
THE FREDHOLM ALTERNATIVE
(AN IMPORTANT GENERAL PRINCIPLE)

Recall that that some boundary value problems have unique solutions, while others only
have solutions if certain solvability conditions hold. For example, consider

Lu = f

ux(0) =ux(π) = 0

where L with the BCs is self-adjoint with eigenfunctions φn. Then, if λn 6= 0 for all n,

u =
∑
n

fn
λn
φn is the unique solution (where f =

∑
fnφn).

On the other hand, if there is a zero eigenvalue λ0 = 0 then

〈f, φ0〉 6= 0 =⇒ there is no solution

〈f, φ0〉 = 0 =⇒ u = a0φ0 +
∑
n 6=1

fn
λn
φn is a sol. for any a0.

This result hints at an important general principle for linear operators:1

Fredholm Alternative theorem (FAT); general principle:
Let L be a linear operator with adjoint L∗. Then exactly one of the following is true:

A) The inhomogeneous problem

Lu = f (1)

has a unique solution u.
B) The homogeneous adjoint problem

L∗u = 0 (2)

has a non-trivial solution.

That is,

• If (1) has a unique solution, then λ = 0 is not an eigenvalue of the adjoint.
• If λ = 0 is an eigenvalue of L∗, then (1) has either no solutions or infinitely many.

This applies to a broad array of ‘linear’ problems (we’ll see this for BVPs, PDEs and
integral equations). Note that the precise statement depends on the type of problem. The
FAT provides key intuition for when unique solutions exist and when solutions only exist
under certain conditions.

1The result is typically called the ‘Fredholm alternative’ without the word ‘theorem’.
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For boundary value problems: The BCs are part of the ’problems’ (1) and (2).
The FAT says that exactly one of the following is true:

A) The inhomogeneous problem

Lu = f, BCu = 0 (3)

has a unique solution.
B) The homogeneous problem for L∗,

L∗ψ0 = 0, BC∗ψ0 = 0 (4)

has a non-trivial solution ψ0 (that is, λ = 0 is an eigenvalue for L∗ with adjoint BCs).

Case B has two parts: If the adjoint operator L∗ has a zero eigenvalue, then either

B1) The problem (3) has no solution

B2) The problem (3) has infinitely many solutions.

A solvability condition determines which of (B1) or (B2) is true. As we saw in the ex-
ample, the terms for the zero eigenvalue are where to look: take 〈·, φ0〉 of the BVP for any
eigenfunctions ψ0 to find the conditions.2

Note: The FAT doesn’t immediately transfer to equations with time like

ut = −Lu+ f.

We have observed that it tends to apply; if L is self-adjoint with a zero eigenvalue λ, then
any multiple of φ0(x) can be added to the solution.

Use in practice: Suppose we want to solve (with L not necessarily self-adjoint)

Lu = f, Bu = 0.

First, find the adjoint and BCS L∗ and B∗ and check if λ = 0 is an eigenvalue for L∗.

If λ = 0 is not an eigenvalue, the BVP has a unique solution. Solve the equation
(e.g. with eigenfunctions) without concern.

If λ = 0 is an eigenvalue, take 〈·, ψ0〉 of the BVP for any eigenfunction ψ0 for λ = 0
to find solvability conditions. The other terms can be solved (uniquely) by the standard
procedure.

Example 1 (self-adjoint): Consider the BVP

−uxx = f, ux(0) = au(0), ux(1) = u(1).

The operator Lu = −uxx is self-adjoint. Hence to apply the FAT, we check for a zero
eigenvalue of L (same as L∗):

φ′′ = 0, φ′(0) = aφ(0), φ′(1) = 2φ(1).

2The examples for BVP have a single eigenfunction for λ = 0 which gives one solvability condition; we’ll
shortly see an example with more than one in the context of integral equations.
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The general solution is φ(x) = c1 + c2x and the BCs give

c2 = ac1, c2 = 2(c1 + c2) =⇒ c2 = −2c1

No solution for φ0 exists if a 6= −2 but φ = 1− 2x is a solution if a = −2. From the FAT, it
follows that there is a unique solution if and only if a 6= −2.

To get the solvability condition when a = 1, look at the φ0 term:

〈f, φ0〉 = 〈Lu, φ0〉 = 〈u, Lφ0〉 = 0 =⇒
∫ 1

0

f(x)(1− x) dx = 0.

When this condition holds, u = c0φ0 +
∑

n≥1 cnφn is a solution for any c0.

Example 2 (not self adjoint): Consider the BVP for u(x),

−xuxx = f, ux(1) = ux(2) = 0

Let Lu = −xuxx (not self-adjoint3). The adjoint and adjoint BCs are

L∗v = −(xv)xx, v(1) = −vx(1), v(2) = −2vx(2).

from the calculation

〈Lu, v〉 = 〈u, L∗v〉+ ((xv)xu− xvux)
∣∣∣x=2

x=1

which requires v to have BCs (xv)x = 0 =⇒ v(1) + vx(1) = 0 and v(2) + 2vx(2) = 0.

Now look for a zero eigenvalue for the adjoint:

L∗v = 0 =⇒ (xv)xx = 0 =⇒ v = c1 + c2/x =⇒ v(x) = 1/x

after applying the boundary conditions. Thus λ = 0 is an eigenvalue of L∗ with eigenfunction
ψ0 = 1/x, so this is FAT case (B): there is a solvability condition for f . To find it, try to
compute the solution:

u =
∑

cnφn, (recall cn = 〈u, ψn〉/〈φn, ψn〉),

and take the inner product of the BVP with ψn to get

〈f, ψn〉 = 〈Lu, ψn〉 = 〈u, L∗ψn〉 = λncn〈φn, ψn〉
where λn, ψn are the adjoint eigenvalues/functions. For n = 0,

〈f, ψ0〉 = 0 =⇒
∫ 2

1
f(x)/x dx = 0

is the solvability condition. If this holds, then

u = c0φ0 +
∞∑
n=1

〈f, ψn〉
λn〈φn, ψn〉

φn

is a solution for any c0 (where φ0 is the eigenfunction for L with λ = 0).

3You could convert trivially this to self-adjoint form and avoid the adjoint by dividing by x, but the point
here is to illustrate the more general procedure.
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