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 Constructing a mathematical model for a 
dynamic process can follow several paths
 First Principle Models - where the “physics” of 

the system dictates the form of the equations.
▪ Example : equation of motion of a spring based on 

Hooke’s Law (restoring force proportional to amount of 
deformation) and F=ma or a birth-and-death process.

 Empirical Models – where data or observations 
dictates the model within a class of possible 
models.
▪ Examples : classical Box-Jenkins time series (ARIMA) 

models or models based on a catastrophe surface.
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 Another decision is to whether the process is 
essentially deterministic (and stochastic 
effects can be ignored) or one in which 
stochastic effects are embedded in the 
dynamics.

 The difference is usually in the assumption that

where the           are measured with 
error (but that error does not affect the dynamics)

or                                   where it does.
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 Stochastic models can also be described where 
there is no such function f. In these cases, the 
probability of the next value is given by a 
probability density function depending on      .

 Examples: The extreme case is where the sequence is 
a run of random numbers from the same distribution. 
Here, the distribution does not depend on the 
previous value.

Markov chains, where the distributions are specified –
in the empirical case by the history of the data values.
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 Brief description of Markov chains
 Estimating transition probabilities from a 

time series
 Applications of this technique

 Heart rate variability

 Cardiac imaging registration

 Study of chaotic systems

 Summary and References
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 Discrete time – discrete state
 Order  1 (only the past state value determines 

the distribution) – this is the Markov assumption 
(previous history not relevant). 

 If system is continuous state, need to define 
what the states are (think histogram).

 (for time homogeneous chains) The model is 
specified by determining the transition 
probabilities (by first principles or through data). 
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 Current state -> row. 
 Possible next state -> columns
 Each row represents a pdf given a current 

value in that state.
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 Using a Matlab m-file, starting with 1, 10 random 
numbers based on the matrix P can be generated. 

 >> x=generate(1,P,10)
x =   1     2     3     3     3     1     2     1     2     3

 Similarly, given a sequence of state values, P can 
be approximated.

 In the next slide, an AR(1) process generates a 
time series.
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>> Dt=transi(d,5)

Dt =

0.3333    0.3333    0.3333         0         0

0.1538    0.5128    0.2051    0.1282         0

0.1379    0.3793    0.3448    0.0690    0.0690

0    0.4000    0.3000    0.2000    0.1000

0         0    0.3333    0.1667    0.5000

Note that the pattern of 
nonzero values in the 
transition matrix  
suggests that the form 
of the relationship  f 
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 Heart Rate Variability (HRV) describes the 
beat-to-beat variation in the time interval 
between beats as seen on ECG. It is described 
by many different indices.

 The variability is due to several different 
control mechanisms in the systems.

 Operation of the controls are affected by 
drugs (specifically here, anesthesia)
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 Pediatric patients undergoing surgery

 The goal was to design a real-time monitor to 
anticipate sudden cardiac arrest . Data had been
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collected on several 
patients and standard 
indices did not behave 
well as measures of 
HRV in several patients
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2.5 year old girl

7.5 year old boy --

early phase with 

halothane

late phase with 

the addition of 

atropine
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 Qualitative properties of the chain (e.g. 
eigenvalues or limit distribution) can be used 
to characterize the data set or identify 
changes in the data set.

 Simulation of the chain can result in an 
unlimited number of sample paths with the 
same dynamic behavior of the original set.

 Transition matrix depends on the definition of 
the “bins” and the number of them.

 N states requires estimating N2 probabilities
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 Register 2-d (real-time fluoroscope) to 3-d 
(static 3-d CT) image to guide ablation 
catheter in treatment of atrial fribrillation.

 The selection of corresponding fiducial points 
is difficult in the moving image (even with 
gating for cardiac cycle and breathing)

 The chaotic movement of points in the heart 
make a model problematic. The thought was 
to create an empirical Markov chain to 
describe this movement.

Soc. for Chaos Theory 8/08 15



Soc. for Chaos Theory 8/08 16

Three layered ECG gated fluoro frames Segmented CT image that will be registered
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ECG gated fluoro data  -- triples of points, each forming a “cloud”
2d coordinate locations of three points were recorded across fluoro sequences
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Sequence of coordinate points 
triplets can be  written as a 
sequence of state triplets



 For each row, there is a probability that a “1” in 
cloud 1 is associated with a “1” in cloud 2. 
Similarly for cloud 2 to cloud 3 and cloud3 to 
cloud 1 in the next row (next time). Compute 
these probability from the data (~30 rows).

 From these matrices, compute cloud 1 to cloud 
1 one step transition probabilities (details 
omitted).

 This 1 -> 1 matrix is a description of the motion 
of that area of the heart.

 This was used (through the limit distribution of 
that matrix) to find a well-defined fiducial point.
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 Example: bifurcation in the discrete logistic equation: 

 Summary of behavior: is always an equilibrium, 
stable if             .

is an equilibrium that is stable when
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-- then the fun starts.
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8.3
Nonzero entries in the transition matrix 
with 10  states



 One can use the empirical chain to detect bifurcations. 

In this case, the bifurcation at              to a period 2 

point. This is done through the eigenvalues of the 

transition matrix.

 Facts: 1 is always an eigenvalue and others are on or 

inside the unit circle. If 1 is the only eigenvalue of 

magnitude 1, there is a unique limit distribution.

 Loss of the unique limit distribution and establishment 

of a new one is the indication of a bifurcation in the 

system.

 As a parameter changes, look for eigenvalue(s) 

approaching the unit circle.
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 Transition matrix computed with 10 states at

 At 2.9, {-.81, .81, 1, lots of 0’s}
 At 3.0, {-.92,.917, 1, lots of 0’s}
 At 3.05, {-1,1, lots of 0’s}
 From the above, it appears that a bifurcation 

took place just before 3.05. Moreover, 
because of the -1, it is a period 2 point. 
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 Empirical Markov chains can be employed 
without specifically knowing the (functional) 
nature of the dynamics.

 Having a Markov chain model enables one to 
simulated the process – generating new time 
series with the same properties as the original.

 The transition matrices especially the limit 
distribution and eigenvalues contain useful 
information on the process. 
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