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 Using Markov chains as general tools for building 
and analyzing models and time series is described. 

 What is new here (and not published) is the 
application of these tools to analyze the dynamical 
behavior of simple systems – including deducing the 
structure of the system and possible bifurcation 
behavior.

 These systems are richer than the classic  chaotic 
systems  in that all 1-d dynamical systems can be 
described by these methods, but not all Markov 
chains can be seen as a 1-d system. In addition, the 
system is allowed to contain noise.
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 Some MATLAB. We will depend heavily on the 
standard MATLAB features – supplementing 
with M-files provided on your CD.

 Some of the features of Markov chain models –
simulating a given model and estimating a 
model from a time series.

 Analyzing chaotic time series that may or may 
not contain noise. Also, the role of noise can be 
evaluated in some cases.

 Hidden Markov Models. This workshop uses 
tools in the Statistics toolbox of MATLAB.
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 Introduction to MATLAB 
 Models of dynamics
 Examples of Markov chains (MC)
 Eigenvalues, stationary vectors, and limit 

distributions
 Estimating transition probabilities from a time 

series & simulating a given MC
 Hidden Markov Models (HMM)
 Applications of this technique
 Summary and References
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 MATLAB is the primary product of the 
Mathworks (http://www.mathworks.com) , in 
business since 1984. 

 MATLAB consists of a base and lots of 
toolboxes, some application-specific, some 
third party, as well as a very large collection of 
user-supplied software in the form of “M-files.” 
These files can be macros (bundled list of 
commands) or functions (where parameters 
are passed and returned).
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 Interactive interface – interpretive 
 Built-in editor for M-file building and testing
 Rich collection of built-in mathematical and 

statistical functions 
 Algorithms based on up-to-date code
 Good collection of graphics options/editing
 Versions available for many platforms  
 M-files are device-independent
 MATLAB can take advantages of multicore

and parallel architectures
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 Case sensitive – assumes most quantities are 
matrices

 Most common errors are “shape” issues
 Multiplications are assumed to be matrix 

multiplications – term-by-term 
multiplications require a “.” before the 
operator. Example 1, see the notes.

 Indices start at 1 (not zero)
 Good help facility and docs online.
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 Constructing a mathematical model for a 
dynamic process can follow several paths

 First Principle Models - where the “physics” of the 
system dictates the form of the equations.

▪ Example : equation of motion of a spring based on Hooke’s 
Law (restoring force proportional to amount of deformation) 
and F=ma or a birth-and-death process.

 Empirical Models – where data or observations 
dictates the model within a class of possible models.

▪ Examples : classical Box-Jenkins time series (ARIMA) models 
or models based on a surface determined through regression.
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 Flip a fair coin. We would expect that

and that the previous result would not affect 
the next.  We can generate a sequence of H 
and T or 1 and 2 by using a discrete uniform 
random number generator (on MATLAB, 
randi):

1     2     1     2     2     1     2     2     2     2
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 On the other hand, if one received a sequence 
of numbers, a time series of 1’s and 2’s 
without full knowledge about how it was 
generated, then one might use what you 
have

1     2     1     2     2     1     2     2     2     2
to suggest that the system that produced the 
10 numbers seems to generate a “1” 30 % of 
the time and a “2” 70% of the time. Using this 
would be an empirical model.
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 Another decision in modeling is whether the 
process is essentially deterministic (and 
stochastic effects can be ignored) or one in which 
stochastic effects are embedded in the dynamics.

 The difference is usually in the assumption that

where the           are measured with 
error but that error does not affect the dynamics

( the measureable quantity y satisfies y=x+ε )

or 

where the error does affect the dynamics (the 
sequence of x’s).
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 A lag 1 map is a 
scatterplot of x(n+1) vs
x(n).

 If there is a functional 
relationship, this plot 
displays it (and any 
noise present).

 This example shows 
that x(n+1)=mx(n)+b 
for some m and b.

 See code in the notes

SCTPLS Workshop -- July 2009 13

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

12

14

16

x(n)

x
(n

+
1
)



SCTPLS Workshop -- July 2009 14

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

x
(n

)

Discrete Logistic with mu=3.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(n)

x
(n

+
1
)

Discrete logistic lag one map. mu=3.8



 Stochastic models can also be described 
where there is no such function f. For instance, 
the probability of the next value may be given by 
a probability density function (pdf) depending 
on the current or some other variable.
 Examples: The extreme case is where the 

sequence is a run of random numbers from the 
same distribution. Here, the distribution does not 
depend on the previous value or values.
Markov chains, where the distributions are 
specified – in the empirical case by the immediate 
past history of the data values.
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 Suppose a coin is flipped. If a head, a 
uniformly distributed random number on [0,1] 
is produced. If a tail, a uniform random 
number on [0,2] is produced. 
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 Discrete time – discrete state
 Order  1 (only the most recent past state value 

determines the distribution of next values) – this 
is the Markov assumption (previous history not 
relevant).  

 If system is continuous state, need to define 
what the states are (think histogram).

 (for time homogeneous chains) The model is 
specified by determining the transition 
probabilities (by first principles or through data). 
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 Current state -> row. 
 Probability of next state -> columns
 Each row represents a pdf given a current 

value in that state.
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 An nxn (square) matrix has n 
eigenvalues (counting multiplicity)

 With the transition matrix of a MC, 1 is 
always an eigenvalue and all 
eigenvalues are inside or on the unit 
circle in the complex plane.

 If there is only one eigenvalue on the 
unit circle, there is a limit distribution.

 This is the left eigenvector of 1.
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>> [V,D]=eig(P')

V =
0.4934    0.1694    0.4825
-0.8101    0.6070    0.4825
0.3167   -0.7764    0.7310

D =
-0.6091         0         0

0    0.2791         0
0         0    1.0000

>> s=sum(V(1:3,3)) ;
(s = 1.6960)

>> V(1:3,3)/s
ans =

0.2845
0.2845
0.4310

This is the limit distribution or 
the steady-state vector
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 Your CD contains a number of “M-files.” In this 
workshop, they will be indicated with bold when 
used. 

 Using a Matlab m-file, starting with 1, 10 random 
numbers based on the matrix P can be generated. 

 >> x=generate(1,P,10)
x =   1     2     3     3     3     1     2     1     2     3

Each time this is executed, a different sequence will 
result (all starting at 1).
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 To create a transition matrix from a time 
series, one needs to first determine the 
number of states. As in making a histogram, 
the number of classes is important.

 Within each class  (row of the transition 
matrix) one needs to determine what class  
(column) the next value falls in.  Keep a count.

 Divide each row by the number of counts in 
that row. If the number of counts is positive.
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 With a lag 1 map, divide 
the horizontal (x(n)) into 
a number of classes. 
Divide the vertical axis at 
the same values.

 Count the number of 
data points in each 
square

 For each column, count 
the fraction of the 
counts in that column
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>> Dt=transi(d,5)

Dt =

0.3333    0.3333    0.3333         0         0

0.1538    0.5128    0.2051    0.1282         0

0.1379    0.3793    0.3448    0.0690    0.0690

0    0.4000    0.3000    0.2000    0.1000

0         0    0.3333    0.1667    0.5000

Note that the pattern of 
nonzero values in the 
transition matrix  
suggests that the form 
of the relationship  f 

y

x

y

x



 One can sometimes determine a potential 
relationship between current and next values 
if given a transition matrix – this assumes 
that the next value is a function of the 
previous. 

 The usual approach is for each row, compute 
the mean next value – then do a regression 
on these values. (For each row, look at            )
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 The idea here is that there is data “emissions” 
observed in the system. It is expected ---
usually because other models did not fit – that 
the observed values depend on the state of a 
non-observed process. 

 In the HMM, the non-observed process is a MC. 
 To specify a HMM, one has a transition matrix 

for the MC and a matrix of emission 
probabilities – the probability of a particular 
emission given the state of the MC
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 Suppose the MC in slide 18. There are 3 
(hidden) states and a transition matrix P.

 Suppose the emissions are 1 or 2 with 
emission probabilities

 emis=[.5,.5;1,0;0,1]
 The MATLAB function hmmgenerate will 

generate a sequence (of length len) of 
emissions and associated states.

 Note that this is our function generate if emis
is the identity matrix.

SCTPLS Workshop -- July 2009 28



 From a sequence of emissions and states, 
estimate the two matrices. This is done by 
hmmestimate. 

 Given a sequence of emissions, estimate the 
matrices – here you are guessing as to the 
number of states in the MC. This is done by 
hmmtrain.

 Popular to answer: is a given sequence likely 
to have been generated by a given process.

SCTPLS Workshop -- July 2009 29



Heart rate variability
Heart image registration
Bifurcation in 1-d dynamics
Spatial variation in the 

microarray
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 Heart Rate Variability (HRV) describes the 
beat-to-beat variation in the time interval 
between beats as seen on ECG. It is described 
by many different indices.

 The variability is due to several different 
control mechanisms in the systems.

 Operation of the controls are affected by 
drugs (specifically here, anesthesia)
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 Pediatric patients undergoing surgery

 The goal was to design a real-time monitor to 
anticipate sudden cardiac arrest . Data had been
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collected on several 
patients and standard 
indices did not behave 
well as measures of 
HRV in several patients
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2.5 year old girl

7.5 year old boy --

early phase with 

halothane

late phase with 

the addition of 

atropine
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 All eigenvalues of 

a Markov chain 

transition matrix 

lie in (or on) the 

unit circle. 

Uniqueness of a 

modulus 1 

eigenvalue means 

the presence of a 

limit distribution
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 Create an empirical Markov chain. Data is in the 
form of sequence of numbers and lag 1 maps 
indicate first order structure.

 Need to define the bin size corresponding to the 
length of the data set (usual number of bins used 
was 10). Then estimating transition probabilities to 
get a transition matrix. Note that many possible 
transitions are not observed.

 Transient aspects of the chain are of interest (not 
asymptotic behavior). Characterization of the 
dynamics (or the resulting matrix) is desired.

 Basic idea is to use properties of the matrix (such as 
eigenvalues) to distinguish between cases.
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 Qualitative properties of the chain (e.g. 
eigenvalues or limit distribution) can be used 
to characterize the data set or identify 
changes in the data set.

 Simulation of the chain can result in an 
unlimited number of sample paths with the 
same dynamic behavior of the original set.

 Transition matrix depends on the definition of 
the “bins” and the number of them.

 N states requires estimating N2 probabilities
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 Register 2-d (real-time fluoroscope) to 3-d 
(static 3-d CT) image to guide ablation 
catheter in treatment of atrial fribrillation.

 The selection of corresponding fiducial points 
is difficult in the moving image (even with 
gating for cardiac cycle and breathing)

 The chaotic movement of points in the heart 
make a model problematic. The thought was 
to create an empirical Markov chain to 
describe this movement.
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Three layered ECG gated fluoro frames Segmented CT image that will be registered
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1                  2               3

ECG gated fluoro data  -- triples of points, each forming a “cloud”
2d coordinate locations of three points were recorded across fluoro sequences
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Sequence of coordinate points 
triplets can be  written as a 
sequence of state triplets



 For each row, there is a probability that a “1” in 
cloud 1 is associated with a “1” in cloud 2. 
Similarly for cloud 2 to cloud 3 and cloud3 to 
cloud 1 in the next row (next time). Compute 
these probability from the data (~30 rows).

 From these matrices, compute cloud 1 to cloud 
1 one step transition probabilities (details 
omitted).

 This 1 -> 1 matrix is a description of the motion 
of that area of the heart.

 This was used (through the limit distribution of 
that matrix) to find a well-defined fiducial point.
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 Example: bifurcation in the discrete logistic equation: 

 Summary of behavior: is always an equilibrium, 
stable if             .

is an equilibrium that is stable when

SCTPLS Workshop -- July 2009 43

40    )1( 1   nnn xxx

0x
1



1
1x 31  

-- then the fun starts.
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8.3
Nonzero entries in the transition matrix 
with 10  states



 One can use the empirical chain to detect bifurcations. 

In this case, the bifurcation at              to a period 2 

point. This is done through the eigenvalues of the 

transition matrix.

 Facts: 1 is always an eigenvalue and others are on or 

inside the unit circle. If 1 is the only eigenvalue of 

magnitude 1, there is a unique limit distribution.

 Loss of the unique limit distribution and establishment 

of a new one is the indication of a bifurcation in the 

system.

 As a parameter changes, look for eigenvalue(s) 

approaching the unit circle.
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 Transition matrix computed with 10 states at

 At 2.9, {-.81, .81, 1, lots of 0’s}
 At 3.0, {-.92,.917, 1, lots of 0’s}
 At 3.05, {-1,1, lots of 0’s}
 From the above, it appears that a bifurcation 

took place just before 3.05. Moreover, 
because of the -1, it is a period 2 point. 

SCTPLS Workshop -- July 2009 46

05.3 and ,0.3 ,9.2



 cDNA microarray used to identify genes that 
are differentially under or over expressed in a 
sample (as seen through mRNA). 
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 the slide or chip is printed with a library of genes 
including those of special interest

 collect mRNA under two different conditions. Using 
RT and two different fluorescent dies, samples of 
labeled (“red” and “green”) DNA are produced.

 incubate the samples with the slide under a cover 
slip.

 scan the result to measure the amount of red and 
green fluorescence at each spot to measure the 
relative amount of mRNA present in the two 
samples.
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 High variability -- both 
between replicates and 
within the same slide 
(with duplicated 
specificities in dots).

 Spatial variation in the 
brightness observed 
(“bright edges”)

 Need to understand 
the proper 
normalization for this 
process 
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 Using the natural grid of 
positions on a slide, a 
Markov chain 
corresponding to each of 
the 16,000 dots is 
constructed. The goal 
being to compute the 
probability of absorption 
as a function of the 
transition number.

 The transition 
probabilities are based 
on the “taxi-cab” metric 
on the grid. 
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 Empirical Markov chains can be employed 
without specifically knowing the (functional) 
nature of the dynamics.

 Having a Markov chain model enables one to 
simulated the process – generating new time 
series with the same properties as the original.

 The transition matrices especially the limit 
distribution and eigenvalues contain useful 
information on the process. 
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