
Stephen J. Merrill 
Department of MSCS 

Program in Computational Sciences 
Marquette University 

8/4/2011 SCTPLS 2011 1 



 Markov chains (MC) and the related idea of 
Hidden Markov Models (HMM) are feasible 
ways to  

1. Describe and analyze the behavior of both 
categorical and numeric time series 

2. Provide simulations which preserve the 
correlation structure of the original series 

3. Describe changes (bifurcations) in the 
original series 

4. Study the impact of noise 
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Constructing a mathematical model for a 
dynamic process can follow several paths 
 

 First Principle Models - where the “physics” of 
the system dictates the form of the equations. 

Example : equation of motion of a spring based on 
Hooke’s Law (restoring force proportional to 
amount of deformation) and F=ma or a birth-and-
death process. 
 

 Empirical Models – where data or observations 
dictates the model within a class of possible 
models. 

Examples : classical Box-Jenkins time series 
(ARIMA) models or models based on regression. 
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 Another decision is to whether the process is 
essentially deterministic (and stochastic 
effects can be ignored) or one in which 
stochastic effects are embedded in the 
dynamics. 

 The difference is usually in the assumption 
that                       and                     where 

   the      are measured with error (but that 

   error does not affect the dynamics) 

    or                               where it does. 
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Stochastic models can also be described where 
there is no such function  f. In these cases, the 
probability of the next value is given by a 
probability density function depending on      . 

 Examples: The extreme case is where the 
sequence is a run of random numbers from the 
same distribution. Here, the distribution of the 
next value does not depend on the previous 
value. 

 Markov chains, where the distributions are 
specified depending on     – in the empirical case 
by the history of the data values. 
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 Brief description of Markov chains 

 Estimating transition probabilities from a 
time series 

 Applications of this technique 

 Heart rate variability 

 Cardiac imaging registration 

 Study of chaotic systems 

 Hidden Markov Models (HMM) 

 Summary and References 
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 Discrete time – discrete state 

 Order  1  (only the past state value determines 
the distribution) – this is the Markov assumption 
(previous history not relevant).  

 If system is continuous state, need to define what 
the states are (think histogram). 

 Time homogeneous chains. The model is 
specified by determining the transition 
probabilities (by first principles or through data) 
that do not change over time.  
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 Current state -> row.  

 Possible next state -> columns 

 Each row represents a pdf given a current 
value in that state. 
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 Considering a time series,           , assume 
that the values are correlated – not 
independent as in a sequence of random 
numbers. 

 The Markov assumption holds – only the 
current value is needed to determine the 
probability distribution for the next (order 1). 

 There is sufficient data to approximate these 
probability distributions based on the number 
of states. 
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 Discretize the state space into n states. The 
choice of n is limited by the data available.  

 Estimate the1-step transition probabilities by 
computing the relative frequencies. 
 
 
 

 Use the nxn matrix                 
  for simulation and analysis 
 On the next slide, an AR(1) process is used to  

generate a time series d to illustrate.  
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>> P=transi(d,5) 

P = 

 

    0.3333    0.3333    0.3333         0         0 

    0.1538    0.5128    0.2051    0.1282         0 

    0.1379    0.3793    0.3448    0.0690    0.0690 

         0    0.4000    0.3000    0.2000    0.1000 

         0         0    0.3333    0.1667    0.5000 

Note that the pattern of 
nonzero values in the 
transition matrix  
suggests that the form of 
the relationship  f . This 
would also appear 
              in a lag 1 map.  

 y next state 

x 

y 

 x 
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 Using a Matlab m-file, starting with 1, 10 
random numbers based on the matrix P can be 
generated.  

 >> x=generate(1,P,10) 

x =   1     2     3     3     3     1     2     1     2     3 

 

  This sequence will have the same correlation 
structure as the original sequence that may have 
generated P. This is a very handy way of starting 
with only one series, and producing others for 
testing and statistical analysis. 
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 Heart Rate Variability (HRV) describes the 
beat-to-beat variation in the time intervals 
between beats (the R-R intervals) as seen 
on ECG. It is described by many different 
indices. 

 The variability is due to several different 
control mechanisms in the systems. 

 Operation of the controls are affected by 
drugs (specifically here, anesthesia) 
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 Pediatric patients undergoing surgery 

 

 The goal was to design a real-time monitor to 
anticipate sudden cardiac arrest . Data had been 
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collected on several 
patients and standard 
indices did not behave 
well as measures of 
HRV in several patients 
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2.5 year old girl 

7.5 year old boy 
-- early phase 
with halothane 
late phase with 
the addition of 
atropine 
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Not the graph 
of a function 
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 All eigenvalues of a Markov chain transition matrix 

lie in (or on) the 

unit circle. Uniqueness  

of a modulus 1  

eigenvalue means the  

presence of a limit  

distribution 
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 Qualitative properties of the chain (e.g. 
eigenvalues or limit distribution) can be used 
to characterize the data set or identify 
changes in the data set. 

 Simulation of the chain can result in an 
unlimited number of sample paths with the 
same dynamic behavior of the original set. 

 Transition matrix depends on the definition 
of the “bins” and the number of them. 

 N states requires estimating N2 probabilities 
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 Register 2-d (real-time fluoroscope) to 3-d 
(static 3-d CT) image to guide ablation 
catheter in treatment of atrial fribrillation. 

 The selection of corresponding fiducial points 
is difficult in the moving image (even with 
gating for cardiac cycle and breathing) 

 The chaotic movement of points in the heart 
make a model problematic. The thought was 
to create an empirical Markov chain to 
describe this movement. 
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Three layered ECG gated fluoro 
frames 

Segmented CT image that will be 
registered 
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ECG gated fluoro data  -- triples of points, each forming a “cloud” 
2d coordinate locations of three points were recorded across fluoro 
sequences 
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Sequence of coordinate 
points triplets can be  
written as a sequence of 
state triplets 
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 For each row, there is a probability that a “1” in 
cloud 1 is associated with a “1” in cloud 2. 
Similarly for cloud 2 to cloud 3 and cloud3 to 
cloud 1 in the next row (next time). Compute 
these probability from the data (~30 rows). 

 From these matrices, compute cloud 1 to cloud 1 
one step transition probabilities (details omitted). 

 This 1 -> 1 matrix is a description of the motion 
of that area of the heart. 

 This was used (through the limit distribution of 
that matrix) to find a well-defined fiducial point. 
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 Example: bifurcation in the discrete logistic equation:  
 
 

 
 
 

 
 Summary of behavior:              is always an equilibrium, 

stable if             . 
                     
           is an equilibrium that is stable when 
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--  then the fun starts. 
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8.3
 Nonzero entries in the transition 
matrix with 10  states 
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 One can use the empirical chain to detect 
bifurcations. In this case, the bifurcation at              
to a period 2 point. This is done through the 
eigenvalues of the transition matrix. 

 Facts: 1 is always an eigenvalue and others are on 
or inside the unit circle. If 1 is the only eigenvalue 
of magnitude 1, there is a unique limit 
distribution. 

 Loss of the unique limit distribution and 
establishment of a new one is the indication of a 
bifurcation in the system. 

 As a parameter changes, look for eigenvalue(s)  

                    approaching the unit circle. 
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 The eigenvalues describe the approach to a 
limit distribution  

 The eigenvalues also describe the modes that 
are available – these depend on the nature of 
the digraph of transitions. 
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 Transition matrix computed with 10 states at 

      

 At 2.9, {-.81, .81, 1, lots of 0’s} 

 At 3.0, {-.92,.917, 1, lots of 0’s} 

 At 3.05, {-1,1, lots of 0’s} 

 From the above, it appears that a bifurcation 
took place just before 3.05. Moreover, 
because of the -1, it is a period 2 point.  
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 Transition matrix computed with 10 states at 

                                    and eigenvalues computed 

 

 At 3.5, {-1, 1, lots of 0’s} 

 

 At 3.503, {-1,1, 0.0000 + 0.1010i, 0.0000 - 
0.1010i, lots of 0’s} 

 

 At 3.6, {-1,1, i, -i, lots of 0’s} 

From the above, it appears that a bifurcation took 
place just before 3.6. Moreover, because of the i, it is 
a period 4 point.  
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 The idea here is that there is data “emissions”, 
the states observed in the system. It is 
expected --- usually because other models did 
not fit – that the observed values depend on 
the state of a non-observed process.  

 In the HMM, the non-observed process is a MC.  

 To specify a HMM, one has a transition matrix 
for the MC and a matrix of emission 
probabilities – the probability of a particular 
emission given the state of the MC 
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 Suppose the MC in slide 8. There are 
  3 (hidden) states and a transition matrix P. 
 Suppose the emissions are 1 or 2 with emission 

probabilities 
 
                        emis= 
 
The MATLAB function hmmgenerate will generate a 
sequence (of length len) of emissions and 
associated states. 
 
 Note that this is our function generate if emis is 

the identity matrix. 
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 From a sequence of emissions and states, 
estimate the two matrices. This is done by 
hmmestimate – similar idea to estimating a 
transition matrix (twice) 

 Given a sequence of emissions, estimate the 
matrices – here you are guessing as to the 
number of states in the MC. This is done by 
hmmtrain. 

 Popular to answer: is a given sequence likely 
to have been generated by a given process? 

 Further examples on HMM on the CD 
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 Markov chains can be employed without 
specifically knowing the (functional) nature of the 
dynamics. 

 Having a Markov chain model enables one to 
simulated the process – generating new time 
series with the same properties as the original. 

 The transition matrices and the associated limit 
distribution and eigenvalues contain useful 
information on the process.  

 HMM extends this idea to cases when the 
observed state is probabilistically determined by a 
Markov chain. 
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 generate.m  
This function takes an initial state and transition matrix 
P of a Markov Chain and 
produces a sample path of length n.  
 logistic.m 
A function to generate time series from the discrete 
logistic equation. 
 transi.m 
This m-file takes a time series d of floating point 
numbers and creates an empirical mxm Markov chain 
transition matrix. 
 ploteig.m 
plot of eigenvalues of the transition matrix in relation 
to the unit circle. 
 HMM examples using the Statistics Toolbox. 
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