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The idea of the workshop

Using Markov chains as general tools for building
and analyzing models and time series is described.
What is new here (and not published) is the
application of these tools to analyze the dynamical
behavior of simple systems — including deducing the
structure of the system and possible bifurcation
behavior.

These systems are richer than the classic chaotic
systems in that all 2-d dynamical systems can be
described by these methods, but not all Markov
chains can be seen as a 1-d system. In addition, the
system is allowed to contain noise.
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What you might learn

Some MATLAB. We will depend heavily on the
standard MATLAB features — supplementing
with M-files provided on your CD.

Some of the features of Markov chain models —
simulating a given model and estimating a
model from a time series.

Analyzing chaotic time series that may or may
not contain noise. Also, the role of noise can be
evaluated in some cases.

Hidden Markov Models. This workshop uses
tools in the Statistics toolbox of MATLAB.
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This Workshop

Introduction to MATLAB

Models of dynamics

Examples of Markov chains (MC)

Eigenvalues, stationary vectors, and limit
distributions

Estimating transition probabilities from a time
series & simulating a given MC

Hidden Markov Models (HMM)

Applications of this technique

Summary and References
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MATLAB

MATLAB is the primary product of the
Mathworks (http://www.mathworks.com), in
business since 1984.

MATLAB consists of a base and lots of
toolboxes, some application-specific, some
third party, as well as a very large collection of
user-supplied software in the form of "M-files.’
These files can be macros (bundled list of
commands) or functions (where parameters
are passed and returned).

/
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http://www.mathworks.com/

Basic MATLAB features

Interactive interface —interpretive

Built-in editor for M-file building and testing
Rich collection of built-in mathematical and
statistical functions

Algorithms based on up-to-date code

Good collection of graphics options/editing
Versions available for many platforms
M-files are device-independent

MATLAB can take advantages of multicore
and parallel architectures
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MATLAB syntax

Case sensitive —assumes most quantities are
matrices

Most common errors are “shape” issues
Multiplications are assumed to be matrix
multiplications — term-by-term
multiplications require a “.” before the
operator. Example 1, see the notes.

Indices start at 1 (not zero)

Good help facility and docs online.
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Dynamic Modeling

Constructing a mathematical model for a
dynamic process can follow several paths

First Principle Models - where the "physics” of the
system dictates the form of the equations.

Example : equation of motion of a spring based on Hooke's
Law (restoring force proportional to amount of deformation)
and F=ma or a birth-and-death process.
Empirical Models — where data or observations
dictates the model within a class of possible models.

Examples : classical Box-Jenkins time series (ARIMA) models
or models based on a surface determined through regression.
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Example 1

Flip a fair coin. We would expect that
P(H)=PM)=1,

and that the previous result would not affect
the next. We can generate a sequence of H
and T or 1 and 2 by using a discrete uniform
random number generator (on MATLAB,
randi):

12 1 2 2 1 2 2 2 2
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Example 1 Continued

On the other hand, if one received a sequence
of numbers, a time series of 1's and 2's
without full knowledge about how it was
generated, then one might use what you
have

12 1 2 2 1 2 2 2 2
to suggest that the system that produced the
10 numbers seems to generate a "1"” 30 % of
the time and a “2" 70% of the time. Using this
would be an empirical model.
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Deterministic / Stochastic

Another decision in modeling is whether the
process is essentially deterministic (and
stochastic effects can be ignored) or one in which
stochastic effects are embedded in the dynamics.

The difference is usually in the assumption that

X..,=f(X ) wherethex,'s are measured with
error but that error does not affect the dynamics

(the measureable quantity y satisfies y=x+¢)
or X ,=Tf(x +&)or f(x)+e,

where the error does affect the dynamics (the
sequence of X’s).

SCTPLS Workshop -- July 2009



Additive Error vs Dynamic Error —

Example 2
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Lag one maps — Example 3

Alagimapisa See code in the notes
scatterplot of x(n+1) vs

x(n). T
If there is a functional |
relationship, this plot °
displays it (and any
noise present). 4

This example shows
that x(n+1)=mx(n)+b
for some mand b.
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In 1-d dynamics,

the lag one map is very useful

1 Discrete Logistic with mu=3.8 Discrete logistic lag one map. mu=3.8
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Another Possibility

Stochastic models can also be described
where there is no such function f. For instance,
the probability of the next value may be given by
a probability density function (pdf) depending
on the current or some other variable.

Examples: The extreme case is where the
sequence is a run of random numbers from the
same distribution. Here, the distribution does not
depend on the previous value or values.

Markov chains, where the distributions are
specified — in the empirical case by the immediate
past history of the data values.
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Example 4—random numbers

Suppose a coinis flipped. If a head, a
uniformly distributed random number on [0,1]
is produced. If a tail, a uniform random
Qumber on [0,2] is produced.
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Markov Chain Model Assumptions

Discrete time — discrete state

Order 1 (only the most recent past state value
determines the distribution of next values) — this
is the Markov assumption (previous history not
relevant).

If system is continuous state, need to define
what the states are (think histogram).

(for time homogeneous chains) The model is
specified by determining the transition
probabilities (by first principles or through data).
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The Transition Matrix P

Current state -> row.
Probability of next state -> columns
Each row represents a pdf given a current

value in that state. C L
1L {

P=| 5 0 5
.33 0 .67,
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Some linear algebra and MC facts

An nxn (square) matrix has n
eigenvalues (counting multiplicity)
With the transition matrix of a MC, 1 is
always an eigenvalue and all
eigenvalues are inside or on the unit
circle in the complex plane.

If there is only one eigenvalue on the
unit circle, there is a limit distribution.
This is the left eigenvector of 1.
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MATLAB eigenvectors/eigenvalues

>> [V,D]=eig(P')

V =
0.4934 0.1694
-0.8101 0.6070
0.3167 -0.7764

D-
-0.6091 0
0 0.2791

0.4825
0.4825
0.7310

0
0

0 0 1.0000

SCTPLS Workshop --

>> s=sum(V(1:3,3)) ;
(s = 1.6960)
>> V(1:3,3)/s
ans =
0.2845
0.2845
0.4310

This is the limit distribution or
the steady-state vector
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Generating a time series from a

transition matrix

Your CD contains a number of “"M-files.” In this

workshop, they will be indicated with bold when
used.

Using a Matlab m-file, starting with 1, 10 random
numbers based on the matrix P can be generated.

>> x=generate(1,P,10)
X=1 2 3 3 3 1 2 1 2 3

Each time this is executed, a different sequence will
result (all starting at 1).

SCTPLS Workshop -- July 2009



AR(1) time series — lag 1 map
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Building a transition matrix from data

To create a transition matrix from a time
series, one needs to first determine the
number of states. As in making a histogram,
the number of classes is important.

Within each class (row of the transition
matrix) one needs to determine what class
(column) the next value falls in. Keep a count.
Divide each row by the number of counts in
that row. If the number of counts is positive.
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The basic idea

With a lag 1 map, divide
the horizontal (x(n)) into
a number of classes.
Divide the vertical axis at
the same values.

Count the number of
data points in each
square

For each column, count
the fraction of the
counts in that column
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Building an Empirical Transition Matrix

0.8

>> Dt=transi(d,5)

n6F
bt = y 0.4F
0.3333 0.3333 0.3333 0 0 o2

0.1538 0.5128 0.2051 0.1282 0
X1 0.1379 0.3793 0.3448 0.0690 0.0690 "
0 0.4000 0.3000 0.2000 0.1000 4,

b 0 0 0.3333 0.1667 0.5000
0.4F

06

Note that the pattern of
nonzero values in the
transition matrix
suggests that the form
of the relationship f
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Regression on each row (“lag

regression”)

One can sometimes determine a potential
relationship between current and next values
if given a transition matrix — this assumes
that the next value is a function of the
previous.

The usual approach is for each row, compute
the mean next value —then do a regression
on these values. (For each row, look at (X, X) )
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Hidden Markov Models (HMM)

The idea here is that there is data "emissions”
observed in the system. It is expected ---
usually because other models did not fit — that
the observed values depend on the state of a
non-observed process.

In the HMM, the non-observed process is a MC.
To specify a HMM, one has a transition matrix
for the MC and a matrix of emission
probabilities — the probability of a particular
emission given the state of the MC

SCTPLS Workshop -- July 2009 27



Example 4

Suppose the MCin slide 18. There are 3
(hidden) states and a transition matrix P.
Suppose the emissions are 1 or 2 with
emission probabilities

emis=[.5,.5;1,0;0,1]

The MATLAB function hmmgenerate will
generate a sequence (of length len) of
emissions and associated states.

Note that this is our function generate if emis
is the identity matrix.
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HMM -- questions

From a sequence of emissions and states,
estimate the two matrices. This is done by
hmmestimate.

Given a sequence of emissions, estimate the
matrices — here you are guessing as to the
number of states in the MC. This is done by
hmmtrain.

Popular to answer: is a given sequence likely
to have been generated by a given process.
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Applications of these methods

Heart rate variability
Heart Image registratior
Bifurcation in 1-d dynamics
Spatial variation in the
microarray
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Heart Rate Variability

Heart Rate Variability (HRV) describes the
peat-to-beat variation in the time interval
between beats as seen on ECG. It is described
oy many different indices.

The variability is due to several different
control mechanisms in the systems.
Operation of the controls are affected by
drugs (specifically here, anesthesia)
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Motivation and Background

Pediatric patients undergoing surgery

The goal was to design a real-time monitor to
anticipate sudden cardiac arrest . Data had been

collected on several

patients and standard
indices did not behave
well as measures of |
HRV in several patients .~ 4

RR Interval

QRS éomplex
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The HRV data

2.5vyearold agirl e bo bl
y g .“g:moolllr‘p\q.}lm\ AL l’\'n'w"f"‘\‘\lew “‘““"\ / (\ r\”N &
LY IR A |
7.5 year old boy -- e

early phase with  zeoj, o
halothane il \

late phase with N

the addition of g 0

RR interval number
Figure 1 RR interval data from Patient 29 and Patient 55. In the analysis,

atro p I n e the second set will be divided into an early and late phase.
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Lag 1 Maps — HRV data
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Figure 3 Lag 1 plots for the three data sets. The Patient 29 pattern has been
described previously as a “complex pattern” (Woo et al. [1992]). Patient 55
early and late data plots would be classified as “torpedo patterns” by Woo et

al. [1992].
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Eigenvalues of HRV MC’s

All eigenvalues of
a Markov chain NV |
transition matrix T
lie in (or on) the =N/
unit circle.
Uniqueness of a i | paiemssias
modulus 1 S
eigenvalue means - /
the presence Of a h FOEH o, Besides the neasaces of the ‘“1 ?f;ii?;‘;g o |
limit distribution e
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Basic idea in the HRV example

Create an empirical Markov chain. Data is in the
form of sequence of numbers and lag 1 maps
indicate first order structure.

Need to define the bin size corresponding to the
length of the data set (usual number of bins used
was 10). Then estimating transition probabilities to
get a transition matrix. Note that many possible
transitions are not observed.

Transient aspects of t

asymptotic behavior).

dynamics (or the resu

ne chain are of interest (not
Characterization of the

ting matrix) is desired.

Basic idea is to use properties of the matrix (such as
eigenvalues) to distinguish between cases.
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Advantages/disadvantages of the

Markov chain model

Qualitative properties of the chain (e.qg.
eigenvalues or limit distribution) can be used
to characterize the data set or identify
changes in the data set.

Simulation of the chain can resultin an
unlimited number of sample paths with the
same dynamic behavior of the original set.
Transition matrix depends on the definition of
the "bins” and the number of them.

N states requires estimating N? probabilities
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Cardiac Image Registration

Shivani Ratnakumar

Register 2-d (real-time fluoroscope) to 3-d
(static 3-d CT) image to guide ablation
catheter in treatment of atrial fribrillation.
The selection of corresponding fiducial points
is difficult in the moving image (even with
gating for cardiac cycle and breathing)

The chaotic movement of points in the heart
make a model problematic. The thought was
to create an empirical Markov chain to
describe this movement.
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The Registration Problem

Three layered ECG gated fluoro frames Segmented CT image that will be registered
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Concentrating on the dynamics

ECG gated fluoro data -- triples of points, each forming a “cloud”
2d coordinate locations of three points were recorded across fluoro sequences

® Cloudl
® Cloud?
100 © Cloud3s
an} 1 2 3
ool (852,—618) (766,—844) (266,—177)
| (810,—562) (738,—806) (268, —164)
" ol \ | -" (848,—-608) (760,—836) (273,—174)
/%
AR
e
4 .‘
T
.,t'
:,:l_;“flf 3‘?(: a0 5?|'| &0 7 A X :r 0 'lil‘:
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Discretize the state space

® Cloudl
® Cloud?

- - 2 X
3 2 Cloud3 1
20l 1 r
4

o
(N

NN T N i S
.

f

&0 3 l"'\.
g 3
70} 4%
2, *
00}
00k L _
o
" wm @ = @ w @ W Sequence of coordinate points

triplets can be written as a
sequence of state triplets
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Building a Transition Matrix

W_ 17

For each row, there is a probability thata “1” in
cloud 1 is associated with a "1" in cloud 2.
Similarly for cloud 2 to cloud 3 and cloud3 to
cloud 1 in the next row (next time). Compute
these probability from the data (~30 rows).
From these matrices, compute cloud 1 to cloud
1 one step transition probabilities (details
omitted).

This 1 -> 1 matrixis a description of the motion
of that area of the heart.

This was used (through the limit distribution of
that matrix) to find a well-defined fiducial point.

SCTPLS Workshop -- July 2009 42



Using Markov Chains to study

chaotic systems

Example: bifurcation in the discrete logistic equation:

Xn+1:1an(1_Xn) OSIL[SZI-

Summary of behavior: X = Q is always an equilibrium,
stableif u<1.

x=1-1 isan equilibrium that is stable whenl< 1 <3
Y7

-- then the fun starts.
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Transition matrix

]
09f B

1 - - - * B
0.a u 21 - - J

3 - - -
0.7 B

4+ * B
06| . gL .
D5 B . 4

7 - » |
0.4H

a » - - 4
03y H 9F - - - -

10 - - - - _
0D2F

11 1 1 1 1 1

2 4 B 8 10
0.1 1 1 1 1 1 1 1 1 | nzr =23
0 10 20 30 40 20 B0 70 a0 90 100

Nonzero entries in the transition matrix
with 10 states M= 38
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Bifurcation in Markov Chains

One can use the empirical chain to detect bifurcations.
In this case, the bifurcation at #=3 to a period 2
point. This is done through the eigenvalues of the
transition matrix.

Facts: 1 is always an eigenvalue and others are on or
iInside the unit circle. If 1 is the only eigenvalue of
magnitude 1, there is a unique limit distribution.

Loss of the unigue limit distribution and establishment
of a new one Is the indication of a bifurcation in the
system.

As a parameter changes, look for eigenvalue(s)
approaching the unit circle.
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Bifurcation to a period 2 point

Transition matrix computed with 10 states at
w1 =2.9,3.0,and 3.05

At 2.9, {-.81, .81, 1, lots of 0's}

At 3.0, {-.92,.917, 1, lots of 0’s}

At 3.05, {-1,1, lots of o’s}

From the above, it appears that a bifurcation
took place just before 3.05. Moreover,
because of the -1, it is a period 2 point.
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Spatial variation in the cDNA microarray

cDNA microarray used to identify genes that
are differentially under or over expressed in a
sample (as seen through mRNA).
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Some details of the process

the slide or chip is printed with a library of genes
including those of special interest

collect mRNA under two different conditions. Using
RT and two different fluorescent dies, samples of
labeled (“red” and “green”) DNA are produced.
incubate the samples with the slide under a cover

slip. RIS

scan the result to measure the amount of red and
green fluorescence at each spot to measure the
relative amount of mRNA present in the two
samples.
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Motivation

High variability -- both
between replicates and
within the same slide
(with duplicated
specificities in dots).
Spatial variation in the
brightness observed
(“bright edges”)

Need to understand
the proper
normalization for this
process
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Construction of the MC chains

Using the natural grid of
positions on aslide, a
Markov chain P
corresponding to each of > 3
the 16,000 dots is
constructed. The goal
being to compute the
probability of absorption 075mm
as a function of the
transition number.

The transition
probabilities are based
on the “taxi-cab” metric
on the grid.
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Summary

Empirical Markov chains can be employed
without specifically knowing the (functional)
nature of the dynamics.

Having a Markov chain model enables one to
simulated the process — generating new time
series with the same properties as the original.
The transition matrices especially the limit
distribution and eigenvalues contain useful
information on the process.
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