
MATH  5510 LECTURE NOTES 
EIGENFUNCTIONS THE METHOD; SL THEORY

Topics covered

• Solving BVPs using eigenfunctions
◦ Mechanics: the main solution procedure
◦ Time dependent problems (a first look)

• Sturm-Liouville theory
◦ Sturm-Liouville problems (definitions)
◦ Main theorem for self-adjoint L; weighted inner products
◦ Regular and singular Sturm-Liouville problems
◦ Tools: Rayleigh quotients, showing λ > 0
◦ Much more to come on SL theory...

1. Boundary value problems: the method

Here the procedure is detailed for solving

Lu = f, x ∈ (a, b)

Bau = c1, Bbu = c2

where Ba and Bb are separated BCs, with adjoint operator L∗ and adjoint BCs B∗a, B
∗
b . If

the operator is self-adjoint, note that you can simply skip calculating adjoints and replace
the adjoint eigenfunctions ψn with φn. Most problems in practice will be self-adjoint.

Step 1: Get the eigenvalues and eigenfunctions (find the basis).

1a) Solve the eigenvalue problem for L with homogeneous BCs:

Lφ = λφ, Baφ = 0, Bbφ = 0

for eigenvalues λj and eigenfunctions φj.

1b) Solve the eigenvalue problem for the adjoint L∗ with homogeneous (adjoint) BCs:

L∗ψ = λψ, B∗aψ = 0, B∗bψ = 0

for adjoint eigenfunctions ψj (if eigenvalues are real, they are the same).

Step 2: Find the solution using eigenfunction expansion

2a) Take inner product of inhomogenous DE with ψk and integrate by parts, using the
inhomogeneous BCs on the boundary terms.
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2b) Write u in terms of the eigenfunction basis

u =
∑
n

cnφn,

plug into projected equation from (2a) and get equations for ck (use bi-orthogonality).

2c) Solve (easy) equations for ck.

Procedure for Step 2 (details): Once we have the eigenfunctions/values, project onto
the n-th basis function:

〈Lu, ψn〉 = 〈f, ψn〉
The RHS is fine as is. For the LHS, note that u satisfies the inhomogeneous BCs. Integrate
by parts (as in deriving the adjoint) to get

〈Lu, ψn〉 = βn + 〈u, Lψn〉
= βn + λn〈u, ψn〉

where βn will be some expression left over from the boundary terms (that do not vanish
since u has inhomogeneous BCs unlike the adjoint calculation!).

Now we write u in terms of the eigenfunction basis (assuming it is a basis)

u =
∑
n

cnφn

so the equations become

βn + cnλn〈φn, ψn〉 = 〈f, ψn〉 =⇒ cn =
〈f, ψn〉 − βn
λn〈φn, ψn〉

.

The following example illustrates the process. Step (1a) and (2a) are the most involved.
When L is self-adjoint, the process is obviously simpler.

1.1. Example with inhom BCs. Note that L is self-adjoint here but we leave the ‘adjoint’
eigenfunctions as ψj to illustrate the point that ‘self-orthogonality’ in the self-adjoint case
and ‘bi-orthogonality’ in the general case work the same way.

Consider the DE

−d
2u

dx2
= ex, u(0) = 1, u(1) = 2;

Let Lu = −d2u/dx2. Finding the eigenvalues is the same as before; the result is

λn = π2n2, φn = sin(nπx), n ≥ 1. (1.1)

The adjoint operator is L∗u = −d2u/dx2 with adjoint BCs u(0) = u(1) = 0 (the complete
operator L is self-adjoint). Thus the eigenfunctions of L∗ are

ψn = sin(nπx), n ≥ 1.

Now let u be the solution and take the inner product with ψk:

〈Lu, ψk〉 = 〈ex, ψk〉.
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For the LHS, we need to integrate by parts:

〈Lu, ψk〉 = −
∫ 1

0

uxxψk dx

= (uψ′k − uxψk)
∣∣∣1
0

+ 〈u, L∗ψk〉

= (uψ′k − uxψk)
∣∣∣1
0

+ λk〈u, ψk〉

again by calculations from before. Now we know u(0) = 1, u(1) = 2 and

ψ′k(0) = πk, ′
k(1) = πk(−1)k, ψk(0) = ψk(1) = 0

so evaluating the boundary terms, we get

〈Lu, ψk〉 = 2πk(−1)k − πk + λk〈u, ψk〉.

The eigenfunction series for the solution is

u =
∞∑
n=1

cnφn

so plugging into the projected DE we get

π(2(−1)k − 1) + λkck〈φk, ψk〉 = 〈ex, ψk〉

and solving for ck gives

ck =
〈ex, ψk〉 − πk(2(−1)k − 1)

π2k2〈φk, ψk〉
(1.2)

where we compute

〈ex, ψk〉 =

∫ 1

0

ex sin kπx dx =
πk

π2k2 + 1
(1− cos πk), 〈φk, ψk〉 =

∫ 1

0

sin2 kπx dx = 1/2.

To summarize, the solution to the BVP is, in terms of the eigenfunction basis,

u =
∞∑
n=1

cn sinnπx, cn given by (1.2) (1.3)

and φn, λn given by (1.1) and ψn = φn. One could simplify the cn’s a bit, but the above is a
complete answer and substituting in all the expressions does not make the solution nicer. A
plot of the exact solution (obtained just by integrating the equation)

u(x) = ex+ 2− ex

against the series with N = 10 and N = 60 terms is shown below. Notice that this sine series
(1.3) evaluates to zero at the endpoints since the eigenfunctions φn were constructed to satisfy
the homogeneous BCs (φ(0) = φ(1) = 0. This is not a paradox; the series solution converges
to u(x) pointwise everywhere except x = 0 and x = 1; it exhibits Gibbs’ phenomenon. We’ll
have more to say about this shortly.
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1.2. Remark on solvability. What happens if λk = 0 for some k? Suppose the DE is

−d
2u

dx2
= f, u′(0) = 3, u′(1) = 0

with Neumann BCs at both ends. There is an eigenvalue λ0 = 0 with eigenfunction φ0 = 1
(and ψ0 = 1); taking the inner product with ψk = cos kπx, we get

〈Lu, ψk〉 = 3ψk(0) + λk〈u, ψk〉
which leads to the formula

ck =
〈f, ψk〉 − 3

λk〈ψk, φk〉
for k ≥ 1.

However, for k = 0 the projected DE becomes

3 = 〈f, ψ0〉 =

∫ 1

0

f(x) dx.

The coefficient c0 is arbitrary, and the RHS f(x) must satisfy the condition above (a
solvability condition) to have a solution. We’ll generalize this observation later; for now,
note that if u is a solution then u+ const. is a solution for any constant, so this result makes
sense.

Remark (what’s the benefit?): The eigenfunction series

u =
∑
j

cjφj

will be a powerful tool for solving BVPs and partial differential equations. However, as
we saw with Fourier series, differentiation can be a problem. Moreover, we often cannot
differentiate u directly, or there are discontinuous functions in the DE (e.g. a force that is
suddenly applied and then stopped).

The ‘integration by parts’ avoids ever differentiating the series, so we solve a version
of the DE that does not require the solution to be differentiable - this is called the ‘weak
form’, and is critical, for example, in understanding the finite element method in numerics.
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2. Interlude

2.1. A motivating example. We can use this method to solve time dependent partial
differential equations (PDEs). The heat equation in one dimension is the PDE

∂u

∂t
=
∂2u

∂x2

for a function u(x, t). The heat equation describes diffusion processes, such as the heat dis-
tribution in a space, diffusion of particles in air and much more. The method of the previous
section works here, except that cn’s are now functions of t.

For example, consider the heat equation on [0, π] with Dirichlet boundary conditions:

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, π), t > 0

u(0, t) = g1(t), u(π, t) = g2(t)

u(x, 0) = f(x)

This models, for instance, the temperature in a metal bar where the values at the endpoints
are controlled, and the initial temperature at t = 0 is f(x). Defining Lu = −uxx, we have

ut = −Lu, x ∈ (0, π), t > 0.

The operator L is the same as before; the eigenfunctions/values are

φn(x) = sinnx, λn = n2, n = 1, 2, · · · .
Since u(x, t) at each t is an L2 function of x, it can be expressed in the eigenfunction basis:

u(x, t) =
∞∑
n=1

cn(t)φn(x).

Projecting the PDE ut = −Lu onto φn, we get

〈ut, φn〉 = −〈Lu, φn〉
= βn(t)− 〈u, Lφn〉
= βn(t)− λn〈u, φn〉

where βn(t) comes from the boundary term of IBP; it depends on t since the BCs do as well.
Now we can differentiate the series for u in t and project:

ut =
∞∑
n=1

c′n(t)φn(x) =⇒ 〈ut, φn〉 = c′n(t)

so the equations for the coefficients are now ODEs in t given by

c′n(t) = βn(t)− λncn(t).

What do eigenvalues mean? Now suppose βn = 0. The solution for the cn’s is

cn(t) = cn(0)e−λnt

so the eigenvalues determines the rate at which the system approaches equilibrium. In
particular, the smallest eigenvalue should give the rate, since we expect u(x, t) ∼ c1(t)φ1.
This makes sense, because the diffusing heat should approach a steady state.
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2.2. Where are we going with this? The sketch above and the contrast between linear
algebra in Rn and functions in L2 raises some key questions that will motivate the topics to
come. There are some equivalences, and many questions left to answer:

vectors in Rn( or Cn) ⇐⇒ functions in L2[a, b]

n× n matrices ⇐⇒ linear operators L

〈x,y〉 =
n∑
i=1

xiyi ⇐⇒ 〈f, g〉 =

∫ b

a

f(x)g(x) dx

symmetric matrices ⇐⇒ self-adjoint operators

linear systems Ax = b ⇐⇒ linear DEs Lu = f

eigenvector basis ⇐⇒ eigenfunction basis (series)

spectral thm: L = L∗ → {φj} ⇐⇒ *Sturm-Liouville theory

• What is the right operator? We want an orthogonal basis of eigenvectors for some
linear operator L. This means identifying the right operator and understanding when
it will do what we want.

• When does an operator have nice eigenfunctions? Self-adjoint matrices give
a basis of eigenvectors. When is this true of operators in L2? This is answered by
Sturm-Liouville theory (coming up next).

• Consequences of infinite dimensional basis? The basis for the function space is
infinite dimensional - so convergence is more subtle. Moreover, manipulating infinite
series (e.g. differentiation) requires care. This has theoretical an practical consequences
(like Gibbs’ phenomenon). We will need the right analytical tools to derive solutions

• What are the properties of the eigenvalues/functions? To obtain and interpret
solutions, we need to be able to solve the eigenvalue problem Lφ = λφ (which is an
ODE) and know the key properties of the λ’s and φ’s. Because they are solutions to
an ODE, this can take some work.
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3. Sturm-Liouville Theory

We now restrict our attention to second-order linear operators, which have a particularly
nice structure. The classical theory of these operators is called ‘Sturm-Liouville theory’, and
gives all the structure we need to solve important BVPs and PDEs (e.g. the heat equation).

Suggestion: When reviewing the theory, keep in mind an example like the Dirichlet problem

−φ′′ = λφ, φ(0) = φ(π) = 0 =⇒ φn = sinnx, λn = n2.

In a sense, Sturm-Liouville theory says that solutions to the more general eigenvalue problems
‘behave like’ these standard examples, with some exceptions.

Definition: A Sturm-Liouville (SL) operator in [a, b] has the form

Lu = −(p(x)ux)x + q(x)u (3.1)

where p(x) ≥ 0. A Sturm-Liouville eigenvalue problem (SLP) for a SL operator L and
‘weight function σ(x) has the form

Lu = λσ(x)u, x ∈ (a, b) (3.2)

plus some homogeneous BCs. This a ‘generalized eigenvalue problem’ when σ(x) 6= 1).

The SLP is called regular if in addition:

i) The functions p, q, σ and p′ are continuous on [a, b] and

p(x) > 0 and σ(x) > 0 for x ∈ [a, b]

ii) There are two separated boundary conditions at x = a and x = b, i.e. the BCs are

α1u(a) + α2u
′(a) = 0, β1u(b) + β2u

′(b) = 0. (3.3)

Recall that for functions in [a, b] we have the standard ‘L2 inner product’

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

For a weight function σ(x), positive in (a, b), we may define the weighted inner product

〈f, g〉σ =

∫ b

a

f(x)g(x)σ(x) dx

Sturm-Liouville operators are self-adjoint (see HW), which gives them useful structure.

Key result: In a domain [a, b], a SL operator (3.1) satisfies Green’s formula

〈Lu, v〉 = p(uvx − vux)
∣∣∣b
a

+ 〈u, Lv〉 (3.4)

for all smooth functions u, v in [a, b]. In particular, the operators with separated boundary
conditions (3.3) is self-adjoint in the L2 inner product, i.e.

〈Lu, v〉 = 〈u, Lv〉 for all u, v satisfying the BCs.
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3.1. Example (self-adjoint, not regular). A concentration c of tea particles in a cylin-
drical tea cup of radius R diffuses in the cup. If it is independent of θ and z then c(r, t)
obeys the heat equation

ct = crr +
1

r
cr, cr(R, t) = 0.

Look for a solution of the form c(r, t) = u(r)eλt to find that

urr +
1

r
ur + λu = 0, ur(R) = 0.

for u(r) in [0, R]. The operator

Lu = −urr −
1

r
ur

is not self-adjoint, but can be made so using an integrating factor. Multiply by r to get

−(rur)r = λru, ur(R) = 0

which is a SLP with the operator and weight function σ(r) and

L̃u = −(rur)r.

It is not regular as there is only one BC and the coefficient r in (rur)r can be zero.

However, we can show directly that it is self-adjoint. Let u, v be functions that satisfy

the BC. Then (using the L2 inner product 〈f, g〉 =
∫ R

0
fg dr),

〈Lu, v〉 = −
∫ R

0

(rur)rv dr

= r(uvr − urv)
∣∣∣R
0
−
∫ R

0

u(rvr)r dr

= 〈u, Lv〉
since the BC terms vanish at r = 0 (from the r factor) sand at R (since u(R) = v(R) = 0).

3.2. The main theorem. The fundamental result of Sturm-Liouville theory is a de-
scription of the eigenvalues of eigenfunctions for a regular Sturm-Liouville operator (3.1)
and their essential structure.

Theorem (Main theorem for regular operators): The Sturm-Liouville problem (3.2)
for a regular SL operator L has infinitely many eigenvalues {λn}∞n=1 and associated eigen-
functions {φn}∞n=1 with the following properties:

i) The eigenvalues and eigenfunctions are real,
ii) The eigenvalues form an infinite sequence with a smallest eigenvalue, tending to ∞:

λ1 < λ2 < λ3 < · · · → ∞.
iii) There is exactly one eigenfunction φn for each eigenvalue
iv) The eigenfunctions form a basis for L2

σ[a, b], and they are orthogonal in the weighted
inner product. That is, the eigenfunctions satisfy

〈φm, φn〉σ =

∫ b

a

φm(x)φn(x)σ(x) dx = 0, m 6= n.



EIGENFUNCTIONS II 9

and every f ∈ L2
σ[a, b] has a unique representation

f =
∞∑
n=1

anφn(x), an =
〈f, φn〉σ
〈φn, φn〉σ

. (3.5)

iv) If f and f ′ are piecewise continuous, the series converges pointwise to the average of
the left/right limits of f(x) inside the interval. That is,

lim
N→∞

SN(x) =
1

2
(f(x−) + f(x+)) for all x ∈ (a, b).

Note that the result does not include the endpoints.

If the operator L is self-adjoint but not regular then the results may be different.

A few clarifying notes:

• Here L2
σ is the space of functions with finite L2 norm in the weighted inner product:

L2
σ[a, b] = {f(x) : [a, b]→ R s.t.

∫ b

a

|f(x)|2σ(x) dx <∞}.

In practice, this space typically contains all functions of interest so (iii) can be thought
of as holding for all functions f on [a, b].
• The phrase ‘exactly one eigenfunction’ means up to scaling by an arbitrary constant.
• To reiterate, the results may not hold when L is not regular - for instance, if the BCs

are not separated or have a different form, or if p(x) is not strictly positive.

3.3. Remarks on proof: The orthogonality is not too hard to show. The proof is the same
as for self-adjoint operators in Rn. Let φm and φn be eigenfunctions for λm 6= λn. Then both
satisfy the BCs, so

〈Lφm, φn〉 = 〈φm, Lφn〉.
But Lφm = σλφm and the same for n so

λm〈σφm, φn〉 = λn〈φm, σφn〉.
Both the inner products are equal to 〈φm, φn〉σ, which gives

(λm − λn)〈φm, φn〉σ = 0 =⇒ 〈φm, φn〉σ = 0.

The proof that eigenvalues/functions are real is also similar to the proof for self-adjoint
matrices (see the book for details). The other assertions are not easy to prove, and require
some functional analysis.

3.4. Positive eigenvalues via Rayleigh quotient. An integration by parts trick gives us
a way to prove that eigenvalues are positive. In mathematics, we often refer to this technique
as an ’energy argument’.

For the SL operator (3.1) with eigenvalue/function λ and φ, take the L2 inner product
with φ (multiply by φ, integrate):

Lφ = λφ =⇒ 〈Lφ, φ〉 = λ〈φ, φ〉

=⇒ λ =
〈Lφ, φ〉
〈φ, φ〉

. (3.6)
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Now use IBP on the numerator to get

λ〈φ, φ〉 = pφφx

∣∣∣b
a

+

∫ b

a

pφ2
x + qφ2 dx.

We know 〈φ, φ〉 > 0 and p ≥ 0 by assumption. If q ≥ 0 and the boundary term is positive,
we can conclude that λ > 0.

Definition: For a self-adjoint L, the Rayleigh quotient is the ratio

λ =
〈Lφ, φ〉
〈φ, φ〉

where λ and φ are an eigenvalue/function. We also have the minimization principle that
the smallest eigenvalue λ1 is the minimum of the Rayleigh quotient over all functions v that
satisfy the BCs (but are not necessarily eigenfunctions):

λ1 = min
v satisfies BCs

〈Lv, v〉
〈v, v〉

.

This can be used to bound the smallest eigenvalue (see Sec. 5.6 of the book).

Example: We show that the eigenvalues are positive for

−φ′′ = λφ, φ′(0) = φ(0), φ′(π) = −2φ(π).

Multiplying by φ and integrating,

−
∫ π

0

φφ′′ dx = λ

∫ π

0

φ2 dx.

This gives the Rayleigh quotient formula for the eigenvalue,

λ〈φ, φ〉 = −
∫ π

0

φφ′′ dx

= −φφ′
∣∣∣π
0

+

∫ π

0

(φ′)2 dx

= 2φ(π)2 + φ(0)2 +

∫ π

0

(φ′)2 dx.

All terms are ≥ 0 and 〈φ, φ〉 > 0 so λ ≥ 0. Further, observe that

λ = 0 ⇐⇒ φ(0) = φ(π) = 0 and φ′(x) = 0 for all x

but the (trivial) ODE φ′ = 0 with φ(0) = 0 only has φ = 0 as a solution, so we conclude
that λ cannot be zero. Thus all the eigenvalues are strictly positive.

Physical interpretation: In the context of the heat equation ut = uxx, the flux of heat is
−ux. The BCs say that heat leaks out at both boudnaries (−ux(0) < 0 and −ux(φ) > 0).
Thus the heat of the system should decrease, so the eigenvalues should be positive.
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3.5. Converting to self-adjoint form. Not every second order linear operator

Lu = −p(x)uxx + q(x)ux + r(x)u (3.7)

is a SL operator. However, the theory can still be used because we can convert L into a SL
operator. The claim here is that for any operator (3.7) there is a σ(x) such that

Lu =
1

σ
L̃u

for some L̃ that is self-adjoint in the L2 inner product (not in the weighted one!), i.e.

〈L̃u, v〉 = 〈u, ṽ〉 for all u, v satisfying the BCs.

We then have equivalent eigenvalue problems

Lu = λu ⇐⇒ L̃u = λσu

which is the most common way a weight function arises (see examples in the next section).

To convert, notice that only the first-order term qux is a problem. We can use an inte-
grating factor to ‘absorb’ it into the second order term:

Lu = −p(x)uxx + q(x)ux + r(x)u

= −p
(
uxx −

q

p
ux

)
+ ru

= − 1

σ
(pσux)x + ru

=
1

σ
(−(pσux)x + rσu)

=
1

σ
L̃

where the integrating factor is pσ = exp(−
∫
q/p dx) and L̃ = −(pσux)x + rσu.

Example (self-adjoint-ifying an operator): For example, consider the operator

Lu = −uxx + bux

and the associated eigenvalue problem

Lφ = λφ (... + BCs....).

To use the results of Sturm-Liouville theory, we must convert to self-adjoint form (since
L is not self-adjoint).

Using the integrating factor e−
∫
b dx = e−bx,

Lu = ebx(e−bxux)x = ebxL̃u

where L̃u = (e−bxux)x. Sturm-Liouville theory then applies for the eigenvalue problem

L̃φ = λe−bxφ, (... + BCs...)

so the original eigenvalue problem has all the properties guaranteed by the theorem.
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