
MATH 5510 LECTURE NOTES EIGENFUNCTIONS: 
DEFINITIONS AND EIGENVALUE PROBLEMS

Topics covered

• Boundary value problems
◦ Definitions
◦ Boundary conditions and adjoint boundary conditions
◦ Differential operators and adjoint operators
◦ Formally self adjoint vs. self adjoint

• Eigenvalue problems
◦ Mechanics: solving eigenvalue problems
◦ LCC and Cauchy-Euler equations (cases where solution is exact)
◦ The canonical examples (Fourier basis sets come from operators)

Main goals

• Introduce boundary value problems and important definitions
• Start thinking in terms of linear operators]
• Mechanics: using integration by parts with inner products; boundary terms
• Mechanics: solving eigenvalue problems explicitly (LCC)
• Connect back to Fourier series (where do the Fourier basis sets come from?)

1. Boundary value problems: introduction

A boundary value problem (BVP) is a differential equation (DE) with constraints
specfified at more than one boundary. As a simple example, consider

d2u

dx2
= 1, u(0) = 1, u(1) = 2. (1)

This is fundamentally different from an ‘initial value problem’ (IVP), e.g.

d2u

dx2
= 1 u(0) = 1, u′(0) = 1

where all the ‘boundary data’ is at one point (x = 0 here).

For the BVP (1) , the solution to the ODE (by integrating twice) is

u =
1

2
x2 + ax+ b

and applying the boundary conditions we get

u(x) = 1 + (x2 + x)/2.
1
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However, this ‘direct’ approach will not get us far (most BVPs cannot just be integrated like
this). For myriad reasons, we will need better methods. To develop them, we will recast the
problem in terms of linear algebra. The first step is to introduce the right language.

Definitions: Recall that a linear operator L on a vector space V is a function V → V
that is linear, i.e.

L(c1u1 + c2u2) = c1Lu1 + c2Lu2 for all scalars c1, c2 and u1, u2 ∈ V .
Here we care about linear operators L acting on functions u : [a, b] → R. The domain
[a, b] of the functions is essential. However, the space V on which the operator is de-
fined (e.g. L2 functions on [a, b]) is often not needed (we will be precise where it is necessary).

A linear differential operator involves derivatives of the input function, such as

Lu = x2
d2u

dx2
+ x

du

dx
+ 2u

A boundary value problem has three parts:

• A domain e.g. [a, b] (possibly infinite)
• A differential equation (DE)

Lu = f, x ∈ (a, b)

for a function u defined on the domain (the function to solve for) and some linear
differential operator L (just ‘linear operator’ for short).
• Boundary conditions (BCs) that are some relations for u and its derivatives at the

boundaries of the domain (see definitions below).

The DE is homogeneous if f = 0 (so Lu = 0) and inhomogeneous otherwise.

Defintions (types of BCs) For a BVP in [a, b], the a boundary condition will have the
form

Bu = c

where B is linear (see below) and involves u and its derivatives at x = a or x = b.
There are several important types of boundary conditions to note:

• Dirichlet: u(a) = C (or u(a) = 0)

• Neumann: ux(a) = C (or ux(a) = 0)

• Robin:1 αu(a) + βux(a) = C

• *Periodic: u(a) = u(b), u′(a) = u′(b), · · ·
The BCs are called separated if each equation involves only a or b (not both) and mixed
otherwise. E.g. Dirichlet at a and Neumann at b is separated; periodic is mixed.

Note that all the BCs here are ‘linear’ in that they have the form Bu = c where the
‘boundary function’ B satisfies B(c1u1 + c2u2) = c1Bu1 + c2Bu2.

1The name is French, so it is pronounced a bit like ‘row-beh’. They are also know as BCs of ’the third
kind’, with Dirichlet/Neumann being the first and second.
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The example (1), in the notation outlined above, has

L = d2u/dx2, f(x) = 1, B1u = u(0), B2u = u(1).

For convenience, we denote by Bu the ‘boundary operator’ that combines all the BCs, e.g.

u(0) = 0, u(1) = 1 =⇒ Bu = (u(0), u(1)).

The point of this is to write statements like ‘u satisfies the boundary conditions’ as Bu = 0.

Notation (BCs in physics): The main types of BCs have many names:

• Dirichlet: ‘BCs of the first kind’
• Neumann: ‘BCs of the second kind’ or ‘flux BCs’ (when it represents a specified flux

through the boundary)
• Robin: ‘BCs of the third kind’ or ‘radiation BCs’

The names Dirichlet/Neumann are by far the most common (at least in mathematics), but
‘flux’ is often used for Neumann when it makes physical sense.

2. Adjoint operators

A linear operator for a BVP has associated boundary conditions. Because the BCs are so
important, we often think of the two together as one entity. To be precise, define:

• Formal operator: The operator L itself, acting on any function defined on the
interval [a, b]. This is usually what is called the ’operator’.

• complete operator: The operator L along with the boundary conditions, acting
on functions in [a, b] that satisfy the boundary conditions.

We’ll use the latter to indicate that L has specified BCs.

The complete adjoint operator is an operator L∗ along with adjoint boundary condi-
tions B∗ such that

〈Lu, v〉 = 〈u, L∗v〉 for all u s.t. Bu = 0 and v s.t. B∗v = 0

The formal adjoint is just L∗, which is the operator such that

〈Lu, v〉 = 〈u, L∗v〉+ boundary terms

which will make more sense with examples below. We say:

• L is formally self-adjoint if L = L∗ (roughyl, self-adjoint ignoring BCs)

• self-adjoint if the formal operators and BCs are equal (L = L∗ and B = B∗)

Important note: The BCs and adjoint BCs are always homogeneous, i.e. in the form
Bu = 0 and not Bu = c; there is no hope of having an adjoint at all in the latter case.

As an example (notation: ux = du/dx), we compute the (complete) adjoint operator for

Lu = uxx + p(x)ux

in the domain [0, 1] with boundary conditions

2u(0)− u′(0) = 0

u′(1) = 0.
(2)
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The trick to use integration by parts to move all derivatives from u onto v and get

〈Lu, v〉 = ‘BC terms’ +

∫ 1

0

u(· · · ) dx.

The integral is 〈u, L∗v〉 for some operator L∗ that can be identified. Setting the BC terms
to zero for all u will give the adjoint boundary conditions for v.

The details for the example go as follows. First, integrate by parts repeatedly:

〈Lu, v〉 =

∫ 1

0

uxxv dx+

∫ 1

0

p(x)uxv dx

= uxv
∣∣∣1
0
−
∫ 1

0

uxvx dx+ puv
∣∣∣1
0
−
∫ 1

0

u(pv)x dx

= (uxv − uvx + puv)
∣∣∣1
0

+

∫ 1

0

u(vxx − (pv)x) dx

= ‘BC terms’ + 〈u, L∗v〉

For the 〈u, L∗v〉 part, the integral is
∫ 1

0
uL∗v dx for

L∗v = vxx − (pv)x

which is the formal adjoint. Now the ‘BC terms’ must vanish given adjoint BCs to be found.
Since the BCs are separated we may look at x = 0 and x = 1 part of the ‘BC terms’
separately. Use the BCs for u to simplify (replace u′(0) with 2u(0)):

(BC term, x = 0) = ux(0)v − u(0)vx(0) + p(0)u(0)v(0)

= u(0)(2v(0)− vx(0) + p(0)v(0)).

This must vanish for all values of u(0) (since this is not specified at x = 0) so

(2 + p(0))v(0)− vx(0) = 0.

Now do the same for the other boundary term:

(BC term, x = 1) = ux(1)v(1)− u(1)vx(1) + p(1)u(1)v(1)

= u(1)(−vx(1) + p(1)v(1))

which must vanish for all values of u(1) so

p(1)v(1)− vx(1) = 0.

To summarize, the original and adjoint operators are

Lu = uxx + p(x)ux

L∗v = vxx − (p(x)v)x

and the original and adjoint boundary conditions are

2u(0)− u′(0) = 0

u′(1) = 0.
(BC)

(2 + p(0))v(0)− vx(0) = 0

p(1)v(1)− vx(1) = 0.
(BC∗)

This ensures that 〈Lu, v〉 = 〈u, L∗v〉 for all u satisfying (BC) and v satisfying (BC∗).
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Example (self-adjoint operator): We show that the complete operator

Lu = −(pux)x + qu, u(0) = u(1) = 0

is self-adjoint (where p(x) and q(x) are functions). Integrate by parts twice:

〈Lu, v〉 = −
∫ 1

0

(pu′)xv dx+

∫ 1

0

quv dx

= −puxv
∣∣∣1
0

+

∫ 1

0

puxvx dx+

∫ 1

0

quv dx

= −puxv
∣∣∣1
0

+ puvx

∣∣∣1
0
−
∫ 1

0

u(pvx)x dx+

∫ 1

0

quv dx.

The integral is 〈u, L∗v〉 for the operator

L∗v = −(pvx)x + qv

so L = L∗ (formally self-adjoint). For the BCs the second term cancels, leaving

p(0)ux(0)v(0) = 0 =⇒ v(0) = 0

p(1)ux(1)v(1) = 0 =⇒ v(1) = 0

since the boundary terms must vanish for all values of ux(0) and ux(1) (both arbitrary).
Thus the adjoint BCs are v(0) = v(1) = 0, the same as the BCs for L, so L is self-adjoint.

3. Eigenvalue problems: three familiar examples

An operator L in [a, b] with homogeneous boundary conditions Bu = 0 has an associated
eigenvalue problem to find an eigenfunction φ in [a, b] and an eigenvalue λ such that

Lφ = λφ, Bφ = 0. (3)

Procedure for eigenvalue problems: The general procedure for solving the eigenvalue
problem (3) is

a) In each range of λ where the DE has a certain form, find the general solution

φ = c1φ1 + · · ·+ cnφn

where n is the order of the DE, using standard ODE solving techniques.

b) Use the boundary conditions Bφ = 0 to get ≈ n equations for the c’s (plus any other
constraints relevant to the problem from elsewhere)

c) Find all λ such that there are non-trivial solutions (c’s not all zero) and identify the
eigenfunction (basis for each set of solutions to Lφ = λφ)

There are three standard examples. Consider the operator

Lu = −d
2u

dx2

in [0, π] with three different boundary conditions. The eigenfunctions should look familiar.
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Notation: The minus sign is partly for historical reasons. It makes the eigenvalues all
positive (rather than all negative), which is convenient.

3.1. Dirichlet BCs. The eigenvalue problem for φ(x) is

−φ′′ = λφ, x ∈ (0, π), φ(0) = 0, φ(π) = 0.

To solve it, find the general solution to the DE, then use the boundary conditions and look
for values of λ such that a non-trivial solution exists.

Case 1: λ < 0. We will show here that no solutions exist. The characteristic polynomial is

r2 + λ = 0.

which has roots ±µ where µ =
√
−λ. Then the general solution is

φ = c1e
xµ + c2e

−xµ.

Apply the boundary conditions to get a system for coefficients c1, c2:

0 = c1 + c2, 0 = c1e
πµ + c2e

−πµ.

This system, in matrix form, is (
1 1
eπµ e−πµ

)(
c1
c2

)
=

[
0
0

]
.

It has a non-trivial solution if and only if the determinant is zero. But

det(· · · ) = e−πµ − eπµ = 2 sinh(πµ) > 0,

so there is only the trivial solution (i.e. c1 = c2 = 0 is the only solution) for all µ. We
conclude there are no negative eigenvalues.

Case 2: λ = 0. The general solution is φ = c1x + c2. Applying the boundary conditions,
we need b = c2 and c1π+c2 = 0 which forces c1 = c2 = 0. So again, no eigenvalues in this case.

Case 3: λ > 0. The general solution is

φ = c1 sin(
√
λx) + c2 cos(

√
λx).

From the boundary conditions,

c2 cos 0 = 0

c1 sin(
√
λπ) + c2 cos(

√
λπ) = 0

so c2 = 0. To have a non-trivial solution (c1 6= 0) we need

sin(
√
λπ) = 0.

This has a non-trivial solution when
√
λπ = nπ, n = 1, 2, · · ·
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i.e. for eigenvalues λn = n2 (note that λ had to be positive to get here, so the − root
is discarded!). Plugging back into the general solution (recall that c2 = 0) we obtain the
corresponding eigenfunctions

φn = sinnx.

Summary: Collecting the results of the three cases, we gfind that only the λ > 0 case yields
eigenvalues. The total set of eigenvalues/functions is

λn = n2, φn = sinnx, n = 1, 2, 3, · · · ,

which is exactly the basis from the Fourier sine series.

3.2. Neumann BCs. The eigenvalue problem is

−φ′′ = λφ, x ∈ (0, π), φ′(0) = 0, φ′(π) = 0.

Case 1: λ < 0. Again let µ =
√
−λ. The general solution is the same as before, and the

boundary conditions require (check this!)

0 =
√
µ(c1 − c2), 0 =

√
µ
(
c1e

πµ − c2e−πµ
)
.

Again write (
1 −1
eπµ −e−πµ

)(
c1
c2

)
=

[
0
0

]
.

The determinant is −2µ sinh(πµ) < 0. Note that eπµ > 1 and e−πµ < 1 since µ > 0. Thus
there are still no solutions.

Case 2: λ = 0. The general solution is

φ = c1x+ c2.

The boundary conditions require only that c1 = 0, so φ = 1 is an eigenfunction for λ = 0.

Case 3: λ > 0. The general solution is the same as before; the boundary conditions re-
quire

c1 = 0, −
√
λc2 sin(

√
λπ) = 0.

Thus we need
√
λπ = nπ, so the eigenvalues are

λn = n2, n = 1, 2, · · ·

with corresponding eigenfunctions

φn = cosnx

So in summary, the eigenfunctions/values are

λn = n2, φn = cosnx, n = 0, 1, 2, · · · .

which are the basis functions for the Fourier cosine series. Note that n = 0 is included here
(from Case 2), which is absent from the Dirichlet version.
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3.3. Periodic BCs. Take the domain to be [0, 2π] for reasons to be clear. The problem is

−φ′′ = λφ x ∈ (0, 2π), φ(0) = φ(2π), φ′(0) = φ′(2π).

First, if λ = 0 then
φ = c1x+ c2.

The boundary conditions are satisfied if

c2 = c1(2π) + c2 =⇒ c1 = 0, c1 = c1

so φ = const is an eigenfunction for λ = 0.

If λ < 0 the solution is, with µ =
√
−λ,
φ = c1e

µx + c2e
−µx.

From the boundary conditions,

c1 + c2 = c1e
2πµ + c2e

−2πµ, µc1 + µc2 = c1µe
2πµ − c2µe−2πµ.

This becomes the system [
1− e2πµ 1− e−2πµ
1− e2πµ 1 + e−2πµ

] [
c1
c2

]
=

[
0
0

]
.

There is a solution if and only if the determinant is zero, so

0 = (1− e2πµ)(1 + e−2πµ)− (1− e2πµ)(1− e−2πµ) = 2(1− e2πµ)e−2πµ.

Thus e2πµ = 1 =⇒ µ = 0 but µ has to be positive (since λ < 0) so there are no solutions.

If λ > 0 then, setting µ =
√
λ, the solution is

φ = c1 cosµx+ c2 sinµx.

From the boundary conditions,

c1 = c1 cos 2πµ+ c2 sin 2πµ, c2µ = −µc1 sin 2πµ+ µc2 cos 2πµ

As a system: [
1− cos(2πµ) − sin(2πµ)

sin 2πµ 1− cos 2πµ

] [
c1
c2

]
=

[
0
0

]
. (4)

Set the determinant to zero:

0 = (1− cos(2πµ))2 + sin2(2πµ) = 2− 2 cos(2πµ).

Thus there is a solution for
cos(2πµ) = 1

which occurs for the values µn = n for n = 1, 2, · · · .
Notice that for such values, (4) becomes trivial and any c1 and c2 will work, so

φ = c1 cosnx+ c2 sinnx

is a solution for all n ≥ 1 with eigenvalue λn = n2. This means we have eigenfunctions

φn = cosnx, ψn = sinnx with λn = n2 for n = 1, 2, · · ·
where φn and ψn are both eigenfunctions for λn. This is, of course, the basis for the full Fourier
series (computed on [0, 2π] rather than [−π, π], but it is the same up to this translation).
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3.4. Cauchy-Euler equations. Other than constant coefficient linear equations, there is
one other useful type of ODE we can solve exactly: an Euler equation (or ‘Cauchy-Euler’
or ‘equidimensional’) ODE, which has the form

Lu := ax2
d2u

dx2
+ bx

du

dx
+ cu = 0. (5)

Assume that x > 0 for simpilicity. We see two basis solutions that span the solution set. To
find them, first look for solutions of the form u = xr. We get

L[xr] = (ar(r − 1) + br + c)xr

so it follows that
xr is a soln ⇐⇒ p(r) = ar(r − 1) + br + c = 0.

If p has two real roots r1, r2 then the general solution is the span of the two solutions,

u(t) = c1x
r1 + c2x

r2 .

If p has complex roots r = s± ωi then write

xr = er log x = xseωi log x = xs (cosω log x+ i sinω log x) .

Taking real/imaginary parts gives the two basis solutions so the general solution is

x = xs (c1 cosω log x+ c2 sinω log x) .

Finally, if p has a repeated root r then the general solution is

x = xr (c1 + c2 log x) .

That is, multiply the first solution by log x to get the second.

The ‘eigenvalue problems’ are solved the same way as the previous examples, now using
this general solution. The procedure also works for higher-order ‘equidimensional’ equa-
tions, although the repeated roots case may need to be generalized if there is a triple root.
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