

match four defining 
characteristics:
– Long-memory α

value
– Quality of trial-by-

trial corrections
– Appropriate average 

model output
– Response to 

stimulus variability 
(α decreases)



The predictor model
• Trial-by-trial process corrects for immediate errors
• Mean process estimates average model output 

according to past performance



Analyzing Dynamics Beyond 
Trial-to-Trial

Time Shift

AC
F

0.2

Frequency

Po
w

er
 S

pe
ct

ru
m

F (t)



Haken, Kelso, Bunz (1985) A theoretical model of phase transition in human hand 
movements. Biological Cybernetics 51:347.

Initial Motivation:
Phase transition in bimanual movements

Spontaneous transition from out-of-phase to in-phase as pacing rate increases:



Abrupt transition 
from walk to trot to 
gallop.

Phase Transitions



Saccade tracking at different 
pacing frequencies

0.2 Hz Pacing: reactive response; eyes lag the target

1.0 Hz Pacing: predictive response; eyes anticipate the 
target

0.5 Hz Pacing: mixed response; behavior switches between 
lagging the target and anticipating the target



Bistability
Do reactive and predictive states reflect local minima of a 
“potential function”?

Mean pacing error: Σ|interval error|
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Consecutive saccade latencies showing 
variations on different time scales.



Forward model hypothesis: 
Linking prediction to adaptation

Forward Model

Predicted 
State

Sensory System

Time Delay

Measured 
State

Achieved 
State

Motor 
Command Motor SystemController

Desired 
State

Comparator

Error 
Signal

Update Signal

 Adaptation is based on predicted outcomes



What is the error signal for 
adaptation?

• Is it related to prediction?

• Test two alternatives:
– Adaptation is driven by observed (retinal) 

error
– Adaptation is driven by difference between 

actual and expected movement outcomes



Saccade Adaptation
• Saccades are adaptable

– Move target during saccade – saccades 
adaptively adjust to go to the new target position

• Saccades are hypometric
– Typically fall short of target by 10%

If they are adaptable, why aren’t they more 
accurate?

Do they deliberately fall short?



Assessing Adaptation Error Signal

Expected Error

Actual Error

Direction of Visual Error 
(And Corrective Saccade)

Direction of Prediction Error

Retinal Error

Expected Error
Matched Visual Error

T1T2

T2 T1

Fixation



Evidence for Predictive Error Signal

• Adaptation is driven 
by difference 
between expected 
and observed 
movement 
outcomes

• Adaptation requires 
a predictive process

Wong and Shelhamer 
2011a



Predictive Saccades

• Error signal = Prediction - Observation
• Can predictive saccades drive adaptation?

– Is the error signal shared?



Prediction-Driven Adaptation
• 10 blocks, 60 

saccades, 
increasing 
amplitude

• Controls: gain 
increase (3.93%)

• SCA6: gain 
decrease (-5.75%)



Can we model this?

• Predictive process (internal model)
• Drives adaptation
• Generates fractal fluctuations

– Long memory



Model, Phase I: Predictor

• Long-memory may be 
mimicked (Diebold & 
Inoue 2001) by:
– Aggregate of short-

memory processes 
with different time 
scales

– Regime-switching 
(switching of parameter 
values based on…)

Wagenmakers et al. 2004



Model, Phase I: Predictor

• Trial-by-trial process corrects for immediate 
errors

• Slow process modulates error-corrector 
parameters based on prior performance

Trial-by-trial 
process

Long-term 
process θ̂

Motor systemiŷ

( ) n

kkiki yy
1

ˆ
−−− −

Sensory 
system

Comparator
iy

( )ii yy ˆ−
(observed – predicted error)



Component process Time 
scale Responsibility

trial-by-trial process Fast Rapidly adjust model output to address single-trial 
variability (errors and noise)

mean process Moderate When error-accumulation reaches threshold, re-
estimate “mean” of the process by averaging over prior 
model outputs (only including values since the last 
regime switch; at most ~20 trials)

error-tolerance 
process

Slow Adjust cumulative-error threshold used to determine 
when regime switching occurs, based on prior 
performance



Model, Phase I: Predictor
• Initial simulation results
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Saccade Endpoints



Is position controlled differently along 
the direction of the saccade?

We posit stronger correlations along the primary saccade
direction then along the orthogonal saccade direction,
because control along the primary axis is more important.



Four conditions
Measured saccade endpoints along direction of targets, and orthogonal

EXPERIMENTAL SETUP



Saccade Endpoints, all Conditions,
Point Targets
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• Figure shows saccade endpoints for one subject, and 
95% confidence ellipses

• Most variability lies in primary direction



Horizontal saccades – Point Targets 
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alpha = 0.092
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alpha = -0.089
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alpha = 0.193
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alpha = 0.334
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α primary direction= 0.121±0.194                α orthogonal direction = 0.371±0.193

endpoint error along the
PRIMARY saccade direction

endpoint error along the ORTHOGONAL 
saccade direction

Scaling exponents (α values) of endpoint error along orthogonal direction 
significantly larger than those along  primary direction (P=0.004)



Vertical saccades – Point Targets
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alpha = -0.021
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alpha = 0.010
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Downward saccades
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alpha = 0.497
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alpha = 0.440
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endpoint error along the
PRIMARY saccade direction

endpoint error along the
ORTHOGONAL saccade direction

α primary direction= 0.154±0.186             α orthogonal direction = 0.338 ±0.197

Scaling exponents (α values) of endpoint error along orthogonal direction 
significantly larger than those along primary direction (P=0.035)



Horizontal  saccades – Line Targets
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alpha = 0.101
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alpha = 0.004
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alpha = 0.461
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alpha = 0.551
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endpoint error along the
PRIMARY saccade direction

endpoint error along the
ORTHOGONAL saccade direction

α primary direction= 0.185±0.196                   α orthogonal direction = 0.632 ±0.191

Scaling exponents (α values) of endpoint error along orthogonal direction 
significantly larger than those along primary direction (P=0.001)



Oblique saccades – Point Targets
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alpha = 0.275
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alpha = 0.102
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alpha = 0.243
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Rightward saccades Rightward saccades

endpoint error along
PRIMARY saccade direction

endpoint error along
ORTHOGONAL saccade direction

Scaling exponents (α values) of endpoint error along orthogonal direction tend to be 
larger than along primary direction

α primary direction= 0.2780.221)                    α orthogonal direction = 0.315±0.130



Summary 
Horizontal saccades    

Target: dot

Vertical saccades 

Target: dot

Horizontal  saccades 

Target: vertical line

Oblique saccades  

Target: dot

Subject α primary/α orthogonal α primary/α orthogonal α primary/α orthogonal α primary α orthogonal

1

0.002 / 0.264 * -0.006 / 0.469 * 0.052 / 0.506 * 0.237 / 0.369 *
2 0.018 / 0.158 * 0.079 / 0.215 * 0.276 / 0.456 * 0.077 / 0.326 *
3 0.071 / 0.551 * 0.425 / 0.155 -0.044 / 0.717 * 0.476 / 0.178 
4 0.219 / 0.275 * -0.001 /0.198 * 0.137 / 0.725 * 0.210 / 0.386 *
5 0.286 / 0.346 * 0.183 /0.208 * 0.324 / 0.610 * 0.017 / 0.204 *
6 -0.009 / 0.417 * 0.303 / 0.484 * 0.139 / 0.550 * 0.339 / 0.315
7 0.423 / 0.218 0.088 / 0.631 * 0.408 /0.856 * 0.588 / 0.426  
9 -0.077 / 0.624 *
10 0.163 / 0.488 *



CONCLUSION
Why is scaling greater in the orthogonal direction?

 Endpoints are errors
Strong scaling (large value of α) means that errors

have information in them (information persists
between trials).

 Most effective use of error information in primary
direction leads to uncorrelated errors (residuals).
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Thoughts on predictive timing

• System exhibits a preference for prediction.
• "Prediction is hard, especially about the 

future." - Niels Bohr or Yogi Berra.
• If you are clever, you can design an 

experiment to eliminate one of the defining 
features of human behavior – prediction. But 
you have to be very clever.



Trial-by-trial adjustment
• Errors are corrected on the 

“next” saccade:
– (n+1): return primary saccade
– (n+2): primary saccade in 

same direction
• Errors are not fully corrected

– Surrogate data
– An additional process 

improves performance
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