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 Constructing a mathematical model for a 
dynamic process can follow several paths
 First Principle Models - where the “physics” of 

the system dictates the form of the equations.
▪ Example : equation of motion of a spring based on 

Hooke’s Law (restoring force proportional to amount of 
deformation) and F=ma or a birth-and-death process.

 Empirical Models – where data or observations 
dictates the model within a class of possible 
models.
▪ Examples : classical Box-Jenkins time series (ARIMA) 

models or models based on a catastrophe surface.
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 Another decision is to whether the process is 
essentially deterministic (and stochastic 
effects can be ignored) or one in which 
stochastic effects are embedded in the 
dynamics.

 The difference is usually in the assumption that

where the           are measured with 
error (but that error does not affect the dynamics)

or                                   where it does.
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 Stochastic models can also be described where 
there is no such function f. In these cases, the 
probability of the next value is given by a 
probability density function depending on      .

 Examples: The extreme case is where the sequence is 
a run of random numbers from the same distribution. 
Here, the distribution does not depend on the 
previous value.

Markov chains, where the distributions are specified –
in the empirical case by the history of the data values.
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 Brief description of Markov chains
 Estimating transition probabilities from a 

time series
 Applications of this technique

 Heart rate variability

 Cardiac imaging registration

 Study of chaotic systems

 Summary and References
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 Discrete time – discrete state
 Order  1 (only the past state value determines 

the distribution) – this is the Markov assumption 
(previous history not relevant). 

 If system is continuous state, need to define 
what the states are (think histogram).

 (for time homogeneous chains) The model is 
specified by determining the transition 
probabilities (by first principles or through data). 
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 Current state -> row. 
 Possible next state -> columns
 Each row represents a pdf given a current 

value in that state.
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 Using a Matlab m-file, starting with 1, 10 random 
numbers based on the matrix P can be generated. 

 >> x=generate(1,P,10)
x =   1     2     3     3     3     1     2     1     2     3

 Similarly, given a sequence of state values, P can 
be approximated.

 In the next slide, an AR(1) process generates a 
time series.
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>> Dt=transi(d,5)

Dt =

0.3333    0.3333    0.3333         0         0

0.1538    0.5128    0.2051    0.1282         0

0.1379    0.3793    0.3448    0.0690    0.0690

0    0.4000    0.3000    0.2000    0.1000

0         0    0.3333    0.1667    0.5000

Note that the pattern of 
nonzero values in the 
transition matrix  
suggests that the form 
of the relationship  f 
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 Heart Rate Variability (HRV) describes the 
beat-to-beat variation in the time interval 
between beats as seen on ECG. It is described 
by many different indices.

 The variability is due to several different 
control mechanisms in the systems.

 Operation of the controls are affected by 
drugs (specifically here, anesthesia)
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 Pediatric patients undergoing surgery

 The goal was to design a real-time monitor to 
anticipate sudden cardiac arrest . Data had been
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collected on several 
patients and standard 
indices did not behave 
well as measures of 
HRV in several patients
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2.5 year old girl

7.5 year old boy --

early phase with 

halothane

late phase with 

the addition of 

atropine
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 Qualitative properties of the chain (e.g. 
eigenvalues or limit distribution) can be used 
to characterize the data set or identify 
changes in the data set.

 Simulation of the chain can result in an 
unlimited number of sample paths with the 
same dynamic behavior of the original set.

 Transition matrix depends on the definition of 
the “bins” and the number of them.

 N states requires estimating N2 probabilities
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 Register 2-d (real-time fluoroscope) to 3-d 
(static 3-d CT) image to guide ablation 
catheter in treatment of atrial fribrillation.

 The selection of corresponding fiducial points 
is difficult in the moving image (even with 
gating for cardiac cycle and breathing)

 The chaotic movement of points in the heart 
make a model problematic. The thought was 
to create an empirical Markov chain to 
describe this movement.
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Three layered ECG gated fluoro frames Segmented CT image that will be registered
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ECG gated fluoro data  -- triples of points, each forming a “cloud”
2d coordinate locations of three points were recorded across fluoro sequences
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Sequence of coordinate points 
triplets can be  written as a 
sequence of state triplets



 For each row, there is a probability that a “1” in 
cloud 1 is associated with a “1” in cloud 2. 
Similarly for cloud 2 to cloud 3 and cloud3 to 
cloud 1 in the next row (next time). Compute 
these probability from the data (~30 rows).

 From these matrices, compute cloud 1 to cloud 
1 one step transition probabilities (details 
omitted).

 This 1 -> 1 matrix is a description of the motion 
of that area of the heart.

 This was used (through the limit distribution of 
that matrix) to find a well-defined fiducial point.
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 Example: bifurcation in the discrete logistic equation: 

 Summary of behavior: is always an equilibrium, 
stable if             .

is an equilibrium that is stable when
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-- then the fun starts.
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8.3
Nonzero entries in the transition matrix 
with 10  states



 One can use the empirical chain to detect bifurcations. 

In this case, the bifurcation at              to a period 2 

point. This is done through the eigenvalues of the 

transition matrix.

 Facts: 1 is always an eigenvalue and others are on or 

inside the unit circle. If 1 is the only eigenvalue of 

magnitude 1, there is a unique limit distribution.

 Loss of the unique limit distribution and establishment 

of a new one is the indication of a bifurcation in the 

system.

 As a parameter changes, look for eigenvalue(s) 

approaching the unit circle.
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 Transition matrix computed with 10 states at

 At 2.9, {-.81, .81, 1, lots of 0’s}
 At 3.0, {-.92,.917, 1, lots of 0’s}
 At 3.05, {-1,1, lots of 0’s}
 From the above, it appears that a bifurcation 

took place just before 3.05. Moreover, 
because of the -1, it is a period 2 point. 
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 Empirical Markov chains can be employed 
without specifically knowing the (functional) 
nature of the dynamics.

 Having a Markov chain model enables one to 
simulated the process – generating new time 
series with the same properties as the original.

 The transition matrices especially the limit 
distribution and eigenvalues contain useful 
information on the process. 
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