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 Using Markov chains as general tools for building 
and analyzing models and time series is described. 

 What is new here (and not published) is the 
application of these tools to analyze the dynamical 
behavior of simple systems – including deducing the 
structure of the system and possible bifurcation 
behavior.

 These systems are richer than the classic  chaotic 
systems  in that all 1-d dynamical systems can be 
described by these methods, but not all Markov 
chains can be seen as a 1-d system. In addition, the 
system is allowed to contain noise.
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 Some MATLAB. We will depend heavily on the 
standard MATLAB features – supplementing 
with M-files provided on your CD.

 Some of the features of Markov chain models –
simulating a given model and estimating a 
model from a time series.

 Analyzing chaotic time series that may or may 
not contain noise. Also, the role of noise can be 
evaluated in some cases.

 Hidden Markov Models. This workshop uses 
tools in the Statistics toolbox of MATLAB.
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 Introduction to MATLAB 
 Models of dynamics
 Examples of Markov chains (MC)
 Eigenvalues, stationary vectors, and limit 

distributions
 Estimating transition probabilities from a time 

series & simulating a given MC
 Hidden Markov Models (HMM)
 Applications of this technique
 Summary and References
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 MATLAB is the primary product of the 
Mathworks (http://www.mathworks.com) , in 
business since 1984. 

 MATLAB consists of a base and lots of 
toolboxes, some application-specific, some 
third party, as well as a very large collection of 
user-supplied software in the form of “M-files.” 
These files can be macros (bundled list of 
commands) or functions (where parameters 
are passed and returned).
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 Interactive interface – interpretive 
 Built-in editor for M-file building and testing
 Rich collection of built-in mathematical and 

statistical functions 
 Algorithms based on up-to-date code
 Good collection of graphics options/editing
 Versions available for many platforms  
 M-files are device-independent
 MATLAB can take advantages of multicore

and parallel architectures
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 Case sensitive – assumes most quantities are 
matrices

 Most common errors are “shape” issues
 Multiplications are assumed to be matrix 

multiplications – term-by-term 
multiplications require a “.” before the 
operator. Example 1, see the notes.

 Indices start at 1 (not zero)
 Good help facility and docs online.
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 Constructing a mathematical model for a 
dynamic process can follow several paths

 First Principle Models - where the “physics” of the 
system dictates the form of the equations.

▪ Example : equation of motion of a spring based on Hooke’s 
Law (restoring force proportional to amount of deformation) 
and F=ma or a birth-and-death process.

 Empirical Models – where data or observations 
dictates the model within a class of possible models.

▪ Examples : classical Box-Jenkins time series (ARIMA) models 
or models based on a surface determined through regression.
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 Flip a fair coin. We would expect that

and that the previous result would not affect 
the next.  We can generate a sequence of H 
and T or 1 and 2 by using a discrete uniform 
random number generator (on MATLAB, 
randi):

1     2     1     2     2     1     2     2     2     2

SCTPLS Workshop -- July 2009 9

2
1)()(  TPHP



 On the other hand, if one received a sequence 
of numbers, a time series of 1’s and 2’s 
without full knowledge about how it was 
generated, then one might use what you 
have

1     2     1     2     2     1     2     2     2     2
to suggest that the system that produced the 
10 numbers seems to generate a “1” 30 % of 
the time and a “2” 70% of the time. Using this 
would be an empirical model.
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 Another decision in modeling is whether the 
process is essentially deterministic (and 
stochastic effects can be ignored) or one in which 
stochastic effects are embedded in the dynamics.

 The difference is usually in the assumption that

where the           are measured with 
error but that error does not affect the dynamics

( the measureable quantity y satisfies y=x+ε )

or 

where the error does affect the dynamics (the 
sequence of x’s).
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 A lag 1 map is a 
scatterplot of x(n+1) vs
x(n).

 If there is a functional 
relationship, this plot 
displays it (and any 
noise present).

 This example shows 
that x(n+1)=mx(n)+b 
for some m and b.

 See code in the notes
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 Stochastic models can also be described 
where there is no such function f. For instance, 
the probability of the next value may be given by 
a probability density function (pdf) depending 
on the current or some other variable.
 Examples: The extreme case is where the 

sequence is a run of random numbers from the 
same distribution. Here, the distribution does not 
depend on the previous value or values.
Markov chains, where the distributions are 
specified – in the empirical case by the immediate 
past history of the data values.
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 Suppose a coin is flipped. If a head, a 
uniformly distributed random number on [0,1] 
is produced. If a tail, a uniform random 
number on [0,2] is produced. 
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 Discrete time – discrete state
 Order  1 (only the most recent past state value 

determines the distribution of next values) – this 
is the Markov assumption (previous history not 
relevant).  

 If system is continuous state, need to define 
what the states are (think histogram).

 (for time homogeneous chains) The model is 
specified by determining the transition 
probabilities (by first principles or through data). 
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 Current state -> row. 
 Probability of next state -> columns
 Each row represents a pdf given a current 

value in that state.
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 An nxn (square) matrix has n 
eigenvalues (counting multiplicity)

 With the transition matrix of a MC, 1 is 
always an eigenvalue and all 
eigenvalues are inside or on the unit 
circle in the complex plane.

 If there is only one eigenvalue on the 
unit circle, there is a limit distribution.

 This is the left eigenvector of 1.
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>> [V,D]=eig(P')

V =
0.4934    0.1694    0.4825
-0.8101    0.6070    0.4825
0.3167   -0.7764    0.7310

D =
-0.6091         0         0

0    0.2791         0
0         0    1.0000

>> s=sum(V(1:3,3)) ;
(s = 1.6960)

>> V(1:3,3)/s
ans =

0.2845
0.2845
0.4310

This is the limit distribution or 
the steady-state vector
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 Your CD contains a number of “M-files.” In this 
workshop, they will be indicated with bold when 
used. 

 Using a Matlab m-file, starting with 1, 10 random 
numbers based on the matrix P can be generated. 

 >> x=generate(1,P,10)
x =   1     2     3     3     3     1     2     1     2     3

Each time this is executed, a different sequence will 
result (all starting at 1).
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 To create a transition matrix from a time 
series, one needs to first determine the 
number of states. As in making a histogram, 
the number of classes is important.

 Within each class  (row of the transition 
matrix) one needs to determine what class  
(column) the next value falls in.  Keep a count.

 Divide each row by the number of counts in 
that row. If the number of counts is positive.
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 With a lag 1 map, divide 
the horizontal (x(n)) into 
a number of classes. 
Divide the vertical axis at 
the same values.

 Count the number of 
data points in each 
square

 For each column, count 
the fraction of the 
counts in that column

SCTPLS Workshop -- July 2009 24



SCTPLS Workshop -- July 2009 25

>> Dt=transi(d,5)

Dt =

0.3333    0.3333    0.3333         0         0

0.1538    0.5128    0.2051    0.1282         0

0.1379    0.3793    0.3448    0.0690    0.0690

0    0.4000    0.3000    0.2000    0.1000

0         0    0.3333    0.1667    0.5000

Note that the pattern of 
nonzero values in the 
transition matrix  
suggests that the form 
of the relationship  f 

y

x

y

x



 One can sometimes determine a potential 
relationship between current and next values 
if given a transition matrix – this assumes 
that the next value is a function of the 
previous. 

 The usual approach is for each row, compute 
the mean next value – then do a regression 
on these values. (For each row, look at            )
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 The idea here is that there is data “emissions” 
observed in the system. It is expected ---
usually because other models did not fit – that 
the observed values depend on the state of a 
non-observed process. 

 In the HMM, the non-observed process is a MC. 
 To specify a HMM, one has a transition matrix 

for the MC and a matrix of emission 
probabilities – the probability of a particular 
emission given the state of the MC
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 Suppose the MC in slide 18. There are 3 
(hidden) states and a transition matrix P.

 Suppose the emissions are 1 or 2 with 
emission probabilities

 emis=[.5,.5;1,0;0,1]
 The MATLAB function hmmgenerate will 

generate a sequence (of length len) of 
emissions and associated states.

 Note that this is our function generate if emis
is the identity matrix.
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 From a sequence of emissions and states, 
estimate the two matrices. This is done by 
hmmestimate. 

 Given a sequence of emissions, estimate the 
matrices – here you are guessing as to the 
number of states in the MC. This is done by 
hmmtrain.

 Popular to answer: is a given sequence likely 
to have been generated by a given process.
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Heart rate variability
Heart image registration
Bifurcation in 1-d dynamics
Spatial variation in the 

microarray
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 Heart Rate Variability (HRV) describes the 
beat-to-beat variation in the time interval 
between beats as seen on ECG. It is described 
by many different indices.

 The variability is due to several different 
control mechanisms in the systems.

 Operation of the controls are affected by 
drugs (specifically here, anesthesia)
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 Pediatric patients undergoing surgery

 The goal was to design a real-time monitor to 
anticipate sudden cardiac arrest . Data had been
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collected on several 
patients and standard 
indices did not behave 
well as measures of 
HRV in several patients
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2.5 year old girl

7.5 year old boy --

early phase with 

halothane

late phase with 

the addition of 

atropine
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 All eigenvalues of 

a Markov chain 

transition matrix 

lie in (or on) the 

unit circle. 

Uniqueness of a 

modulus 1 

eigenvalue means 

the presence of a 

limit distribution
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 Create an empirical Markov chain. Data is in the 
form of sequence of numbers and lag 1 maps 
indicate first order structure.

 Need to define the bin size corresponding to the 
length of the data set (usual number of bins used 
was 10). Then estimating transition probabilities to 
get a transition matrix. Note that many possible 
transitions are not observed.

 Transient aspects of the chain are of interest (not 
asymptotic behavior). Characterization of the 
dynamics (or the resulting matrix) is desired.

 Basic idea is to use properties of the matrix (such as 
eigenvalues) to distinguish between cases.
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 Qualitative properties of the chain (e.g. 
eigenvalues or limit distribution) can be used 
to characterize the data set or identify 
changes in the data set.

 Simulation of the chain can result in an 
unlimited number of sample paths with the 
same dynamic behavior of the original set.

 Transition matrix depends on the definition of 
the “bins” and the number of them.

 N states requires estimating N2 probabilities
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 Register 2-d (real-time fluoroscope) to 3-d 
(static 3-d CT) image to guide ablation 
catheter in treatment of atrial fribrillation.

 The selection of corresponding fiducial points 
is difficult in the moving image (even with 
gating for cardiac cycle and breathing)

 The chaotic movement of points in the heart 
make a model problematic. The thought was 
to create an empirical Markov chain to 
describe this movement.
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Three layered ECG gated fluoro frames Segmented CT image that will be registered
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1                  2               3

ECG gated fluoro data  -- triples of points, each forming a “cloud”
2d coordinate locations of three points were recorded across fluoro sequences
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Sequence of coordinate points 
triplets can be  written as a 
sequence of state triplets



 For each row, there is a probability that a “1” in 
cloud 1 is associated with a “1” in cloud 2. 
Similarly for cloud 2 to cloud 3 and cloud3 to 
cloud 1 in the next row (next time). Compute 
these probability from the data (~30 rows).

 From these matrices, compute cloud 1 to cloud 
1 one step transition probabilities (details 
omitted).

 This 1 -> 1 matrix is a description of the motion 
of that area of the heart.

 This was used (through the limit distribution of 
that matrix) to find a well-defined fiducial point.
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 Example: bifurcation in the discrete logistic equation: 

 Summary of behavior: is always an equilibrium, 
stable if             .

is an equilibrium that is stable when

SCTPLS Workshop -- July 2009 43

40    )1( 1   nnn xxx

0x
1



1
1x 31  

-- then the fun starts.



SCTPLS Workshop -- July 2009 44

8.3
Nonzero entries in the transition matrix 
with 10  states



 One can use the empirical chain to detect bifurcations. 

In this case, the bifurcation at              to a period 2 

point. This is done through the eigenvalues of the 

transition matrix.

 Facts: 1 is always an eigenvalue and others are on or 

inside the unit circle. If 1 is the only eigenvalue of 

magnitude 1, there is a unique limit distribution.

 Loss of the unique limit distribution and establishment 

of a new one is the indication of a bifurcation in the 

system.

 As a parameter changes, look for eigenvalue(s) 

approaching the unit circle.
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 Transition matrix computed with 10 states at

 At 2.9, {-.81, .81, 1, lots of 0’s}
 At 3.0, {-.92,.917, 1, lots of 0’s}
 At 3.05, {-1,1, lots of 0’s}
 From the above, it appears that a bifurcation 

took place just before 3.05. Moreover, 
because of the -1, it is a period 2 point. 
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 cDNA microarray used to identify genes that 
are differentially under or over expressed in a 
sample (as seen through mRNA). 
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 the slide or chip is printed with a library of genes 
including those of special interest

 collect mRNA under two different conditions. Using 
RT and two different fluorescent dies, samples of 
labeled (“red” and “green”) DNA are produced.

 incubate the samples with the slide under a cover 
slip.

 scan the result to measure the amount of red and 
green fluorescence at each spot to measure the 
relative amount of mRNA present in the two 
samples.
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 High variability -- both 
between replicates and 
within the same slide 
(with duplicated 
specificities in dots).

 Spatial variation in the 
brightness observed 
(“bright edges”)

 Need to understand 
the proper 
normalization for this 
process 
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 Using the natural grid of 
positions on a slide, a 
Markov chain 
corresponding to each of 
the 16,000 dots is 
constructed. The goal 
being to compute the 
probability of absorption 
as a function of the 
transition number.

 The transition 
probabilities are based 
on the “taxi-cab” metric 
on the grid. 
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 Empirical Markov chains can be employed 
without specifically knowing the (functional) 
nature of the dynamics.

 Having a Markov chain model enables one to 
simulated the process – generating new time 
series with the same properties as the original.

 The transition matrices especially the limit 
distribution and eigenvalues contain useful 
information on the process. 
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