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Dynamic Modeling

Constructing a mathematical model for a
dynamic process can follow several paths

First Principle Models - where the “physics” of
the system dictates the form of the equations.

Example : equation of motion of a spring based on

Hooke's Law (restoring force proportional to amount of

deformation) and F=ma or a birth-and-death process.
Empirical Models — where data or observations
dictates the model within a class of possible
models.

Examples : classical Box-Jenkins time series (ARIMA)
models or models based on a catastrophe surface.
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Deterministic / Stochastic

Another decision is to whether the process is
essentially deterministic (and stochastic
effects can be ignored) or one in which
stochastic effects are embedded in the
dynamics.

The difference is usually in the assumption that

Xni1 = T(X;) where the X.'S are measured with
error (but that error does not affect the dynamics)

or X,., = f (X +&. )whereitdoes.
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Another Possibility

Stochastic models can also be described where
there is no such function f. In these cases, the

probabi
probabi

Examp

ity of the next value is given by a
ity density function depending on X,..

es: The extreme case is where the sequence is

a run of random numbers from the same distribution.
Here, the distribution does not depend on the
previous value.

Markov chains, where the distributions are specified —
in the empirical case by the history of the data values.
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This Talk

Brief description of Markov chains
Estimating transition probabilities from a
time series
Applications of this technique

Heart rate variability

Cardiac imaging registration

Study of chaotic systems
Summary and References
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Markov Chain Model Assumptions

Discrete time — discrete state

Order 1 (only the past state value determines
the distribution) — this is the Markov assumption
(previous history not relevant).

If system is continuous state, need to define
what the states are (think histogram).

(for time homogeneous chains) The model is
specified by determining the transition
probabilities (by first principles or through data).
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The Transition Matrix P

Current state -> row.
Possible next state -> columns
Each row represents a pdf given a current

value in that state. C L
1L {
‘0 1 O0) 5

P=| 5 0 5
.33 0 .67,
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Generating a time series from a

transition matrix

Using a Matlab m-file, starting with 1, 20 random
numbers based on the matrix P can be generated.
>> x=generate(z,P,10)
X=1 2 3 3 3 1 2 1 2 3
Similarly, given a sequence of state values, P can
be approximated.
In the next slide, an AR(1) process generates a
time series.

X,.4 =.9X, +&,

N+
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Example of Empirical Transition Matrix

0.8

>> Dt=transi(d,5)

n6F
bt = y 0.4F
0.3333 0.3333 0.3333 0 0 o2

0.1538 0.5128 0.2051 0.1282 0
X1 0.1379 0.3793 0.3448 0.0690 0.0690 "
0 0.4000 0.3000 0.2000 0.1000 o,

b 0 0 0.3333 0.1667 0.5000
0.4F

06

Note that the pattern of
nonzero values in the
transition matrix
suggests that the form
of the relationship f
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Heart Rate Variability

Heart Rate Variability (HRV) describes the
peat-to-beat variation in the time interval
between beats as seen on ECG. It is described
oy many different indices.

The variability is due to several different
control mechanisms in the systems.
Operation of the controls are affected by
drugs (specifically here, anesthesia)
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Motivation and Background

Pediatric patients undergoing surgery

The goal was to design a real-time monitor to
anticipate sudden cardiac arrest . Data had been

collected on several

patients and standard
indices did not behave
well as measures of :
HRV in several patients. =~ 4

RR Interval

QRS éomplex
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The HRV data
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Figure 1 RR interval data from Patient 29 and Patient 55. In the analysis,

atro p I n e the second set will be divided into an early and late phase.
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Lag 1 Maps — HRV data
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Figure 3 Lag 1 plots for the three data sets. The Patient 29 pattern has been
described previously as a “complex pattern” (Woo et al. [1992]). Patient 55
early and late data plots would be classified as “torpedo patterns” by Woo et
al. [1992].
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Advantages/disadvantages of the

Markov chain model

Qualitative properties of the chain (e.qg.
eigenvalues or limit distribution) can be used
to characterize the data set or identify
changes in the data set.

Simulation of the chain can resultin an
unlimited number of sample paths with the
same dynamic behavior of the original set.
Transition matrix depends on the definition of
the "bins” and the number of them.

N states requires estimating N2 probabilities
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Cardiac Image Registration

Shivani Ratnakumar

Register 2-d (real-time fluoroscope) to 3-d
(static 3-d CT) image to guide ablation
catheter in treatment of atrial fribrillation.
The selection of corresponding fiducial points
is difficult in the moving image (even with
gating for cardiac cycle and breathing)

The chaotic movement of points in the heart
make a model problematic. The thought was
to create an empirical Markov chain to
describe this movement.
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The Registration Problem

Three layered ECG gated fluoro frames Segmented CT image that will be registered

Soc. for Chaos Theory 8/08 16



Concentrating on the dynamics

ECG gated fluoro data -- triples of points, each forming a “cloud”
2d coordinate locations of three points were recorded across fluoro sequences
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Discretize the state space
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triplets can be written as a
sequence of state triplets
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Building a Transition Matrix

W 17

For each row, there is a probability thata “1” in
cloud 1 is associated with a "1" in cloud 2.
Similarly for cloud 2 to cloud 3 and cloud3 to
cloud 1 in the next row (next time). Compute
these probability from the data (~30 rows).
From these matrices, compute cloud 1 to cloud
1 one step transition probabilities (details
omitted).

This 1 -> 1 matrix is a description of the motion
of that area of the heart.

This was used (through the limit distribution of
that matrix) to find a well-defined fiducial point.
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Using Markov Chains to study

chaotic systems

Example: bifurcation in the discrete logistic equation:

Xn+1:/“lxn(1_xn) OS/USLI'

Summary of behavior: x = Q is always an equilibrium,
stableif £<1.

x=1-1 isan equilibrium that is stable whenl< £ <3
Y7

-- then the fun starts.
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Transition matrix

]
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Nonzero entries in the transition matrix
with 10 states M= 38
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Bifurcation in Markov Chains

One can use the empirical chain to detect bifurcations.
In this case, the bifurcation at #=3 to a period 2
point. This is done through the eigenvalues of the
transition matrix.

Facts: 1 is always an eigenvalue and others are on or
Inside the unit circle. If 1 is the only eigenvalue of
magnitude 1, there is a unique limit distribution.

Loss of the unigue limit distribution and establishment
of a new one is the indication of a bifurcation in the
system.

As a parameter changes, look for eigenvalue(s)
approaching the unit circle.
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Bifurcation to a period 2 point

Transition matrix computed with 10 states at
1 =2.9,3.0,and 3.05

At 2.9, {-.81, .81, 1, lots of o's}

At 3.0, {-.92,.917, 1, lots of 0’s}

At 3.05, {-1,1, lots of o’s}

From the above, it appears that a bifurcation
took place just before 3.05. Moreover,
because of the -1, it is a period 2 point.
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Summary

Empirical Markov chains can be employed
without specifically knowing the (functional)
nature of the dynamics.

Having a Markov chain model enables one to
simulated the process — generating new time
series with the same properties as the original.
The transition matrices especially the limit
distribution and eigenvalues contain useful
information on the process.
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