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The State of the Science of Nonlinear Dynamics in 1963 
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Abstract: When Edward Lorenz published his paper in 1963 on the deterministic 
nonperiodic solutions present in what is now called the “Lorenz Equations,” he 
did so in the context of a rich theory of nonlinear dynamics beginning with the 
work of Poincaré. Here we trace the influences present in his work as well as 
provide a snapshot of the nonlinear world in 1963 to explain why his paper had 
such a pervasive effect on the science of nonlinear dynamics and its 
applications. In doing this, we also discover the critical timing of the 
development of the computer in this effort. 
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INTRODUCTION 

 In Lorenz (1963), the author, through his references and the style of 
exposition, acknowledged three primary mathematical sources that were central 
to his study of nonlinear dynamics of solutions to his model. The first was Henri 
Poincaré, a Frenchman who worked at the end of the 19th century and beginning 
of the 20th. Poincaré’s papers, essays, and books motivated the study of what 
appeared to be (and were) challenges to the dogma that the determinism of 
Newtonian mechanics ruled all things. He also established the field of topology 
and showed its power through studies of nonlinear systems. The second was G. 
D. Birkhoff, who took Poincaré’s ideas and extended them in new directions, 
and established the discipline of “dynamical systems.” It is said that Birkhoff 
was the first American-trained great mathematician.  The last was the book by 
Nemytskii and Stepanov, written in 1949 in Russian, which provided the 
specific mathematical language of Lorenz’s remarkable paper (an English 
translation having appeared in 1960). 
 In this paper, those influences are traced to describe a remarkably 
international effort to describe the unusual dynamics in examples arising in 
celestial mechanics, electronics, hydrodynamics, weather, and ecology. There 
are some marvelous and valuable surveys of this effort and time. Especially 
noted are Lorenz (1995), Holmes (2005), and Smale (1998). There were many 
players in this effort, and each has a unique and valuable viewpoint as to the 
state  of  this  system  in  1963  – in  preparation  for  the explosion which was to  
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Fig 1. Timeline of the development of nonlinear dynamics from 1863-1963.  
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happen. There is also another parallel story which will be described, and that is 
the development of the computer. The availability of the digital computer has 
proven indispensible both to the discovery of nonlinear phenomena and its 
exploration by later investigators (and artists). 

A MAP OF THE DEVELOPMENT OF THE  
SCIENCE OF NONLINEAR DYNAMICS 

 In Fig. 1, the development of ideas from 1890-1963 is traced 
(dependencies were determined by examining the references and discussions of 
the authors in their fundamental papers and books). In this manner, the time 
course of the development of the ideas can be determined. Most of the primary 
ideas present in nonlinear dynamics today can be seen to be in place in 1963. 
The idea of sensitive dependence on initial conditions was from Poincaré, 
recognized through his description of the importance of hyperbolic structures. 
The presence of what we now see is chaos is often demonstrated by showing the 
presence of the (Smale) horseshoe – discovered by Smale through study of the 
work on the forced van der Pol equation by Cartwright and Littlewood (1945), 
and Levinson (1949; Coddington & Levinson, 1955). Hopf had described the 
bifurcation of solutions in 1942 broadening the study of systems with a 
parameter to include the bifurcation diagram. The study of iterated functions by 
Sarkovskii described the path of bifurcations to chaos in an iterated system, seen 
later by May (in the discrete logistic equation) and then Li and Yorke who 
coined the word “chaos” to describe the nature of the behavior of the solutions 
when parameters were in the right range. Fractals had been recognized by 
Mandelbrot first in 1963, building on the ideas of Fatou (1917, 1918) and Julia 
(1918) from the period after WWI. His graphical study of those phenomena 
began at that time – eventually made possible by access to unlimited computing 
resources at IBM.  
 Figure 1 greatly simplifies the whole picture, but it does indicate the 
world-wide nature of the work and the energy present in that effort. The role of 
the computer and the resulting graphics on highlighting the importance of 
Lorenz’s work (and later that of Mandelbrot, 1977) cannot be overestimated.  

Lorenz reports that the simulations he reported were computed on a 
Royal McBee LGP-30, a single-user desk computer (it took up the whole desk) 
made by Royal Typewriter. It weighed 800 pounds and used of over a hundred 
electronic tubes and over a thousand diodes in its circuit boards. It is probable 
that the tubes themselves acted in a chaotic manner as shown by van der Pol and 
van der Mark, (1927). The main memory was 4096 words. The computer is 
shown in Figs. 2 and 3 from an advertisement and a brochure. The story of this 
computer, the first “personal” computer, is an important related story. 

The LGP-30 was designed by Stan Frankel while at Cal Tech in the 
early 1950s. A summary of his career can be found in Liebson (2006). Frankel 
was a post doctoral fellow with Oppenheimer at Los Alamos during the Man-
hattan  Project.  In  that  position,  he  interacted with all of the famous scientists 
present in that place. He also was central to the effort of trying to accomplish the 
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Fig. 2. The Royal McBee LGP-30. Top part of the ad from the March 1957 issue 
of  IRE Transactions on Electronic Computers.  

to test the ideas of Teller in the development of the hydrogen bomb. At that 
time, in 1945, the ENIAC was becoming available for use. Before that, the most 
powerful calculation aid in T division was an IBM card tabulation machine. 
After the war, developing a simple personal computer for scientific use was an 
obsession for Frankel. His development of the MINAC, marketed as the LGP-30 
was described in 1957 (Frankel, 1957). The advertisement for the LGP-30 in 
that issue was a full page, with a drawing shown in Fig. 2.  

DISCUSSION 

 In some sense, Lorenz’s contribution was said to discover “sensitive 
dependence on initial conditions” in a simplified weather model. That result had 
been known by Poincaré by at least 1914 in Science and Method: 

If we knew exactly the laws of nature and the situation of the universe 
at the initial moment, we could predict exactly the situation of that 
same universe at a succeeding moment.  But even if it were the case 
that the natural laws had no longer any secret for us, we could still only 
know the initial situation approximately. If that enabled us to predict 
the succeeding situation with the same approximation, that is all we 
require, and we should say that the phenomenon had been predicted, 
that  it is  governed by laws.  But it is not always so; it may happen that  
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Fig. 3. Photo from inside the LGP-30 1957 brochure. 

small differences in the initial conditions produce very great ones in the 
final phenomena. A small error in the former will produce an enormous 
error in the latter. Prediction becomes impossible, and we have the 
fortuitous phenomenon.  

 In another sense, maybe the contribution was important because it was 
an equation describing (in a simplified way) a real physical system. But in 1945, 
Cartwright and Littlewood presented evidence of chaotic motion in a forced van 
de Pol equation which modeled the operation of a radio tube. This result seemed 
to come at a time when the world was not yet ready or was unable to see its 
significance. It needs to be noted that observations of hydrodynamical systems 
had been known to display irregular behavior that were not seen to repeat over 
long observation. Lorenz notes two studies from the 1950s involving a rotating 
basin, but others involved heat applied to the system. In all of the cases above, 
the systems are forced, in that external energy is added to a system resulting in 
complicated behavior from the system. In every case, the systems behavior was 
greatly simplified (or was trivial) when the energy is removed.  
 Lorenz’s contribution was not that the weather problem had been 
reduced to a system of ordinary differential equations, as his colleague Saltzman 
had presented a way to do this in 1962 and Lorenz himself had been working in 
the direction of simplifying the dynamics for several years. The contribution is 
clearly that: (a) the system was solved numerically and the graphical 
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presentation of the result was compelling; (b) the system presented was 
autonomous – not requiring external energy to display its behavior; (c) Lorenz 
had clearly read the works of those before and presented the results in the 
context of current mathematics (even though presenting the result in the Journal 
of Atmospheric Sciences); (d) The work was used to suggest that there may be 
many simple nonlinear systems that may show interesting behavior – and that 
turned out to be the case. 

Any science starts with careful description of the phenomena. The 
development of science then goes through a stage of theory-building to create 
and test the understanding of what has been described. When this is complete, 
application of the results can proceed. Lorenz presented what turned out to be 
the initial simple example of the phenomena predicted by others, thereby 
starting what is now the science of nonlinear dynamics.   

SUMMARY 

 It is clear that there was a rich framework in place for Lorenz to 
describe the interesting behavior in 1963. His work set off the search for more 
examples displaying complicated behavior as well as further study of his system 
as soon as computational tools became more readily available. By 1982, it was 
possible for Sparrow to write a complete monograph on the topic of the Lorenz 
equations. 

The study of this system opened up the experimental side of 
mathematics and led to the development of nonlinear dynamics by encouraging 
young quantitative scientists to explore and apply the results and insights of the 
exciting “new” field. Similar excitement was found in the fractal pictures of 
Mandelbrot and the behavior of iterated maps. The next step was to apply this 
knowledge. 
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