
MATH 5510 LECTURE NOTES EIGENFUNCTIONS: 
SOLVING PDES; MORE SL THEORY

Topics covered

• Sturm-Liouville theory in practice
◦ Procedure for eigenfunction expansion method (ut = −Lu+ f)
◦ Example with weighted inner product (heat equation)
◦ Comparing non self-adjoint (bi-orthogonal) approach

• Singular Sturm-Liouville problems
◦ When the theory is the same or almost the same
◦ When the theory does not apply

1. Using Sturm-Liouville theory

We are now prepared to use the structure provided by SL theory to solve both BVPs and
time-dependent problems. Consider the initial boundary value problem (IBVP)

(PDE) ut = −Lu+ f, x ∈ (a, b), t > 0 (P)

(boundary conditions) Bu = c (BC)

(initial conditions) u(x, 0) = u0(x) (IC)

where the boundary conditions Bu = c are separated and L is a second-order linear operator
(not assumed self-adjoint).1 The ‘IBVP’ has three parts: a PDE that in the domain (a, b)
and in some range of times; BCs in x (space); and initial conditions (ICs) at an initial time.

1.1. Self-adjoint approach (via Sturm-Liouville theory): The process here is to con-
vert the operator to self-adjoint form, then solve using the weighted inner product. We
convert the PDE in space and time to a set of ODE initial value problems in time.

Important reminder: Projection onto the eigenfunction φn will require taking the weighted

inner product with φn, i.e. 〈· · · , φn〉σ =
∫ b
a
(· · · )φnσ dx. For instance, the series for f is

f =
∑
n

fnφn.

Take the weighted inner product with φn to get

〈f, φn〉σ = fn〈φn, φn〉σ =⇒ fn =
〈f, φn〉σ
〈φn, φn〉σ

.

Second, the converted operator L̃ is self-adjoint in the L2 inner product (unweighted!):

〈L̃u, v〉 = 〈u, L̃v〉 for all u, v s.t. Bu = 0, Bv = 0

1Note that the procedure here also works for BVPs Lu = f with no changes; just remove the ut term.
1
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The main procedure (solving IBVPs/BVPs using Sturm-Liouville theory):

1a) Convert (P) to SL form - find the factor σ(x) such that

L =
1

σ(x)
L̃.

The problem, in ‘self-adjoint’ form, is now

ut = − 1

σ
L̃u+ f, Bu = c. (P̃ )

1b) Get a basis for ‘all’ functions in [a, b] (technically L2
σ[a, b]) - solve the eigenvalue problem

L̃φ = λσφ, Bφ = 0

for eigenvalues/functions λn and φn. By the theory, {φn} is a basis for functions in [a, b]
and the φ’s are orthogonal in the weighted inner product: 〈φm, φn〉σ = 0 for m 6= n.

2a) From (1b), the solution to (P) (satisfying the inhom. BCs) can be written as

u(x, t) =
∑
n

cn(t)φn. (S)

2b) Project the PDE onto φn (take the weighted inner product with φn):

〈ut, φn〉σ = −〈 1
σ
L̃u, φn〉σ + 〈f, φn〉σ. (P̃n)

For any time derivatives (e.g. ut, utt etc.) differentiate the series term-wise, such as

〈ut, φn〉σ = 〈
∑
n

c′n(t)φn, φn〉σ = c′n(t)〈φn, φn〉σ.

For the term with L̃, integrate by parts carefully (note that u satisfies the inhomoge-
neous BCs and φn satisfies the hom. BCs):

−〈 1
σ
L̃u, φn〉σ = −〈L̃u, φn〉

= Bn − 〈u, L̃φn〉 (L̃ self-adj. in L2 inner product)

= Bn − λn〈u, σφn〉 (from eig. problem for L̃)

= Bn − λncn〈φn, φn〉σ. (def’n of weighted inner product)

where Bn contains the boundary terms from IBP. Once all the terms are projected,
(P̃n) becomes an ODE for each cn:

c′n(t) + λncn(t) =
Bn + 〈f, φn〉σ
〈φn, φn〉σ

.. (Cn)

2c) Project the initial condition (IC) onto φn to get ICs for (Cn):

〈u(x, 0), φn〉σ = 〈u0(x), φn〉σ =⇒ cn(0) =
〈u0, φn〉σ
〈φn, φn〉σ

. (Cn-IC)

If the ODEs are higher order, one may also need to get c′n(0) and so on.
2d) The solution is the series (S) with coefficients solving the ODEs (Cn) with initial condi-

tions (Cn-IC). Suggestion: summarize the solution, collecting all the results together.
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1.2. Non self-adjoint approach (not required): Alternately, we can use the adjoint
operator L∗ and bi-orthogonality. It is the same as the above but with 〈· · · , ψn〉 for projection
instead of 〈· · · , φn〉σ. To detail the procedure:

• First find the eigenfunctions for L and compute L∗ and the adjoint eigenfunctions {ψn}.
• Project the PDE onto φn using the projection 〈· · · , ψn〉:

〈ut, ψn〉 = −〈Lu, ψn〉+ 〈f, ψn〉. (Pn)

• Write u as an eigenfunction expansion (and f) and differentiate the series for u in t:

u =
∞∑
n=1

cnφn =⇒ 〈ut, ψn〉 = c′n(t)〈φn, ψn〉,

f =
∞∑
n=1

fnφn =⇒ fn〈φn, ψn〉 = 〈f, ψn〉

• By the same computations as detailed for BVPs, we have from (Pn) that

(c′n(t)− fn)〈φn, ψn〉 = −〈Lu, ψn〉
= −Bn − 〈u, L∗ψn〉
= −Bn − λn〈u, ψn〉
= −Bn − λncn(t).

• This gives ODEs for the cn just as in the self-adjoint approach, which are solved in the
same way. For the initial condition,

〈u(x, 0), ψn〉 = 〈u0(x), ψn〉 =⇒ cn(0) =
〈u0, ψn〉
〈φn, ψn〉

.

Practical note (comparing approaches): The two approaches are both viable:

• The self-adjoint approach requires us to find L̃ (converting to self-adjoint form) and
to use the weighted inner product. However, the operator is self-adjoint, so there is
no separate adjoint to worry about.
• The non self-adjoint approach requires us to find the adjoint L∗ and the adjoint

eigenfunctions. However, we get to use the L2 inner product and there are no weights
to worry about.

Typically, the self-adjoint approach is used since it only requires one set of eigenfunctions.
The other approach is only necessary for problems outside of Sturm-Liouville theory where
we are stuck with L and L∗.
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1.3. Simple example. First, an example where most terms are zero. We solve the IBVP

ut = uxx, x ∈ (0, π), t > 0

ux(0) = A, ux(π) = 0

u(x, 0) =T0

(1.1)

which describes heat in a metal rod insulated at one end and with a constant input flux at
the other. The operator is Lu = −uxx, σ(x) = 1, and the eigenvalue problem is

−φ′′ = λφ, φ′(0) = φ′(π) = 0 =⇒ φn = cosnx, λn = n2, n = 0, 1, 2, · · ·
Note λ0 = 0 is an eigenvalue, so keep in mind to be careful with n = 0 cases.

PDE solution: Let u be the solution to the IBVP. Then

u(x, t) =
∞∑
n=0

cn(t)φn(x).

Now take the inner product of the DE with φn to get

c′n(t) = −〈Lu, φn〉

= (φnux − φ′nu)
∣∣∣π
0
− 〈u, Lφn〉.

By the boundary conditions,
φ′n(0) = φ′n(π) = 0,

ux(0) = A, ux(π) = 0.

Plugging this into the boundary terms, we get

c′n(t)〈φn, φn〉 = −Aφn(0)− λncn〈φn, φn〉.
Now from the IC,

f(x) =
∞∑
n=0

cn(0)φn(x) =⇒ cn(0) =
〈f, φn〉
〈φn, φn〉

.

But f = T0φ0 so it follows that

c0(0) = T0, cn(0) = 0 for n > 0. (1.2)

This gives the IVP for the cn’s:

c′n + λncn = −A/〈φn, φn〉, cn(0) given by (1.2).

Solve the coeff. ODEs: There are two cases. When λn 6= 0,

cn(t) = − A

λn〈φn, φn〉
(1− e−λnt)

But for λ0 = 0, we have cn(0) = T0 and (note that 〈φ0, φ0〉 = π)

c′0 = −A/〈φ0, φ0〉 =⇒ c0(t) = T0 − At.
Summarize: Thus, the solution is

u(x, t) = T0 − At− A
∞∑
n=1

(1− e−λnt)
λn〈φn, φn〉

φn

with λn = n2 and φn = cosnx and 〈φn, φn〉 =
∫ π
0

cos2 nx dx (you could simplify more). Note
that 〈φ0, φ0〉 = π and 〈φn, φn〉 = π/2; the integrals are different for n = 0 and n 6= 0.
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1.4. Full example (cooling of a spherical shell: general). Let u solve the IBVP

ut = urr +
2

r
ur, r ∈ (1, 2), t > 0

u(1) = 0, u(2) = e−t

u(r, 0) = r − 1

(1.3)

which can describe diffusion of heat (spherically symmetric) in a spherical shell between
radius 1 and radius 2 (for instance, the mantle of the Earth). The BC has the inner layer at
a fixed value and the outer layer at a value that decays over time.

We first follow the procedure to get a ‘complete solution’ but without solving the vari-
ous equations explicitly (this is done afterwards).

The eigenfunctions: The operator, which is not self-adjoint, is

Lu = −urr − (2/r)ur.

Using the integrating factor exp(
∫

2/r dr) = r2, we get

Lu = − 1

r2
(r2ur)r =

1

σ(r)
L̃u, =⇒ L̃u := −(r2ur)r, σ(r) = r2. (1.4)

The eigenvalue problem is then

− (r2φr)r = λr2φ, r ∈ (1, 2), φ(1) = φ(2) = 0. (1.5)

The operator L̃ is self-adjoint with separated boundary conditions and σ(r) > 0 and p(r) =
r2 > 0 in [1, 2] so L̃ is regular. By the main theorem, there is a set of eigenvaluesFunctions
λn and φn for n ≥ 1 solving (1.5) with all the properties listed in the theorem.

This is enough to proceed with the method, even without an explicit solution.

Solving the PDE: Let u be the solution to the IBVP. Since {φn} is a basis for L2
σ[a, b],

u(x, t) =
∞∑
n=1

cn(t)φn(x), cn =
〈u, φn〉σ
〈φn, φn〉σ

.

For convenience, define the constants

kn = 〈φn, φn〉σ =

∫ 2

1

r2φ2
n(r) dr. (1.6)

Project the PDE onto φn by taking the weighted inner product with φn:

〈ut, φn〉σ = −〈L̃u, φn〉

noting that the RHS is -〈 1
σ
Lu, φn〉σ. To emphasize, the boundary conditions for u and φn are

u(1) = 0, u(2) = e−t, φn(1) = φn(2) = 0.

By the general procedure, 〈ut, φn〉σ = knc
′
n(t) and so we get (using the BCs above to simplify)
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knc
′
n(t) = −〈L̃u, φn〉

= σ(r)(urφn − uφ′n)
∣∣∣2
1
− 〈u, Lφn〉

= −σ(2)u(2)φ′n(2)− λn〈u, σφn〉
= −4φ′n(2)e−t − λnkncn(t).

This gives the ODE for the coefficients,

c′n(t) + λncn(t) = bne
−t for n ≥ 1, bn := −4knφ

′
n(2). (1.7)

For the initial condition, let f(r) = r − 1. Evaluating the series at t = 0:

u(x, 0) = f(x) =⇒ cn(0) = kn〈f(x), φn〉σ. (1.8)

The answer: We now have a well-defined solution. To summarize and make sure everything
is defined and in the same place:

Solution: The solution (for the initial condition u(r, 0) = f(r)) is

u(x, t) =
∞∑
n=1

cn(t)φn(x) (1.9)

where the eigenvalues/functions λn, φn solve

− (r2φ′)′ = r2λφ, φ(1) = φ(2) = 0 (1.10)

and the coefficients are given by the solution to the IVP

c′n(t)+λncn(t) = bne
−t

cn(0) = kn

∫ 2

1

r2f(r)φn(r) dr.
(1.11)

The constants kn, bn are

kn = 〈φn, φn〉σ =

∫ 2

1

r2φ2
n(r) dr,

bn = −4knφ
′
n(2).

A plot of the solution is shown in Figure 1.

Note: The IVP (1.10) has a unique solution (hence cn is well-defined as written), but it can
also be solved to get an explicit solution. With the integrating factor eλnt, we get

cn(t) = cn(0)e−λnt + bne
−λnt

∫ t

0

e(λn−1)s ds = · · · . (1.12)

Note that the integral is different in the cases λn 6= 1 and λn = 1.
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Figure 1. Solution (1.9) at t = 0, 0.5, 1, 1.5 and 2. Note that Gibbs’ phe-
nomenon occurs at x = 2 due to the inhomgoeneous BC u(2, t) = e−t.

1.5. Extracting some information. This solution is good enough to do some analysis or
to manipulate for theory. For example, suppose we want to show the system approaches a
uniform state at temperature 0 and determine the ‘decay rate’.

First, it is easy to show using the Rayleigh quotient that the λ’s are strictly positive.
Take the L2 inner product with φ of the eigenvalue problem for L̃:

L̃φ = λσφ =⇒ 〈L̃φ, φ〉 = λ〈φ, φ〉.

Now integrate by parts once to get

λ〈φ, φ〉 = 〈L̃φ, φ〉 =

∫ 2

1

−(r2φr)rφ dr =

∫ 2

1

r2φ2
r dr ≥ 0.

The boundary condition φ(1) = 0 also implies this is zero if and only if φ = 0, so λ > 0.

For simplicity, assume λn 6= 1 (this is true; and even if not, the calculations are similar).
Then from the solution (1.12),

cn(t) = cn(0)e−λnt +
bn

λn − 1

(
e−t − e−λnt

)
.

What can we conclude? The coefficients decay like max{e−t, e−λnt} as t→∞. In partic-
ular, all of them go to zero: the system approaches an equilibrium state u = 0 and the decay
rate is min{λ1, 1}. Finding the value of λ1 requires more work or numerical approximation.
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1.6. Solving the eigenvalue problem. In general, eigenvalue problems are difficult or
impossible to solve exactly, and we must resort to a mixed bag of analytical techniques or
approximation. For this example, there is a trick. The goal is to solve

−φ′′ − 2

r
φ′ = λφ, φ(1) = φ(2) = 0.

We use a ‘convenient’ substitution to convert to a LCC equation. Let y = rφ. Then

−y′′ = −rφ′′ − 2φ′ = −r
(
φ′′ +

2

r
φ′
)

= λrφ = λy

so the general solution for φ is (solve for y, set φ = y/r)

φ = c1
sinµr

r
+ c2

cosµr

r

where µ =
√
λ. Using the boundary conditions, we get the system for c1, c2:[

0
0

]
=

[
sinµ cosµ

(sin 2µ)/2 (cos 2µ)/2

] [
c1
c2

]
=⇒ cos 2µ sinµ− sin 2µ cosµ = 0 =⇒ sinµ = 0.

The eigenvalues/functions (note: the Rayleigh quotient argument above ensures λ > 0) are

λn = π2n2, φn =
1

r
sin πr, n = 1, 2, · · · . (1.13)

Note that these are the same as the eigenvalues/functions for φ̃ = λσφ (this and Lφ = λφ
are equivalent).

From here, we can calculate the various constants in the solution (1.9). For instance,

kn =

∫ 2

1

r2φ2
n dr =

∫ 2

1

sin2 nπr dr = 2,

bn = −4knφ
′
n(2) = −2nkn

and so on to get an explicit, computed solution (this is how Figure 1 was produced), numerical
values for the decay rate (etc). However, other than avoiding the λn = 1 case in the integral
(1.12), the computations do not give us any new structure.
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2. Singular SLPs: when the theory still works...

When the operator is not regular (called singular), either some parts of the theorem do
not hold (we lose some structure) or the theorem fails entirely (other theory is required).

Theorem (self-adjoint, not regular): Suppose L is (almost) a regular SL operator, except
that it has BCs other than the separated type (but is still self-adjoint!). Then the results of
the Main Theorem still hold, except that:

• There may be more than one eigenfunction per eigenvalue
• The smallest eigenvalue still has one eigenfunction

Eigenspace has dimension > 1: Consider the operator with periodic BCs

Lu = −uxx, u(0) = u(2π), u′(0) = u′(2π).

The operator L is self-adjoint. However, the BCs are not separated, so it is not regular. We
know that each eigenvalue has two eigenfunctions:

λn = n2, φn,1 = cosnx, φn,2 = sinnx

leading to the Fourier series. All the other conclusions of the theorem hold; the only difference
is that the solution to

Lφ = λnφ, φsatisfies the BCs

for a given eigenvalue λn is spanned by two eigenfunctions rather than one (except for the
smallest eigenvalue λ0 = 0, which still has only one). The properties that do hold are enough
to still use this basis for solving PDEs with periodic boundary conditions.

Highlight: For this course, periodic BCs will be one of the only cases we run into with
multiple eigenfunctions per eigenvalue. However, it is important to be aware that non-
separated or more exotic BCs can lead to these more complicated eigenfunction structures.

Missing a BC: Consider the heat equation in a full sphere of radius π (for a solution u(r, t))
with a prescribed value on the boundary:

ut = urr +
2

r
ur, r ∈ [0, π] u(π, t) = a.

There is now no inner boundary! Recall that the eigenvalue problem is

− φ′′ − 2

r
φ = λφ, φ(π) = 0 (2.1)

and it has the general solution

φ = c1
sin
√
λr

r
+ c2

cos
√
λr

r
. (2.2)

With only one boundary condition, (2.1) cannot be solved. However, to have a physically
reasonable solution the function φ(x) should be finite. The true eigenvalue problem is then

− φ′′ − 2

r
φ = λφ, φ bounded in [0, π], φ(π) = 0. (2.3)

This forces c2 = 0 in (2.2), and then we can proceed to get λn = n2 and φn = sinnr/r for
n ≥ 1. There is one eigenfunction per eigenvalue; the results of the theorem all hold.
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Highlight (boundedness): Often, a ‘bounded’ constraint will eliminate an eigenfunction
that is not bounded in the interval (like 1/x in [0, x]). Such constraints are common in
singular problems where p(x) can be zero at an endpoint and the usual boundary condition
is missing at this endpoint.

When well behaved, the structure tends to be the same as the regular case, even
though the theorem as stated does not quite apply.

3. ...and when it doesnt.

Only equations of a certain form can be solved with this approach. There has to be a cer-
tain amount of ‘separation’ that lets us have an operator L depending only on x-derivatives
and reasonably nice BCs. Here are some examples of equations where this fails (exercise:
try to make the method work):

Infinite domain: Suppose we have an eigenvalue problem for Lu = −uxx in an infinite
domain such as the problem on the half-line

−φ′′ = λφ in (0,∞), φ(0) = 0, φ bounded as x→∞.
The function φ(x) = sin(kx) is a solution for any real number k. A different theory is
required as the eigenvalue set is not discrete (we’ll see this as the Fourier transform later).

Time cannot be separated: The approach here depends on being able to write u in
terms of a basis of eigenfunctions that is ‘separated’ from t:

u =
∑

cn(t)φn(x)

and not φn(x, t); the basis must stay the same for all t. A ‘time-dependent’ Robin BC like

u(a, t) + f(t)ux(a, t) = 0

makes the eigenvalue problem for φ(x) impossible to form. The boudnary conditions for φ
would have to be φ(a) = −f(t)φ′(a) which does not work.

Similarly, for the PDE
ut = uxx + c(t)ux

(which is diffusion with a time dependent velocity term) we cannot take the operator

Lu = −uxx − c(t)ux
because then the eigenvalue problem would depend on t. Unless some change of variables can
disentangle x from t, some other method is needed. Fortunately, it is often true in practice
that the PDE does not have much explicit time dependence.
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