
MATH 5510 LECTURE NOTES
PDES: THE MAIN TYPES AND PROPERTIES

Topics covered

• The heat equation
◦ Domain; irreversibility
◦ Coefficient decay: smoothing properties
◦ Convergence to a steady state

• Separation of variables
◦ As applied to the heat equation
◦ Remarks on its limitations

• Wave equation
◦ Physical interpretation (Fourier modes)
◦ Coefficients: non-smoothing
◦ Where are the waves?

• Laplace’s equation
◦ Pure boundary value problems: separable case
◦ Superposition, solvability

1. The heat equation

With the structure of eigenfunctions and the solution procedure, we may now study some
important PDEs and their fundamental properties. Recall that an initial boundary value
problem (IBVP) for the heat equation consists of the PDE itself plus BCs and an IC e.g.

ut = uxx t > 0 and x ∈ (a, b), (1.1a)

u(a, t) = 0 and u(b, t) = 0 for t > 0 (1.1b)

u(x, 0) = f(x). (1.1c)

The initial condition can be thought of as a boundary at t = 0; the term ‘initial’ is used
because it is treated differently than the x-boundaries: the time domain (0,∞) is infinite and
the time derivative ∂

∂t
is not self-adjoint. The heat equation is the prototypical parabolic

PDE, which describes diffusion processes. The three-sided boundary in the (x, t) plane,
shown below, is called the parabolic boundary for the IBVP.
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2 INTRO TO PDES

Well-posedness: This initial boundary value problem (1.1a)-(1.1c) has a unique solution
in the domain for all t > 0 and small changes in the initial condition lead to small changes
in the solution. We say the problem is well-posed in this case.

Note that the condition t > 0 is necessary; the equation does not have a solution
(ill-posed) for t < 0. The heat equation cannot be solved backward in time (see HW).
Physically, this reflects the irreversibility of diffusion (it acts only forward in time).

1.1. In physical problems. Suppose u(x, t) is the temperature in a solid. If the material
properties vary in space and there is an external ’source’ of heat g(x, t), then the heat
equation for u is

c(x)ut = (k(x)ux)x + g(x, t)

where c(x) is the specific heat and k(x) is the thermal diffusivity. The flux of heat q(x, t)
through the point x (directed towards the + direction) is

q = −kux.
The equation then has the conservation law form

et + qx = g(x, t)

where q = −kux is the flux of heat and e = cu is the heat energy; this is a statement of
conservation of heat in the system. A Robin boundary condition like −ux(a) = u(a) then
states that there is a flux into the system proportional to the temperature; Neumann BCs
say the flux is zero.

The term (kux)x is used to describe diffusion in general (not just heat). For example, a
concentration u(x, t) of a chemical in a pipe, carried by a fluid with velocity v0, may satisfy
the advection-diffusion equation

ut + v0ux = (kux)x.

where k is the diffusivity of the chemical. If the pipe is closed at one end, the flux q = 0, so
the BC is v0u = kux (another place where Robin boundary conditions arise).

1.2. Conservation of mass. Suppose u satisfies the heat equation in an interval,

ut = (k(x)ux)x, x ∈ (a, b).

We can integrate from a to b to find that

∂

∂t

(∫ b

a

u dx

)
= k(b)ux(b, t)− k(a)ux(a, t). (1.2)

Letting q(x, t) = −kux be the flux and M(t) =
∫ b
a
u(x, t) dx,

∂M

∂t
= q(a, t) + (−q(b, t)) = flux in at a+ flux in at b.

This says that the ‘mass’ of u in the domain is conserved: its rate of change is given by the
flux of u into the system. With some information about the boundary terms, (1.2) can be
useful - for instance, if ux(a, t) = ux(b, t) = 0 (Neumann BCs) then M(t) is constant.
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1.3. Superposition. A linear, homogeneous DE Lu = 0 obeys the superposition principle:
linear combinations of solutions are also solutions. This is a restatement of linearity in the
differential operators.

Superposition principle: For a linear homogeneous DE (i.e. Lu = 0),

u1, u2 are solutions =⇒ c1u1 + c2u2 is a solution for all c1, c2 ∈ R. (1.3)

More generally, for an inhomogeneous DE

Lu = f,

if u1 and u2 solve the DE with inhomogeneous terms f1 and f2 then c1u1 + c2u2 solves the
DE with f = c1f1 + c2f2.

Important remark on notation: In the context of the heat equation

ut = uxx + f

we have written Lu = −uxx and ut = −Lu + f (only the x-derivatives in L). This is also

in the form L̂u = f for L̂u = ut − uxx, which is the L in the superposition definition above.
Essentially, we have split the full operator L̂ into a self-adjoint part (−uxx) and left ut alone.

Using superposition: The BCs and ICs, if non-zero, add in the same way as f . For
instance, if u, v both solve

ut = uxx, t > 0 and x ∈ (a, b),

u(a, t) =u(b, t) = 0 for t > 0

where u, v have initial conditions

u(x, 0) = f1(x), v(x, 0) = f2(x)

then w = c1u+ c2v solves the IBVP

wt = wxx, t > 0 and x ∈ (a, b),

w(a, t) =w(b, t) = 0 for t > 0

w(x, 0) = c1f1(x) + c2f2(x).

Superposition allows us to split problems into simpler parts. Suppose we wish to solve

ut = uxx + g(x, t),

u(0, t) =u(1, t) = 0,

u(x, 0) = f(x).

We can split this into u = v + w where v solves an inhomogeneous problem with zero ICs
and w(x, t) solves a homogeneous problem with non-zero ICs:

vt = vxx + g(x, t),

v(0, t) =v(1, t) = 0,

v(x, 0) = 0

wt = wxx,

w(0, t) =w(1, t) = 0,

w(x, 0) = f(x),

We’ll use this idea in other ways to simplify solutions. Here, they have physical significance:
one is the response to the source term g; the other is the response if there was no forcing.
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2. Steady states; smoothness of solutions

Recall that positive eigenvalues implies that the solution to the heat equation will converge
to some equilibrium (a steady state) as t→∞. To further discuss, recall the IBVP

ut = uxx, x ∈ (0, 1), t > 0

ux(0, t) = 0, ux(1, t) = 0, t > 0

u(x, 0) = f(x)

(2.1)

with eigenvalues/functions λn = n2π2 and φn = cosnπx for n = 0, 1, 2, · · · and

u(x, t) =
∞∑
n=0

ane
−λnt cosnπx, an =

〈f, φn〉
〈φn, φn〉

=

{
2
∫ 1

0
cosnπx dx, n ≥ 1∫ 1

0
f(x) dx n = 0

.

From the solution (plotted in Equation 2), we see that (assuming a1 6= 0):

u(x, t) = a0 + a1e
−λ1t cosπx+ smaller terms.

It follows (omitting a rigorous proof) that:

• The solution approaches the constant ‘steady-state’ solution u(x) = a0 as t→∞.

• This ‘steady state’ u(x) is a time-independent solution to the PDE and BCs.

• a0 =
∫ 1

0
f(x)dx is the average value of f(x). That is, u(x, t) converges to the average

of the initial data (which makes physical sense, e.g. for diffusion in a closed container).

Moreover, so long as a1 6= 0 (what if a1 = 0?), the convergence has exponential rate λ1:

max
x∈[0,1]

|u(x, t)− a0| ∼ a1e
−λ1t as t→∞.

Steady states: A ‘steady state’ or ‘equilibrium solution’ u(x) is a time-independent solution
to the PDE and the BCs. For the heat equation with the typical BCs, if a steady state exists
then it is unique; if the eigenvalues are all non-negative then

lim
t→∞

u(x, t) = u.

A word of caution: To show that this ’steady state’ really is the limit, we must verify that
the eigenvalues are positive and check that inhomogeneous BCs or other complications do
not change the limit.
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Using steady states: If a time-independent solution can be found in advance, we can
simplify the solution procedure. Consider, for instance,

ut = uxx + 2A(x+ 1), x ∈ [0, 1], t > 0

ux(0, t) = 0, u(1, t) = B, t > 0

u(x, 0) = f(x)

(2.2)

A time-independent solution u(x) to the PDE+BCs (ignoring the IC) solves the BVP

uxx + 2A(x+ 1) = 0, u(0) = 0, u(1) = 1.

Solving this by integrating twice,

ux = c1 − A(x+ 1)2 =⇒ u = B +
5A

3
+ Ax− A

3
(x+ 1)3.

Now observe that v = u− u (by superposition) solves the homogeneous IBVP

vt = vxx x ∈ [0, 1], t > 0

vx(0, t) = 0, v(1, t) = 0, t > 0

v(x, 0) = f − u.
(2.3)

The solution for v is (with φn = cos((n− 1/2)πx) and λn = π2(n− 1/2)2)

v(x, t) =
∞∑
n=1

ane
−λntφn, an =

〈f − u, φn〉
〈φn, φn〉

.

The solution to the original IBVP (2.2) is then

u(x, t) = u+ v(x, t). (2.4)

Direct approach: Suppose we instead solve inhomogeneous problem directly. Let

2(x+ 1) =
∞∑
n=1

gnφn, f =
∞∑
n=1

fnφn

so fn = 〈f, φn〉/〈φn, φn〉 and gn = 〈x+ 1, φn〉/〈φn, φn〉. Then

c′n(t) = Agn +Bhn − λncn, hn =
1

B〈φn, φn〉
(φnux − φ′nu)

∣∣∣1
0

=
(−1)n+1π(n− 1/2)

〈φn, φn〉

u(x, t) =
∞∑
n=1

cn(t)φn(x), cn(t) = fne
−λnt +

Agn +Bhn
λn

(1− e−λnt) (2.5)

Both solutions are, in fact the same; the inhomogeneous terms are accounted for inside the
series for (2.5) and outside the series for (2.4). Rewriting (2.5) in parts:

u(x, t) = A

∞∑
n=1

gn
λn
φn +B

∞∑
n=1

hn
λn
φn +

∞∑
n=1

(fn + · · · ) e−λntφn.

The first two terms are the eigenfunction series for u. Note that

gn ∼ C/n2, hn ∼ C/n

so the ‘B’ part has poor convergence (and is the source of the Gibbs’ phenomenon at x = 1).
Separating out the steady state removes this term, yielding a smooth solution (Figure 1).
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Figure 1. Improving smoothness for (2.2) via steady state. Left: solution
(2.4) solved directly (50 terms). Right: solution (2.5) using a steady state.

2.1. Smoothness. Consider a (possibly non-uniform) heat equation

ut = (k(x)ux)x x ∈ [0, 1], t > 0

u(x, 0) = f(x)
(2.6)

with homogeneous BCs and a solution

u =
∑

cn(t)φn(x),

The coefficients for the ’homogeneous’ part will satisfy an ODE of the form

c′n(t) + λncn(t) = 0 =⇒ cn(t) = fne
−λnt.

where fn = 〈f, φn〉/〈φn, φn〉. It follows that

at each t > 0, the coefficients cn(t) decay ‘exponentially’ with n

where ‘exponentially’ depends on the growth of λn (typically ∼ e−an
2
). Note that the series

at t = 0,

u(x, 0) =
∑
n

fnφn

may not have fast decay. The smoothness of u(x, t) improves once some diffusion has occured.

Smoothing: In particular, this is much faster than the 1/nk we get for a function that
has a discontinuous k-th derivative. This is a ‘smoothing’ property of diffusion: the solution
to the homogeneous problem is smooth for all t > 0 (the series can be differentiated an
infinite number of times), even if the initial condition is not.

It follows that the series converges quickly to u(x, t) for positive times. The Gibbs’ phe-
nomenon issues encountered earlier are the result of inhomogeneous BCs, which introduce
discontinuities that persist for all t.
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2.2. Improving smoothness. If a steady state is not available, the non-smoothness can
still be mitigated by use of a similar superposition trick. Consider, for instance,

ut = uxx x ∈ [0, 1], t > 0

ux(0, t) = sin t, u(1, t) = e−t, t > 0

u(x, 0) = f(x)

(2.7)

No steady state exists due to the time-dependence in the BCs. The solution can be found as

u(x, t) =
∞∑
n=1

cn(t)φn(x) (2.8)

using the usual eigenfunction expansion of u. However, due to the inhomogeneous BCs,

cn(t) ∼ C/n =⇒ Gibbs’ phenomenon at boundaries.

To remedy this, we look for a function w(x, t) such that

w(x, t) satisfies the inhom. BCs. (2.9)

Then we can write

u = v + w

so that v = u− w has homogeneous BCs. However, it is now the case that

vt = vxx + g(x, t).

To calculate the new source g(x, t),

vt − vxx = ut − uxx − (wt − wxx) =⇒ g = wt − wxx
which is non-zero in general since w does not solve the PDE. There are many choices for w
since (2.9) is not a strong condition. A linear function is simplest (quadratic if necessary):

w(x, t) = A(t) + xB(t) =⇒ w(x, t) = x sin t+ (e−t − sin t)

which then gives g = x cos t− e−t − cos t since wt = 0, so v solves

vt = vxx + g(x, t) x ∈ [0, 1], t > 0

vx(0, t) = 0, v(1, t) = 0, t > 0

v(x, 0) = f − 1

(2.10)

since w(x, 0) = 1. Solving (2.10) for v, we get the solution to (2.6):

c̃′n(t) + λnc̃n = gn(t), g(x, t) =
∑

gn(t)φn(x).

u = w +
∞∑
n=1

c̃n(t)φn(x) (2.11)

Now note that we know since the series for g(x, t) converges and g(1, t) 6= 0 that

gn(t) ∼ C/n =⇒ c̃n ∼
C

nλn
∼ C

n3
.

This is better than the original solution (even though they are equal), which has cn ∼ C/n.
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Note that unlike the steady state case where v was smooth (so cn had exponential decay),
there is still a ’higher order’ Gibbs’ phenomenon (Figure 2) in the second derivative:

vxx =
∞∑
n=1

λncn(t)φn(x) =⇒ λncn ∼
C

n
.
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Figure 2. Left: Solution to (2.10) by using superposition to improve smooth-
ness. Right: second x-derivative uxx at t = 1 with 50 terms.

3. Separation of variables

For homogeneous problems, we can exploit this independence to obtain solutions quickly.
The following is a useful shortcut for eigenfunction expansions. To illustrate, consider

ut = uxx + ux + tu, x ∈ [0, π], t > 0

u(0, t) = 0, u(1, t) + ux(1, t) = 0 t > 0

u(x, 0) = f(x).

Note that this PDE is homogeneous. We look for a separated solution

u = F (t)G(x). (3.1)

Substitute this ansatz into the PDE to get

F ′(t)

F (t)
=
G′′ +G′

G
+ (t+ 1).

Now separate t and x variables:

F ′(t)

F (t)
− (t+ 1) =

G′′(x) +G′(x)

G(x)
.

This has the form (function of t) = (function of x) so both must equal a constant:

F ′(t)

F (t)
− (t+ 1) =

G′′(x) +G′(x)

G(x)
= −λ. (3.2)

Now plug (3.1) into the PDE to get

F (t)G(0) = 0, F (t)(G(1) +G′(1)) = 0
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This must hold for all t, which gives BCs for G. This and (3.2) gives two ODEs (one for
each function) plus boundary conditions:

G′′ +G′ = −λG, G(0) = G(1) +G′(1) = 0

F ′ + (λ+ t+ 1)F = 0.

The first line is an eigenvalue problem with solutions Gn and eigenvalues λn. Then solve

F ′n + (λn + t)Fn = 0

to get Fn(t) = an(· · · ) for arbitrary an. We conclude that

un(x, t) = Fn(t)Gn(x)

is a solution for each n. By superposition, so is any linear combination, so we get

u(x, t) =
∑
n

Fn(t)Gn(x).

The constants an are then found in the usual way. Note that we know this process will yield
the complete solution due to Sturm-Liouville theory.

3.1. The method: summary. The procedure is straightforward. Below is an outline; it
is important to view as a strategy and not a rigid procedure. To be concrete, suppose the
PDE is for u(x, t) (this could be different, of course) with homogeneous BCs. To solve:

• Guess a separated solution (a product of functions of one variable):

u(x, t) = F (t)G(x).

* Plug into the PDE and separate independent variables to get an expression like

function of t = function of x.

Conclude that they are equal to a constant (this will be ± the eigenvalue).
* Use any hom. BCs to get boundary conditions for the separated functions
• Solve the eigenvalue problem to get eigenfunctions/values, then solve the other ODE(s)

to get the general form of separated solutions un(x, t).
• Assume the general solution is an eigenfunction series (add up separated solutions):

u =
∑
n

un(x, t).

• Solve for unknown coefficients using remaining ICs, BCs etc.

The starred steps can easily fail, in which case another method must be used.

Practical note: When it works (for homogeneous problems), separation of variables is
the easiest way to solve PDEs. For some non-homogeneous problem, superposition tricks
sand other techniques can reduce the problem to a homogeneous one. The disadvantage
is that it hides the underlying theory and structure (of eigenfunctions) and it fails when
inhomogeneous terms are introduced.

Often, SoV is a good place to start when looking for solutions to more complicated
problems (if the eigenfunction structure is not known).
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3.2. SoV, superposition and modes. Consider again the example problem

ut = uxx + g(x, t), x ∈ [0, π], t > 0

u(0, t) =u(π, t) = 0, t > 0

u(x, 0) = f(x).

(P )

Let φn = sinnx and λn = n2 and

f =
∞∑
n=1

fnφn, g(x, t) =
∞∑
n=1

gn(t)φn fn = 〈f, φn〉/〈φn, φn〉, gn = 〈g, φn〉/〈φn, φn〉.

We can ‘project’ this equation onto φn to get an n-th problem

ut = uxx + gn(t)φn, x ∈ [0, π], t > 0

u(0, t) =u(π, t) = 0, t > 0

u(x, 0) = fnφn.

(Pn)

Let un(x, t) be the solution to (Pn). This is sometimes referred to as the n-th mode of the
solution (or Fourier mode if it is part of a Fourier series). Then the full solution u is

u(x, t) =
∞∑
n=1

un(x, t).

That is, u is the superposition of the solutions to all the projected equations (Pn). Moreover,
each mode evolves independently (according to (Pn)). To solve (Pn), we need only look for
a solution with a φn term (not a full series!)

un(x, t) = cn(t)φn

and plug into the PDE and ICs to get

c′n(t) = −λncn(t) + gn(t), cn(0) = fn.

This is exactly the process we used before, but using the actual projection 〈·, φn〉φn (returning
a function) rather than 〈·, φn〉 (returning the coefficient).

Practical note: If the initial condition and source are a finite sum of modes, then the
solution and process can be simplified since we only need to solve a finite number of
problems (Pn) for one term solutions. This requires homogeneous BCs.

For example, ut = uxx + sin x with u(0, t) = u(π, t) and u(x, 0) = sin 2x has a solu-
tion with two modes, u = c1(t) sinx+ c2(t) sin 2x. For a real example, see subsection 5.7.

Connection to SoV: The method of separation of variables is simply solving for (Pn) first,
then adding the solutions together. The process finds the appropriate eigenvalue problem
along the way. Note that it only works with no source (g = 0); otherwise the eigenfunctions
must be found first.

Comparison to inhom. BCs: Note also that if there are inhomogeneous BCs then (Pn)
is not the right projected equation, because it does not take the BCs into account (and we
cannot project the BCs in the same way). In this case, the individual terms cn(t)φn(x) are
not quite solutions to the projected PDE (Pn); only the full series is a solution.
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4. Wave equation

The wave equation, in one dimension, has the form

utt = c2uxx

for u(x, t). Here c is the ‘wave speed’. This is the fundamental equation for describing
propagation of (physical) waves e.g. elecromagnetic, seismic, sonic and so on. As with the
heat equation, the wave speed may vary in space. For a vibrating string with variable density
ρ(x) and tension T (constant), we have, for instance,

ρ(x)utt = Tuxx.

4.1. Vibrating string. Consider, for example a string that is fixed at ends x = 0 and x = L
with constant tension T and density ρ. Let c =

√
T/ρ. Then the displacement u(x, t) of the

string can be described by the wave equation:

utt = c2uxx, x ∈ (0, L)

The derivation is standard (see e.g. the book). Suppose that the string has, at t = 0, an
initial displacement f(x) and speed g(x). The IBVP for u(x, t) is

utt = c2uxx, x ∈ (0, L), t ∈ R
u(0, t) = 0, u(L, t) = 0,

u(x, 0) = f(x), ut(x, 0) = g(x).

(4.1)

Note that there are two ICs needed because of the two t-derivatives. A sketch and the domain
(in the (x, t) plane) is shown below. We do not restrict t > 0 as in the heat equation.

4.2. Solution (separation of variables). Look for a separated solution

u = h(t)φ(x).

Substitute into the PDE and rearrange terms to get

1

c2
h′′(t)

h(t)
=
φ′′(x)

φ(x)
= −λ.

The eigenvalue problem and solution are:

φ′′ + λφ = 0, φ(0) = φ(L) = 0,

=⇒ φn = sin
nπx

L
, λn = n2π2/L2.
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Define the fundamental frequency1 and its multiples

ω0 = πc/L, ωn = nπc/L.

Fr each λn, we solve for the solution hn(t) (ICs to be applied later):

h′′n + c2λnhn = 0

=⇒ hn = an cosωnt+ bn sinωnt.

The full solution to the PDE is then the series

u(x, t) =
∞∑
n=1

hn(t)φn(x) =
∞∑
n=1

(an cosωnt+ bn sinωnt) sin
nπx

L
. (4.2)

To find the coefficients, project onto φn to get

an = hn(0) =
〈f, φn〉
〈φn, φn〉

, ωnbn = h′n(0) =
〈g, φn〉
〈φn, φn〉

.

Explicitly, the formulas are (note that this is just a Fourier sine series)

an =
2

L

∫ L

0

f(x) sin
nπx

L
dx, bn =

2

ncπ

∫ L

0

g(x) sin
nπx

L
. dx. (4.3)

4.3. Standing waves. The separated solutions (the ‘modes’) in (4.2) have the form

un(t) = (an cosωnt+ bn sinωnt) sin(nπx/L).

These solutions are standing waves, because they have points that stay fixed (‘nodes’).
The frequency ω0 is the lowest (natural) frequency of vibration for the string.

Where is the wave? So far, it is not clear why the full solution describes a propagating
wave. With some effort we can show that the solution to the wave equation is really a
superposition of two superimposed waves traveling in opposite directions. Using

cosnct sinnx =
1

2
(sinn(x+ ct) + sinn(x− ct)) =

1

2
hn(x+ ct) +

1

2
hn(x− ct)

we can rewrite the solution in the form F (x + ct) + G(x − ct) (D’Alembert’s formula).
This hints at key structure for the wave equation (propagation along characteristics) that
is outside of the scope of the eigenfunction method; we will not pursue it here.

1Definitions vary by a factor of 2π; typically ω0 = c/2L instead.
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Example: plucking a string. Suppose a string from a guitar or harp is plucked. The
initial displacement will be something like a triangular shape, such as

f = A ·

{
2x/L 0 ≤ x < L/2

2(L− x)/L L/2 < x < L

where A is the initial displacement at x = L/2. The initial speed is g = 0. In that case, it is
straightforward to show that bn = 0 and

an =
8A

π2n2
sin

nπ

2
.

In terms of the frequencies ωn, the response of the string (Figure 3) is

u(x, t) =
∞∑
n=1

an cos(2πωnt) sin
nπx

L
. (4.4)

Since sinnπ/2 = 0 for n even, the string, when plucked exactly at the center, vibrates
with only the odd harmonics, and the amplitude of the harmonics decay quadratically with
n. Note that because the initial displacement is not an eigenfunction, there are an infinite
number of harmonics present. For a musical instrument, this is ideal, since the sound is
much better when it is a mix of frequencies (a pure tone of one frequency is not pleasant).

0 0.5 1
-1

-0.5

0

0.5

1

t=1.150

0 0.5 1
-1

-0.5

0

0.5

1

t=0.380

Figure 3. Left: solution (4.4) and initial condition (dashed). Right: solution
and its two waves hn(x± ct) (red and blue).

Superposition of initial conditions: We can split the IBVP (4.1) into one part with zero
initial speed (ut = 0) and one with zero initial displacement (u = 0). That is, let v solve

vtt = c2vxx, x ∈ (0, L),

v(0, t) = 0, v(L, t) = 0,

v(x, 0) = f(x), vt(x, 0) = 0

(4.5)
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and let w solve

wtt = c2wxx, x ∈ (0, L),

w(0, t) = 0, w(L, t) = 0,

w(x, 0) = 0, wt(x, 0) = g(x).

(4.6)

Then the solution u(x, t) to (4.1) is
u = v + w.

Notice that the two pieces correspond to the sine/cosine terms in the full solution:

u(x, t) = v + w =
∞∑
n=1

(
an cos

nπct

L
sin

nπx

L

)
+
∞∑
n=1

(
bn sin

nπct

L
sin

nπx

L

)
.

The two parts correspond to the sine/cosine terms in t, which is easy to check directly.

4.4. Eigenfunction expansion. The solution via eigenfunctions is the same as for the heat
equation (see HW); write utt = −Lu. The only difference is that

〈utt, φn〉 = c′′n(t)〈φn, φn〉
and both initial conditions are projected to get cn(0) and c′n(0).

4.5. Smoothness. Returning to the plucked string IBVP and solution, set c = 1 and L = π
and assume zero initial velocity:

utt = uxx, x ∈ (0, π), t ∈ R
u(0, t) = 0, u(π, t) = 0,

u(x, 0) = f(x), ut(x, 0) = 0

(4.7)

f =

{
2x/π 0 ≤ x < π/2

2(π − x)/π π/2 < x < π
.

The solution is

u(x, t) =
∞∑
n=1

an cos(nt) sinnx, an =
8

π2n2
sin

nπ

2
.

From the solution (Figure 3) it is evident that the series should converge to a function whose
x-derivative is piecewise continuous (it has corners due to the ‘trapezoidal’ shape). Indeed,
we have that

an ∼ C/n2 =⇒ the series can be differentiated once.

This is true for both t and x derivatives (both create factors of n), e.g.

ut = A
∞∑
n=1

nan cos(nt) sinnx, nan ∼ C/n

so the series for ut (and similarly ux) will exhibit Gibbs’ phenomenon. The solution to the
wave equation has at best the same smoothness as its initial condition u(x, 0) (i.e.
same number of derivatives).2 That is, the wave equation does not smooth out solutions at
all, unlike the heat equation.

2 The result for the initial velocity ut(x, 0) is slightly different (see HW) and also changes in higher
dimensions; in even dimensions, u has one less derivative than its initial condition (see Huygen’s principle).



INTRO TO PDES 15

Note (what is a solution?): We cannot differentiate again at all to get utt and uxx as
series, despite the fact that u was obtained as a solution to utt = uxx. How is this
possible? The eigenfunction series method avoids differentiating series; instead we solve

〈utt, φn〉 = −〈u, Lφn〉
which moves the derivatives on uxx (not smooth) to φn (smooth). The framework here is
that of a weak solution. Such solutions are the basis, for instance, of the finite element
method in numerical computation and for most analysis of PDEs.
As a benefit, the weak solution u(x, t) can be a non-differentiable function like the propa-
gating triangle for the example here!

4.6. Example: Dispersive waves. Consider the wave equation with an added term:

1

a2
utt + γ2u = uxx, x ∈ [0, 1]

u(0, t) = 0, u(1, t) = 1

u(x, 0) = f(x), ut(x, 0) = 0.

We will proceed directly here.3 Define the (self-adjoint) operator

Lu = −uxx + γ2u,

(note that Lu = −uxx could also work). Setting λ̃ = λ− γ2, the eigenvalue problem is

−φ′′ = λ̃φ, φ(0) = φ(1) = 0,

=⇒ φn = sinnπx, λ = π2n2 + γ2, n ≥ 1.

We seek a solution as an eigenfunction series u(x, t) =
∑∞

n=1 cn(t)φn(x). With kn = 〈φn, φn〉,
(kn/a

2)c′′n(t) = −〈Lu, φn〉

= (uxφn − uφ′n)
∣∣∣1
0
− 〈u, Lφn〉

= −u(1, t)φ′n(1)− λn〈u, φn〉
= −nπ − λnkncn

=⇒ c′′n(t) + a2λncn(t) = −2a2nπ.

(noting that kn = 1/2 for all n). Imposing the initial condition, we find that

cn(0) = bn := 2〈f, φn〉, c′n(0) = 0.

After solving for cn we find that the solution is

u =
∞∑
n=1

cn(t)φn(x), cn(t) = bn cos(a
√
λnt)−

2nπ

λn
(1− cos(a

√
λnt)).

By writing the solution as a sum of waves h(x ± c(· · · )t) we can show that this solution is
the sum of propagating waves; however, unlike the wave equation with γ = 0, the speed for
each term will depend on n (this is ‘dispersion’: the speed depends on frequency).

3A time-independent solution w(x) can be found, satisfying γ2w = w′′ and w(0) = 0, w(1) = 1; then
v = u−w has homogeneous BCs and SoV can be used. Note that w is not a steady state as it was with the
heat equation, but the procedure works the same.
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5. Laplace’s equation

The Laplacian of a function u : Rn → R is

∆u =
n∑
j=1

∂2u

∂x2j
, (5.1)

sometimes written as ∇2u since it equals ∇ · (∇u) (divergence of the gradient).

The Laplacian shows up in the n-dimensional variants of the three essential linear PDEs
(two of which we have already seen):

• The heat equation ut = k∆u

• The wave equation utt = c2∆u

• Laplace’s equation ∆u = 0

• (and Poisson’s equation ∆u = f)

Laplace’s equation is the ‘steady-state’ version of the heat equation (ut = 0), so it describes
the equilibrium state of a diffusing system. It therefore arises naturally in physics to describe
systems that have ’settled’ into their equilibrium. This equation describes a wide variety
of phenomena: inviscid fluid flow (e.g. flow past an airfoil), stress in a solid, electric fields,
wavefunctions (time independent) in quantum mechanics, and more.

What is the difference? Unlike the heat and wave equation, Laplace’s equation is a
‘boundary value problem’ as there is no initial condition. There is also a difference in sign
from the wave equation, which will change the solution.

5.1. Solution in a rectangle. Consider the following boundary value problem for Laplace’s
equation with a source term g(x, y) in a square:

−(uxx + uyy) = g(x, y), x ∈ (0, 1), y ∈ (0, 1)

u(x, 0) = 0, u(x, 1) = 0, x ∈ (0, 1)

u(0, y) = 0, u(1, y) = f(y), y ∈ (0, 1).

The BCs in the y-direction are homogeneous (red) but inhomogeneous in the x-direction (at
x = 1). This suggests expanding with eigenfunctions φ(y), as u =

∑
gn(x)φn(y).

Note: separation of variables could be used here, in which case this choice is required.
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Solution with eigenfunctions: Due to homogeneous BCs in y, it is easiest to write

uxx = Lu− g, Lu := −uyy.
The eigenvalue problem, using the BCs at the top/bottom face, is

φ′′(y) + λφ(y) = 0, φ(0) = φ(1) = 0 (5.2)

=⇒ φn(y) = sinnπy, λn = n2π2, n ≥ 1.

Let 〈f1, f2〉 denote the L2 inner product in y,
∫ 1

0
f1f2 dy. The solution is

u(x, y) =
∞∑
n=1

hn(x)φn(y). (5.3)

By the usual calculations, we get (note that the BCs are homogeneous)

h′′n〈φn, φn〉 = 0 + 〈Lu, φn〉 − 〈g, φn〉

=⇒ h′′n − λnhn = rn, rn := 〈g, φn〉/〈φn, φn〉. (5.4)

(Remark: Separation of variables would yield the same equations (5.2) and (5.4) if g = 0.)

The general solution to (5.4) is ane
nπx + bne

−nπx + rn/λn or, equivalently,

hn(x) = an sinhnπx+ bn coshnπx+ rn/λn

Finally, project the BCs at x = 0 and x = 1 onto φn to get boundary conditions for hn:

0 = u(0, y) =⇒ hn(0) = 0, f = u(1, y) =⇒ hn(1) = 〈f, φn〉/〈φn, φn〉.

Solution (no source) If there is no source (g = 0) then hn(0) = 0 gives

hn(x) = an sinhnπx

and the BC at x = 1 gives

f(y) = u(1, y) =
∞∑
n=1

an sinhnπφn(y) =⇒ an sinhnπ =
〈f, φn〉
〈φn, φn〉

.

Explicitly, the coefficients are

an =
1

sinhnπ

〈f, φn〉
〈φn, φn〉

=
2

sinhnπ

∫ 1

0

f(y)φn(y) dy, n ≥ 1.

Since sinh grows exponentially, we may worry that (5.3) will not converge due to the sinhnπx,
but this is not the case (see below).

Smoothness: We can deduce the smoothness of the solution from the series

u(x, y) =
∞∑
n=1

gn(x)φn(y), gn = (· · · )sinhnπx

sinhnπ
.

It is not too hard to show that sinhnπ ∼ Cenπ and sinhnπx ∼ Cenπ|x| so gn decays expo-
nentially for x in the domain (since |x| < 1). It follows that the solution is smooth (the
series has infinitely many derivatives!), even if the boundary data (f(y)) is not.
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5.2. Rectangle, with more boundary conditions. Let’s return to the rectangle example
and consider how to solve the problem when there are inhomogeneous boundary conditions
applied at all the sides for Laplace’s equation in a rectangle of width A and height B:

0 = uxx + uyy, x ∈ (0, a), y ∈ (0, b)

u(x, 0) = f1(x), u(x, 1) = f2(x), x ∈ (0, A)

u(0, y) = g1(y), u(1, y) = g2(y), y ∈ (0, B).

(5.5)

Both pairs of opposite sides (in blue and red above) could have non-homogeneous BCs. We
could solve this directly using eigenfunctions in either direction. However, a better solution
(smoother) can be obtained using superposition.

To do so, we break the problem up into two parts, each with homogeneous BCs on
one pairs of sides. To be precise, we find v and w solving

0 = vxx + vyy, x ∈ (0, A), y ∈ (0, B)

v(x, 0) = 0, v(x,B) = 0, x ∈ (0, A)

v(0, y) = g1(y), v(A, y) = g2(y), y ∈ (0, B).

(5.6)

0 = wxx + wyy, x ∈ (0, A), y ∈ (0, B)

w(x, 0) = f1(x), w(x,B) = f2(x), x ∈ (0, A)

w(0, y) = 0, w(A, y) = 0, y ∈ (0, B).

(5.7)

The sum u = v + w is then the solution to (5.5) (example plotted in Figure 4).

Solving for v: To solve (5.6), solve as in the previous example. For the eigenfunctions:

φ′′ + λφ = 0, φ(0) = φ(b) = 0,

=⇒ φn(y) = sin(nπy/B), λn = n2π2/B2.

There are no BCs to apply for h (both inhomogeneous), so we find the general solution to

h′′n(x)− λnhn(x) = 0.

Set µn = nπ/a. It is convenient to use sinh centered at x = 0 and x = a as the basis:

hn(x) = an sinh(µn(A− x)) + bn sinhµnx.

This is permitted since eµnx and e−µnx are solutions. It follows that

v(x, y) =
∞∑
n=1

[
an sinh(µn(A− x)) + bn sinh(µnx)

]
φn(y).
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Figure 4. Solution u = v +w to (5.5) (top) and parts v, w (bottom) solving
(5.6) and (5.7) for f1 = f2 = x(1− x) and g1 = g2 = y(1− y).

Now use the BCs at x = 0 and x = A (this is where the choice of basis is useful):

at x = 0: g1(y) = v(0, y) =
∑∞

n=1 an sinh(µn)φn(y)

at x = A: g2(y) = v(A, y) =
∑∞

n=1 bn sinh(µnA)φn(y).

Let 〈f, g〉 =
∫ B
0
f(y)g(y) dy denote the L2 inner product in [0, B] (the y-direction). Then

an sinhµn =
〈g1, φn〉
〈φn, φn〉

=
2

B

∫ B

0

g1(y) sin
nπy

B
dy

bn sinh(µnA) =
〈g2, φn〉
〈φn, φn〉

=
2

B

∫ B

0

g2(y) sin
nπy

B
dy.

Solving for w: The process for w is the same, but with eigenfunctions ψn(x) in [0, a] and
coefficients qn(y) instead (left as an exercise).

The full solution: Finally, the solution to the original problem (5.5) is

u = v + w =
∞∑
n=1

hn(x)φn(y) +
∞∑
n=1

qn(y)ψn(x).

Both v and w have homogeneous BCs that match the eigenfunctions, so they will have better
convergence than the series for u obtained directly.
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5.3. Separable boundary conditions. When applying the eigenfunction method, one
must pick a direction for the eigenfunctions, either

u =
∑

cn(x)φn(y) or u =
∑

cn(y)φn(x).

If there is a direction where the BCs are homogeneous, this is typically a good choice (and
required for using SoV). However, this relies on the ability to ‘separate’ the BCs into inde-
pendent directions. For example, consider the triangle

{(x, y) : x, y ≥ 0, x+ y ≤ 1}.
There is no single eigenvalue problem for φ(x) or φ(y); it would have to change in the other
variable. The boundary for this problem is non-separable.

To deal with non-separable boundary conditions, one needs other techniques (which we’ll
see, if not study in detail, later).

5.4. In a circle. Here, the boundary conditions can be separated using polar coordinates.
Laplace’s equation for u(r, θ) in a disk with a prescribed value f(θ) on the boundary is

urr +
1

r
ur +

1

r2
uθθ = 0, r ∈ (0, R), θ ∈ [0, 2π]

u(R, θ) = f(θ), θ ∈ [0, 2π]

We also need periodic boundary conditions in θ and a boundedness condition:

u(r, 0) = u(r, 2π), ur(r, 0) = ur(0, 2π) (5.8)

u(r, θ)is bounded for r ∈ [0, R] (5.9)
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The correct way to write the problem in operator terms is

urr +
1

r
ur −

1

r2
Lu = 0, Lu = −uθθ.

This is not obvious! To ‘derive it’, we can use separation of variables. Look for solutions

u = g(r)h(θ).

Substituting into the PDE we get

g′′(r)h(θ) +
1

r
g′(r)h(θ) +

1

r2
g(r)h′′(θ) = 0

=⇒ r2g′′(r) + rg′(r)

g(r)
= −λh

′′(θ)

h(θ)
(5.10)
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With the periodic boundary conditions (5.8), we get a familiar eigenvalue problem:

h′′(θ) + λh(θ) = 0, h(0) = h(2π), h′(0) = h′(2π)

=⇒ h0 = a0, λ0 = 0, hn(θ) = an cosnθ + bn sinnθ, λn = n2, n ≥ 1 (5.11)

where an, bn are arbitrary.

Caution: As a warning, if the PDE is not homogeneous, separation of variables stops being
useful here. At this point, we take the eigenfunctions and eigenvalues and proceed with the
eigenfunction expansion method (see subsection 5.5.

In what follows, the PDE is homogeneous, so we can just find separated solutions
and use superposition.

We now solve for gn from (5.10):

r2g′′n(r) + rg′n(r)− n2gn(r) = 0.

The ODE is a Cauchy-Euler equation with roots ±n; the solution is

gn = cnr
n + dnr

−n.

By the boundedness condition (5.9), dn = 0 so gn = cnr
n. The separated solutions are then

u0 = a0, un = rn(an cosnθ + bn sinnθ), n ≥ 1

for arbitrary constants an and bn (note that 1/2 is not chosen here for simplicity).

Since the problem is homogeneous, the full solution is the superposition of the separated
solutions. The full solution is the Fourier series (with φn = cosnθ for n ≥ 0 and ψn = sinnθ)

u(r, θ) = a0φ0 +
∞∑
n=1

rn(anφn + bnψn). (5.12)

Imposing the boundary condition at r = R:

f(θ) = u(R, θ) = a0φ0 +
∞∑
n=1

Rn(anφn + bnψn)

so by the usual calculation4 for the coefficients (with 〈f, g〉 =
∫ 2π

0
f(θ)g(θ) dθ)

an =
〈f, φn〉
〈φn, φn〉

=

{
1

πRn

∫ 2π

0
f(θ) cosnθ dθ for n ≥ 1

1
2π

∫ 2π

0
f(θ) dθ for n = 0

,

bn =
〈f, ψn〉
〈ψn, ψn〉

=
1

πRn

∫ 2π

0

f(θ) sinnθ dθ.

(5.13)

Now we are done; the solution is the Fourier series (5.12) with coefficients (5.13).

4Note that this is the Fourier series, except with φ0 = 1 instead of φ0 = 1/2, chosen to match the heat
equation examples from before. The choice of constant does not matter as long as you proceed from the
orthogonality formula 〈f, φn〉/〈φn, φn〉.
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5.5. Inhomogenous case. Suppose instead the PDE is

urr +
1

r
ur +

1

r2
uθθ = g(r, θ).

To solve, we assume homogeneous BCs, PDE etc. (g = 0 here) and can use separation of
variables to obtain the appropriate L, σ and eigenfunctions/values.

Here the eigenfunctions are φn, ψn as before with Lu = −uθθ. But there is a source, so
we cannot continue with separation of variables.

Instead, write the solution as an eigenfunction expansion to start,

u(x, t) = a0φ0 +
∞∑
n=1

an(r)φn(θ) + bn(r)ψn(θ)

Take inner product of the PDE (note that σ = 1) with φn and ψn to get coefficient ODEs.
For φn’s,

(c′′n(r) +
1

r
c′n(r))〈φn, φn〉 −

1

r2
〈Lu, φn〉 = 〈g, φn〉

and then 〈Lu, φn〉 = 〈u, Lφn〉 to get

a′′n(r) +
1

r
a′n(r)− λnan(r) =

〈g, φn〉
〈φn, φn〉

and the same for ψn to get

b′′n(r) +
1

r
b′n(r)− λnbn(r) =

〈g, ψn〉
〈ψn, ψn〉

Here, since the only inhomogeneous term is a source, it is the same as the previous example,
but with an inhomogeneous term in the ODEs for an, bn.

5.6. Solvability conditions. As we saw with BVPs in 1d, there can be solvability condi-
tions on f . For instance, suppose in the above example, we instead have

ur(R, θ) = f(θ).

That is, the flux into the disk at θ is f(θ). The solution still have the form (5.12), but now

f(θ) = ur(R, θ) =
∞∑
n=1

nRn−1(anφn + bnψn).

This determines an, bn for n ≥ 1 but not a0. To determine the constraint on f , take the inner
product of this formula with φ0. Since φ0 is orthogonal to all the eigenfunctions in the sum,

〈f, φ0〉 = 0 =⇒
∫ 2π

0

f(θ) dθ = 0

which says the net flux into the disk must be zero. Note that this can be obtained (as we’ll
see later in studying 2d problems generally) by integrating the PDE over the domain:

0 =

∫ 2π

0

∫ r

0

(
urr +

1

r
ur +

1

r2
uθθ

)
r dr dθ = 2π

∫ 2π

0

(∫ r

0

(rur)r dr

)
dθ = 2πR

∫ 2π

0

f(θ) dθ

using periodic boundary conditions (the uθθ term is integrated out) and rurr + ur = (rur)r.
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5.7. Physics example: fluid flow. In fluid dynamics, the steady (i.e. time-independent)
flow of an inviscid fluid (e.g. water) can be described by a streamfunction ψ. The curves
ψ = const. give the path of the fluid flow.

Suppose the fluid flows in the x-direction at a constant speed U everywhere. Then a circle
of radius R (really a cylinder) is placed in the flow at r = 0. The streamfunction ψ(r, θ),
defined outside the circle, can be shown to be the solution to Laplace’s equation,

1

r
(rψr)r +

1

r2
ψθθ = 0, r ∈ (R,∞), θ ∈ [0, 2π], (5.14)

ψ ∼ ‘Ur sin θ as r →∞, ψ(R, θ) = 0. (5.15)

Note the BC is∞ is not that ψ is bounded. We can use a similar process to the above. The
eigenfunctions/values and coefficient ODE are the same; the solution has the form

u(r, θ) = a0 +
∞∑
n=1

cn(r)(an cosnθ + bn sinnθ), (5.16)

cn(r) = (· · · )rn + (· · · )r−n.
We could solve the equation this way, but as a shortcut, note that the only ‘inhomogeneous’
part is the BC ψ → r sin θ. Thus only the sin θ term is non-zero in the solution:

ψ(r, θ) = c1(r) sin θ.

From the ODE for c1 and the BCs we get

c1 = ar + b/r, c1(R) = 0, c1 ∼ Ur as r →∞
so the solution is

ψ(r, θ) = U

(
r − R2

r

)
sin θ.

A contour plot of ψ shows the streamlines (the fluid flow past the cylinder).

6. Overview

We have now introduced the three canonical examples of the three main classes of (linear)
PDEs. They represent, in a sense, the typical behavior of each type:

• Parabolic: e.g. ut = uxx (heat equation). Solutions want to decay towards an
equilibrium; diffusion spreads out the solution. The solution becomes smooth. Irre-
versible - only well-posed forward in time.

• Hyperbolic: e.g. utt = c2uxx (wave equation). Solutions propagate at a speed c
(the wave speed). Does not smooth solutions; discontinuities remain.

• Elliptic: e.g. uxx + uyy = 0. Smooths initial data (like the heat equation); describes
systems in equilibrium.

Each type has unique properties and captures a certain kind of qualitative behavior. To-
gether, the three categories describe a vast array of physical phenomena, and are the building
blocks for most PDE models of physical problems.

Note that the non-smoothing nature of the wave equation makes it awkward to solve with
eigenfunctions. The main approach for hyperbolic equations, which better handles disconti-
nuities, is different (starting with the method of characteristics). We will not study this
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method here (but is important to know if you intend to deal with hyperbolic PDEs).

Terminology: The terms ‘parabolic’ etc. only relate indirectly to the properties of the
equation; they have a specific technical meaning that does not give much intuition.

Smoothness results: For a solution u =
∑
cn(t)φn(x),

utt = uxx, hom BCs, u(x, 0) = f(x) =⇒ u is smooth for t > 0

ut = uxx + h, hom BCs =⇒ u has two more derivs. than h

utt = uxx, hom BCs, u(x, 0) = f(x), u(x, 0) = g(x) =⇒ u has derivs. equal to f , one more than g

uxx + uyy = h, hom BCs =⇒ u has two more derivs. than h

The heat equation smooths initial conditions completely. Both the heat equation and
Laplace’s equation smooth a source by two derivatives (so uxx is defined for the series!).
The wave equation does not smooth the initial condition.
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7. Review

7.1. More on modes and forcing. Let us revisit the wave equation for a physical inter-
pration of superposition. One term of the eigenfunction expansion, hn(t)φn(x), is called an
eigenmode (or just mode, or Fourier mode when relevant) of the solution. Consider

utt = c2uxx + f(x, t) x ∈ (0, π),

u(0, t) = 0, u(π, t) = 0

u(x, 0) = 0, ut(x, 0) = 0.

That is, a string with fixed ends is driven by a forcing h(x, t). Physically, the n-th term in
the eigenfunction series, hn(t)φn(x), is the response of the n-th ‘mode of vibration’ of the
system to the forcing (the string wants to vibrate as standing waves at natural wavelengths).

One mode: Suppose the forcing is in the shape of one of the modes (a standing wave),

f(x, t) = fN(t) sinNx.

The forcing is orthogonal to all the modes except the N -th (〈f, φn〉 = 0 for n 6= N), so only
the N -th mode of the system has a response:

u(x, t) = hN(t)φN(x), h′′N(t) + λNc
2hN(t) = fN(t).

This is the case since the system starts at rest so for all the other modes

h′′n(t) + k2hn(t) = 0, hn(0) = h′n(0) = 0 =⇒ hn(t) = 0.

Superposition: More generally, suppose

f(x, t) =
∑

fn(t)φn(x).

Each mode evolves independently, driven by the n-th mode of the forcing f(x, t):

h′′n(t) + λnc
2hn(t) = fn(t).

The solution is the superposition of these modes:

u(x, t) =
∑
n

hn(t)φn(x),

The same is true for initial conditions. Orthogonality says that distinct eigenmodes do
not interact with each other - the system is, in effect, a superposition of independent one-
dimensional systems for each mode.

Boundary forcing? The above is not quite true for inhomogeneous BCs. Suppose the
string is instead forced by moving the point at x = 0:

utt = c2uxx x ∈ (0, π),

u(0, t) = f(t), u(π, t) = 0

u(x, 0) = 0, ut(x, 0) = 0.

Now we know from the eigenfunction expansion method that, after projecting with 〈·, φn〉,

h′′n(t) + λnc
2hn(t) =

1

〈φn, φn〉
(φnux − φ′nu)

∣∣∣π
0
.
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The boundary term enters into all modes (in general). Thus, if forced by oscillating one end,
the response of the system will involve all modes.

7.2. The heat equation, from simplest to most complicated. Here the tools intro-
duced for solving PDEs are reviewed by solving various forms of the heat equation, along
with the associated procedure. It’s important to note that the (direct) ‘eigenfunction expan-
sion method’ works in all cases, and provides all the underlying structure.

Unless otherwise noted, the domain is [0, π] and the PDE holds for t > 0. For the most
part, the operator Lu = −uxx could be replaced by some other SL operator and the methods
still apply (see last case).

Homogeneous: Separation of variables can be used here.

ut = uxx

u(0, t) = 0, u(π, t) = 0

u(x, 0) = f(x)

(W0)

Let f =
∑
fnφn where φn’s are the eigenfunctions; then

u(x, t) =
∑
n

cn(t)φn(x), c′n(t) + λncn(t) = 0, cn(0) = fn.

For SoV: look for solutions c(t)φ(x) =⇒ c′(t)/c(t) = φ′′/φ = −λ.

One mode: Easily solved by recognizing that the solution is one term.

ut = uxx + g(t) sinNx,

u(0, t) = 0, u(π, t) = 0

u(x, 0) = A sin(Nx)

(W1)

Solution: u(x, t) = cN(t)φN(x),

c′N(t) + λNcN(t) = g(t), cN(0) = A

Explicitly, cN(t) = Ae−λN t + e−λN t
∫ t
0
eλNsg(s) ds. If there is no source, this is a one term

version of (W0).

Source term; homogeneous BCs: Superposition of solutions to (W1); solve directly
(project, solve for n-th term). Can use separation of variables if there is no source (g = 0),
or superposition into problems of the form (W1) if it is convenient.

ut = uxx + g(x, t),

u(0, t) = 0, u(π, t) = 0

u(x, 0) = f(x)

(W2)
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u(x, t) =
∞∑
n=1

cn(t)φn(x),

c′n(t) + λncn(t) = gn(t), cn(0) = fn,

f =
∞∑
n=1

fnφn, g(x, t) =
∞∑
n=1

gn(t)φn

Each mode un = cn(t)φn(x) solves ‘projected’ PDE ut = uxx + gn(t)φn, u(x, 0) = fnφn.

Steady state: Reduce to (W2) (with no source) by subtracting a time-independent solution.

ut =uxx + g(x),

u(0, t) = A, u(π, t) = B

u(x, 0) = f(x)

(W3)

Solution is u = u(x) + v(x, t) where

u′′ + g = 0

u(0) = A, u(π) = B,

vt =vxx,

v(0, t) = 0, u(π, t) = 0

v(x, 0) = f(x)− u(x)

Solution: u(x, t) = u(x) +
∞∑
n=1

ane
−λntφn(x), an = 〈f − u, φn〉/〈φn, φn〉.

Note that since the PDE/BCs are homogeneous for v, SoV can always be used on the v part.

Inhomogeneous, cheap way: Use a ‘boundary function’ to reduce to source case (W2).

ut =uxx + g(x, t),

u(0, t) = A(t), u(π, t) = B(t)

u(x, 0) = f(x)

(W4)

Solution is u = v + w where w (not a solution!) satisfies BCs:

w(0, t) = A(t), w(π, t) = B,

vt = vxx+g(x, t)− g̃(x, t),

v(0, t) = 0, u(π, t) = 0

v(x, 0) = f(x)− w(x, 0)

where g̃(x, t) = wt − wxx (so w solves the PDE wt = wxx + g̃).
Note that SoV cannot be used here due to the source (but superposition plus (W1)) could
solve the problem for v).5

Inhomogeneous, direct: Use a direct eigenfunction expansion. For (W4), solution is

u(x, t) =
∞∑
n=1

cn(t)φn(x)

5There is a trick to also move the source into an IC, to turn this problem into a homogeneous one where
SoV applies, but the form of the solution can be inconvenient. This is Duhamel’s principle.
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where cn’s are obtained by projecting PDE:

ut = −Lu+ g
〈·,φn〉

===⇒ c′n(t) = −λncn(t) + 〈g, φn〉+Bn.

The Bn’s are boundary terms from −〈Lu, φn〉 = Bn − 〈u, Lφn〉.

Non-uniform (convert to self-adjoint): Methods above apply (different eigenfunctions):

ut =− Lu+ g(x, t),

u(0, t) = A(t), u(π, t) = B(t)

u(x, 0) = f(x)

(W5)

Regardless of method, obtain σ by putting in self-adjoint form, Lu = (1/σ)L̃u. Eigen-
functions φn are orthogonal in σ inner product, and solve the eigenvalue problem

Lφ = λφ (+ BCs) , ⇐⇒ L̃φ = λσφ (+ BCs) .

For eigenfunction expansion, project PDE in self-adjoint form using σ inner product,

ut = − 1

σ
L̃u+ g

〈·,φn〉σ
====⇒ 〈ut, φn〉σ = −〈L̃u, φn〉+ 〈g, φn〉σ

Solution has the form
u(x, t) =

∑
n

cn(t)φn(x).

Variation: If the PDE has the form

σut = −Lu+ g

where L is self-adjoint then this is already in the right form, now multiplied by σ. Either
divide by σ to get previous form or project with L2 inner product:

σut = −L̃u+ σg
〈·,φn〉

===⇒ 〈σut, φn〉 = −〈L̃u, φn〉+ 〈σg, φn〉

Non self-adjoint approach: Consider (W5) (repeated here for convenience)

ut =− Lu+ g(x, t),

u(0, t) = A(t), u(π, t) = B(t)

u(x, 0) = f(x)

where L has adjoint L∗. Let φn, ψn denote eigenfunctions for L and L∗ with eigenvalues λn
and γn respectively. Then

u =
∑

cn(t)φn, cn(t)〈φn, ψn〉 = 〈u, φn〉, · · ·

Take inner product of PDE with ψn to get (kn = 〈φn, ψn〉)
c′n(t)kn = −〈Lu, ψn〉+ gnkn

and with IC to get cn(0) = 〈f, ψn〉/kn. Then

c′n(t)kn = Bn − 〈u, L∗ψn〉+ gnkn, cn(0) = 〈f, ψn〉/kn.
Finally 〈u, L∗ψn〉 = γncnkn (note: adjoint eigenvalue is not guaranteed to be the same).

For a BVP Lu = f , as above, but without the ut part.
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7.3. Important details. Things to watch out for when finding solutions.

Exceptional eigenvalues (different): Some (finitely many) eigenvalues/functions may
come from ‘the other case’ (e.g. λ < 0 vs. λ > 0). For example,

ut =uxx,

u(0, t) = 0, ux(π, t) = 2u(π, t)

u(x, 0) = f(x)

has positive eigenfunctions/values φn = sin
√
λnx and λn solving

√
λnπ = tan

√
λnπ for

n ≥ 1. There is one negative eigenvalue6 λ0 < 0 with φ0(x) = sinh
√
λnx. Solution:

u(x, t) = e−λ0t sinh
√
λnx+

∞∑
n=1

cn(t)φn(x)

where cn(t)→ 0 as t→∞ (but the first term →∞!).

There may also be more than one eigenfunction per eigenvalue, leading to terms like

cn(t)(anφn + bnψn)

instead of just cn(t)φn(x). This appears most often with periodic BCs.

Exceptional eigenvalues (zero): A zero eigenvalue changes the limit as t → ∞. Of-
ten, it also changes the form of the solution cn(t). Example:

ut =uxx + g(x),

ux(0, t) = 0, ux(π, t) = 0

u(x, 0) = f(x)

where φn = cosnx and f =
∑
fnφn and g =

∑
gnφn. ODEs:

c′n(t) + λncn = gn, cn(0) = fn.

=⇒ cn(t) = fne
−λnt + gn(1− e−λnt), n ≥ 1,

c0(t) = f0 + g0t.

A steady state exists iff g0 = 0, i.e. source orthogonal to the zero eigenfunction (〈g, φ0〉 = 0).

Exceptional modes (ODE): As above; sometimes there is a case where the ODE must be
solved differently. See resonance example (c′′n + λncn = sinωt different if λn = ω2).

Leaving coefficients out: Some coefficients in the PDE can be left outside of the op-
erator and weight function. For instance, we can write

e−tρ(x)ut = ktxuxx + g(x, t) =⇒ e−tσ(x)ut = − 1

ρ/x
(kt)Lu+

1

ρ
g(x, t)

6The choice of indexing is just to have the positive eigenvalues start at n = 1, not to be confused with
the cases where λ0 is zero.



30 INTRO TO PDES

where Lu = −uxx. The weight function is σ(x) = ρ/x. The e−t and kt are left out since
they can be factored out of the inner product:

e−t〈ut, φn〉σ = −kt〈Lu, φn〉+ 〈g/x, φn〉 =⇒ e−tc′n(t) = −ktλncn(t) + · · · .
This has the benefit that we can more easily use ’standard’ results, e.g. ut = kuxx has the
same eigenvalues/functions regardless of k.

Practical note: If uncertain, separation of variables (u = c(t)φ(x)) will provide the right
eigenvalue problem (possibly not in self-adjoint form) and ODE for c(t) without the bound-
ary parts.

Implied constraints: The two most common are:

Boundedness: u is bounded in the domain

Periodic: u is periodic in one direction

e.g. u(0, t) = u(2π, t) and uθ(0, t) = uθ(2π, t) for the heat equation in a ring:

ut = uθθ, θ ∈ [0, 2π], t > 0.

A variation is a condition in a limit, e.g.

lim
x→∞

u(x, y) = 0, u(x, y) bounded as x→∞, etc.

Typically, these conditions replace missing BCs for non-regular operators.

7.4. The toolbox. A list of the various tools we have for accomplish various steps.

Orthogonal basis, projection: Let {φn} be a basis for L2 functions in an interval [a, b].
Then we can write any such function f(x) in the form

f(x) =
∑
n

cnφn(x).

If f depends on other variables, the coefficients do as well:

f(x, t) =
∑
n

cn(t)φn(x).

The basis is orthogonal with respect to an inner product 〈f, g〉σ =
∫ b
a
f(x)g(x)σ(x) dx if

〈φm, φn〉σ = 0 for m 6= n.

When the basis is orthogonal with respect to this weighted inner product, the ‘projection’

f → 〈f, φn〉σ
zeros out all the terms other than the n-th:

〈
∑
m

cmφm, φn〉σ =
∑

cm〈φm, φn〉σ = cn〈φn, φn〉σ.

Note that to get the coefficient itself, divide by the inner product of φn with itself:

f → 〈f, φn〉σ
〈φn, φn〉σ

gives the coeff. of φn in the expansion f =
∑
n

fnφn.
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This projection (〈·, φn〉σ) is the main tool for extracting the n-th term of the series.

Eigenfunction basis: Assume σ = 1 for convenience here. Some expressions are ‘easy’
to project, such as:

〈ut, φn〉 = 〈
∑

c′n(t)φn, φn〉 = c′n(t)〈φn, φn〉.
The same is true of forcing functions f(x, t), utt, tu and so on. However to project

〈Lu, φn〉.
But Lu is not necessarily in the nice series form:

Lu =
∑
n

cn(t)Lφn.

For projection to work, we need Lφn to be a multiple of φn. This means, exactly, that φn
must be an eigenfunction of L. Then things work out nicely:

Lu =
∑
n

cn(t)Lφn =
∑
n

(λncn(t))φn.

This is why we need the φ’s to not only be an orthogonal basis, but to also be eigenfunctions
of the operator L.

Conversion to self-adjoint form: If L is second-order but not self-adjoint, we can convert
it to self-adjoint form at the cost of a weight function σ(x):

L =
1

σ
L̃.

The eigenvalue problem for L becomes a weighted eigenvalue problem for the self-adjoint
operator L̃:

Lφ = λφ ⇐⇒ L̃φ = λσφ.

The σ is important because the eigenfunctions are orthogonal in the weigheed inner
product. We need the σ to proceed! This converts problems into ‘self-adjoint’ form, e.g.

ut = −Lu+ f =⇒ ut =
1

σ
L̃u+ f.

Then we can use that L̃ is self-adjoint in the L2 inner product:

〈(1/σ)L̃u, v〉σ = 〈L̃u, v〉 = · · ·+ 〈u, L̃v〉
Caution: Note that if a problem is ‘already self-adjoint’ then this is not needed, e.g.

σ(x)ut = −Lu+ f

where L is self-adjoint. This is as above, but with σ multiplied out. The weight function
is σ, the self-adjoint operator is L, the eigenvalue problem is Lφ = λσφ. Here, either di-
vide by σ and proceed as before, or take the L2 inner product of both sides and note that
〈σut, φn〉 = 〈ut, φn〉σ.

Separation of variables: This method finds all ‘separated’ (or ‘single term’ or ‘single
mode’) solutions like c(t)φ(x) for homogeneous problems (PDE and BCs). When this
is all you need, SoV is enough. It also finds the eigenvalue problem automatically, since it
always uses homogeneous BCs. It finds the coefficient ODEs for the homogeneous problem.
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SoV cannot handle inhomgoeneous BCs or source terms. Sometimes, SoV can be used
as a tool for finding ’special’ separated solutions (not all solutions) to a complicated PDE.

Superposition: A linear problem for u can always be broken up into a superposition
of parts, including inhomogeneous terms in the PDE, BCs or ICs. This is useful because it
lets us solve sub-problems that are (more) homogeneous and/or simpler to solve..
This is useful when there is a simple solution that gives you one part, e.g.

ut =uxx + t sin(x),

u(0, t) = sin(t), u(π, t) = cos(t)

u(x, 0) = x2

is complicated to solve, but we can deal with the source term by solving

vt =vxx + t sinx

v(0, t) = 0, v(π, t) = 0

v(x, 0) = 0

to get v = c1(t) sinx where c′1(t) + λ1c1 = t (one term), then solve the problem with no
source and add this to v. Some other uses include:

• Move inhom. BCs to a source (u = v+w where w that satisfies the BCs) as in (W4)
• Splitting a Laplace BVP into two problems with hom. BCs one one pair of sides (or

four problems where each one only has one inhom. BC!)
• Splitting a problem into one with zero ICs and one that is hom. except for ICs (what

is the effect of the initial conditions on the solution?)
• Justifying the summation of separated solutions in SoV

Pointwise convergence: We find solutions in the form of eigenfunction series, e.g. some-
thing like

u(x) =
∑
n

cnφn(x) := S∞(x).

The RHS (what we compute, the pointwise limit of the partial sums) is not exactly equal
to the solution (LHS). Sturm-Liouville theory tells us what equals means:

• If u is continuous at a point x, then u(x) and S∞(x) agree (pointwise convergence).
• If u has a jump at a point x inside (a, b), the series converges to the average of

the left/right limits at x. Near x, there is Gibbs’phenomenon (but the series does
converge pointwise around the jump, just slowly).
• At the endpoints, if the BCs for u are inhomogeneous, then the theory ‘sees’ a

discontinuity; there is Gibbs’ phenomenon. The ‘series’ S∞(x) has homogeneous
BCs, but agrees with u(x) arbitrarily close to the boundary. In particular,

lim
x↘a

S∞(x) = u(a), lim
x↗b

S∞(x) = u(b).

Self-adjointness and IBP: Integration by parts moves derivatives from one function
to another at the cost of creating some boundary terms.
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This is also how the adjoint works. If L with some hom. BCs is self-adjoint in the L2

inner product (true of SL operators), then

〈Lu, v〉 = 〈u, Lv〉 for all u, v with hom. BCs.

If u and v do not have hom. BCs, there are boundary terms from integration by parts:

〈Lu, v〉 = boundary terms + 〈u, Lv〉.
More generally, if L∗ is the adjoint operator with BC∗ (adjoint BCs) then

〈Lu, v〉 = 〈u, L∗v〉 for all u with hom. BC and v with hom. BC∗.

The adjoint property lets us move an operator from one function in an inner product
onto the other (at the cost of creating boundary terms if not homogeneous).

Bi-orthogonality: The adjoint eigenfunctions ψn and eigenfunctions ψ of L∗ and L are
bi-orthogonal (〈φm, ψn〉 = 0 for m 6= n). Projection for the basis {φn} uses 〈·, ψn〉 (inner
product with adjoint eigenfunction):

f =
∑

cnφn =⇒ 〈f, ψn〉 = cn〈φn, ψn〉.

The eigenfunction property plus adjoint property allows calculations like

〈Lu, ψn〉 = B + 〈u, L∗ψn〉 = B + 〈u, γnψn〉 = B + γn〈u, ψn〉
where L∗ψn = γnψn (γn an eigenvalue for the adjoint). This is the way to do the eigenfunc-
tion expansion without converting to self-adjoint form.

Differentiating series: An eigenfunction series

f =
∑

cnφn

can be differentiated term-by-term so long as the result makes sense (converges). This
can be used, for instance, to calculate

ut =
∂

∂t

∑
n

cn(t)φn =
∑
n

c′n(t)φn

or to calculate
uxx =

∑
n

cn(t)φ′′n(x) if this series converges .

Note that if φ′′n gives factors like n2 we need cn ∼ C/n3 for the above to work.

Smoothness from coefficients: If coefficients for u =
∑
cnφn decay like cn ∼ C/nk+1

then u is (at least) k times differentiable, with a jump in the k-th. We can use this to de-
duce the smoothness of the series from the computed coefficients, and to know when Gibbs’
phenomenon appears (cn ∼ 1/n; piecewise continuous but has jumps).

Eigenvalue problems, explicitly: See procedure for solving eigenvalue problems. For
LCC eigenvalue problems (or any problem where the general solution can be found), we can
always solve it by:

• Finding the general solution φ =
∑n

j=1 cjyj (where yj’s are solutions)
• Applying BCs to get constraints on the coefficients + λ
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• Solve for λ (or approximate, or find numerically) or show there are no solutions
• Plug back into general solution to get φ’s

Rayleigh quotient: Prove eigenvalue are positive by considering

Lφ = λσφ

and taking the L2 inner product with φ (multiply by φ, integrate over domain):

〈φ, Lφ〉 = λ〈φ, φ〉σ.
Then expand the LHS by integrating by parts7 to look for squared terms; show that 〈φ, Lφ〉 ≥
0. Then check λ = 0 case, either by solving Lφ = 0 directly or showing that φ must be zero
from the Rayleigh quotient.

Solvability conditions: Some ‘coefficient’ equations may only have solutions if certain
conditions (solvability conditions) hold. Check by attempting to solve; be on the lookout for
‘degenerate’ cases where the general formula fails (usually λ = 0). 8

7For second order: IBP once. For other eqs: may need to IBP more than once. Note that if you integrate
by parts twice for the second order equation, you get 〈Lφ, φ〉, which is not useful (too far!).

8The general principle here is the Fredholm alternative; this abstract version is not on the first exam,
but the ‘direct’ version by solving the problem you should know.
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