
MATH 5510 LECTURE NOTES 
PRELIMINARIES:

LINEAR ALGEBRA AND L2 FUNCTIONS

A. Kaffel

Topics covered
• Linear algebra (vectors and matrices)
◦ Inner products, orthogonality and adjoints
◦ Solving linear systems using an eigenvector basis

• Theory for L2 functions
◦ Definition (inner product, norm) and weighted L2 spaces
◦ Convergence for L2 functions
◦ Preview of the framework for solving DEs

Main goals

• Start building the main framework for solving linear DEs, using familiar linear algebra
• Recall why representation by an orthogonal basis of functions are useful (using Fourier

series as an example), and what it means to ’converge’ for such a series
• A preview of the main ideas for the next few weeks

1. The framework - for vectors and matrices

Here a ‘review’ of linear algebra introduces the framework that will be used to solve
differential equations. The structure we review for vectors and matrices in the space Rn

to solve linear systems Ax = b will be adapted to solve differential equations.

1.1. The space. In linear algebra, you studied the space Rn. To review:

Definitions (linear algebra in Rn):

• The space of n-dimensional real vectors:

Rn = {x = (x1, x2, · · · , xn), xj ∈ R}
• We can define an inner product (the ‘dot product’) on this space by

〈x,y〉 := xTy =
n∑

j=1

xjyj.

• This also defines a norm (the ‘`2 norm’)

‖x‖2 :=
( n∑

j=1

|xj|2
)1/2

=
√
〈x,x〉.

1



2

• Two vectors x,y are called orthogonal if

〈x,y〉 = 0.

Note that two vectors are orthogonal, geometrically, if they are perpendicular. Some
properties of the inner product and norm are worth highlighting:

• Norm property: A vector x has norm zero if and only if it is the zero vector:

‖x‖ = 0 ⇐⇒ x ≡ 0.

• Linearity: The inner product is linear in each argument, e.g. for the first argument,

〈c1u + c2v,y〉 = c1〈u,y〉+ c2〈v,y〉 for all c1, c2 ∈ R and u,v ∈ Rn.

We can define linear operators L on Rn, which are functions

L : Rn → Rn

that are linear as defined above:

L(c1x + c2y) = c1Lx + c2Ly for allc1, c2 ∈ R and x,y ∈ Rn.

In Rn, linear operators are equivalent to n× n matrices:

L is a linear operator ⇐⇒ there is an n× n matrix A s.t. Lx = Ax.

Linear operators L can have eigenvalues and eigenvectors, i.e. λ ∈ C and φ ∈ Rn such that

Lφ = λφ.

See the review document for further details.

1.2. Adjoints. Consider a linear operator L on Rn.

Definition (Adjoint): The adjoint L∗ of a linear operator L is the operator such that

〈Lx,y〉 = 〈x, L∗y〉 for all x,y ∈ Rn.

An operator is self-adjoint if it is equal to its adjoint (L = L∗).

In Rn, the adjoint to L is the transpose: L∗ = LT (viewing L as a matrix) since

〈Lx,y〉 = (Lx)Ty = xTLTy = 〈x, LTy〉

and an operator on Rn is self-adjoint if and only if the matrix is symmetric.

Self-adjoint operators on Rn (symmetric matrices) have an important structure (in fact,
the same structure we’ll exploit for functions in solving differential equations!). The main
theorem goes as follows:

Theorem (‘spectral’ theorem for real matrices) If L is a self-adjoint operator on Rn

(i.e. a real symmetric matrix), then:

• There are n eigenvectors φ1, · · · , φn with distinct (real) eigenvalues
• The eigenvectors are an orthogonal basis for Rn
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That is, every x ∈ Rn has a unique representation in the form

x =
n∑

i=1

ciφi

for coefficients cj ∈ R (the basis part) and (the orthogonality part)

〈φi, φj〉 = 0 for i 6= j. (1)

Adjoint eigenvalues: The eigenvalues of L∗ are the same as for L since the equations for
the eigenvalues of L and for L∗ are the same:

0 = det(L− λI) = det((L− λI)T ) = det(LT − λI).

The eigenvalues of L and L∗ are the same, but the eigenvectors are different.

Bi-orthogonality: Let {φj} and {ψj} be the eigenvectors for L and L∗. The two sets
of eigenvectors are bi-orthogonal, which means that

〈φj, ψk〉 = 0 if λj 6= λk.

Contrast with ‘self-orthogonality’ of the single set {φj} for a self adjoint operator (eq. (1)).
The proof is useful, as it illustrates a typical manipulation of the adjoint.

Proof. Let λj, φj and λk, φk be eigenvalue/vector pairs for L and L∗, respectively.

λj〈φj, ψk〉 = 〈λjφj, ψk〉
= 〈Lφj, ψk〉 (φj is an eigenvector of L)

= 〈φj, L
∗ψk〉 (adjoint property)

= λk〈φj, ψk〉 (ψk is an eigenvector of L∗)

Subtracting the RHS from the LHS, we get

(λj − λk)〈φj, ψk〉 = 0 =⇒ 〈φj, ψk〉 = 0 if λj 6= λk.

�

1.3. Projection. Let {φi} be the eigenvectors of a self-adjoint operator on Rn. We know
that for any x ∈ Rn,

x =
n∑

i=1

ciφi

for some coefficients ci. We find a coefficient cj by projecting onto the j-th component.
Take the inner product with φj to get

〈x, φj〉 =
n∑

i=1

ci〈φi, φj〉 = cj〈φj, φj〉 =⇒ cj =
〈x, φj〉
〈φj, φj〉

.

The map x→ 〈x, φj〉 projects x onto its φj component and returns the coefficient.1

1Note that the actual projection operator (returning a vector) is Pjx := 〈x, φj〉φj , which projects x onto
the subspace spanned by φj . Since this space is one dimensional, it is simpler to just take the inner product
and return the coefficient of φj .
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Now suppose the {φi}’s are eigenvectors of an operator L that form a basis for Rn. Even
if they are not orthogonal, we also have eigenvectors {ψi}’s for the adjoint. Then, by bi-
orthogonality,

〈x, ψj〉 =
n∑

i=1

ci〈φi, ψj〉 = cj〈φj, ψj〉 =⇒ cj =
〈x, ψj〉
〈φj, ψj〉

.

assuming all the eigenvalues are distinct (see HW for an example).

1.4. Solving linear equations. Consider the linear equation

Lx = y, L self-adjoint.

Let {φj} be the eigenvectors. We will solve this equation using projection, to illustrate how
it works (for a non-self-adjoint example, see HW).

Version 1 (Separation): First, we decompose x and y into the eigenvector basis:

x =
n∑

j=1

xjφj, y =
∑
j=1

yjφj.

Plugging into the equation and using that Lφj = λjφj,

n∑
j=1

λjxjφj =
n∑

j=1

yjφj.

Since the φj’s are linearly independent (or you could project onto the j-th component), it
must be that the LHS and RHS are equal term-by-term:

λjxj = yj =⇒ xj =
yj
λj

=
1

λj

〈y, φj〉
〈φj, φj〉

.

Version 2 (adjoints): Start by projecting the equation onto φj:

〈Lx, φj〉 = 〈y, φj〉, j = 1, · · · , n.

These n-equations will determine x. However, the x is stuck inside the operator.2 To solve
the problem, we use the adjoint property. In complete detail:

〈y, φj〉 = 〈Lx, φj〉
= 〈x, L∗φj〉 (def’n of the adjoint)

= 〈x, Lφj〉 (L is self-adjoint)

= 〈x, λjφj〉 (φj is an eigenvector)

= λj〈x, φj〉 (linearity of the inner product)

which gives us the information needed to get the coefficient of φj:

〈x, φj〉 =
1

λj
〈y, φj〉 =⇒ x =

n∑
j=1

1

λj

〈y, φj〉
〈φj, φj〉

φj.

2We can just expand x and use the eigenvector property as in Version 1 here; the point of the exercise is
that for DE’s, the trick in Method 2 will be relevant as opposed to using Version 1.
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Highlight: There are two key ideas at play here. First, the basis allows use to decompose
the vector into simple parts, and projection allows us to deal with simple equations for each
component. Second, the eigenvector property means that the components do not interact -
this decouples the structure into independent one-dimensional pieces.

If the operator is not self-adjoint, we can use bi-orthogonality instead (see HW).

2. Functional analysis review

Here we start to build up the function version of this framework, starting with familiar
structure from Fourier series. Note that this will be done with the goal of practical use in
mind, so some technical details will be elided.

2.1. The space. How do we generalize inner products in Rn to functions? Given a function
f(x) from an interval [a, b] to R, we define an inner product and the ‘L2 norm’

〈f, g〉 =

∫ b

a

f(x)g(x) dx, ‖f‖2 =

(∫ b

a

|f(x)|2 dx
)1/2

. (2)

The space in which our functions reside is the space

L2[a, b] = {f : [a, b]→ R :

∫ b

a

|f(x)|2 dx <∞} (3)

The space is pronounced ‘L2’; a function in this space is an ‘L2 function’ or ‘square-integrable’
function). The inner product is well-defined and finite for any two functions f, g in L2[a, b].

Similarly, we may define the weighted space where the integral is weighted by a non-
negative function w(x):

L2
w[a, b] = {f : [a, b]→ R :

∫ b

a

|f(x)|2w(x) dx <∞} (4)

along with the inner product and norm

〈f, g〉w =

∫ b

a

f(x)g(x)w(x) dx, ‖f‖2,w =

(∫ b

a

|f(x)|2w(x) dx

)1/2

. (5)

Typically, the w is omitted when the space is implied (which is usually the case).

Example 1: L2 functions do not need to be continuous or bounded. Consider

f(x) =
1

xp
, x ∈ [0, 1].

for a real number p. Computing the square of the norm, we get

‖f‖22 =

∫ 1

0

1

x2p
dx =

∞ p ≥ 1/2
1

2p− 1

1

x2p−1

∣∣∣x=1

x=0
p < 1/2

so f is in L2 if and only if p < 1/2 - that is, if it does not diverge to ∞ too quickly
around x = 0. It is, however, allowed to be unbounded!
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Example 2: It is not quite true that zero norm implies the function is zero.
Precisely,

‖f‖2 = 0 ⇐⇒ f = 0 a.e.

where ‘a.e.’ means ‘almost everywhere’. For our purposes, a.e. can be interpreted to
mean ‘except at an isolated set of points’. For example, let f ∈ L2[0, 1] be defined by

f =

{
0 x 6= 1/2

1 x = 1/2
.

Since it is non-zero only at one point,∫ 1

0

|f |2 dx = 0.

However, f is not identically zero. We say that it is ‘zero a.e.’ or just f ≡ 0 for short,
since it is effectively zero for most purposes.

2.2. Convergence: definitions. For a sequence of functions {fn} in L2[a, b] there are three
important notions of convergence to a limiting function f . We’ll need all of them to make
sense of expressions like

f =
∞∑
j=1

cjφj

where the sequence of functions are the ‘partial sums’

fn =
n∑

j=1

cjφj.

Convergence (definitions): Let fn be the sequence of functions in L2[a, b].

• The sequence is said to converge in norm (or ‘in L2’) to a limit f if

‖fn − f‖2 → 0 as n→∞ (6)

That is, ∫ b

a

|fn(x)− f(x)|2 dx→ 0 as n→∞.

• The sequence converges pointwise to f if

fn(x)→ f(x) as n→∞ for all x ∈ [a, b]. (7)

• The sequence converges uniformly to f if

max
x∈[a,b]

|fn(x)− f(x)| → 0 as n→∞. (8)

The only general relation we have is that uniform convergence is the strongest:

uniform =⇒ pointwise, norm.
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It is not quite true that pointwise convergence implies norm convergence or vice versa.

Example (not uniform): Consider

fn = xn on [0, 1], n = 1, 2, · · ·
which converges pointwise to the function

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1
.

To see this, note that fn(1) = 1 for all n (so fn(1)→ 1) and

lim
n→∞

xn = 0 if 0 < x < 1.

It is easy to check that it converges in norm to f as well:∫ 1

0

|fn − f |2 dx =

∫ 1

0

x2n dx =
1

2n+ 1
→ 0 as n→∞

since the value at x = 1 does not contribute to the integral.

However, the convergence is not uniform. For x < 1,

|fn(x)− f(x)| = xn

and xn can be made arbitrarily close to 1 by taking x close enough to 1 (for any n). Thus
the maximum error is always 1. The interval where the error is near 1 shrinks in size as
n increases, but the max. error never decreases.

2.3. Orthogonal bases. An basis3 for this L2 space is a set of functions {φj} (for j =
1, 2, · · · ) such that every f in L2([a, b]) can be written as

f =
∞∑
i=1

ciφi

for unique coefficients {cj}. Here the ‘equals’ sign means that the series converges in norm
to f ; that is, the partial sums

fn =
n∑

i=1

ciφi

converge to f in norm (‖fn − f‖2 → 0). The set of functions is orthogonal if

〈φi, φj〉 = 0 for i 6= j

Projection works just as it did for vectors. Let {φj} be an orthogonal basis for L2[a, b]. If f
is an L2 function then there are coefficients ci such that

f =
∞∑
i=1

ciφi.

3Technically, this is a ‘Hilbert basis’, but the distinction is not relevant. We’ll refer to it as a ’basis’.
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Take the inner product of this with φj to get

〈f, φj〉 = cj〈φj, φj〉 =⇒ cj =
〈f, φj〉
〈φj, φj〉

.

Highlight: Each projection onto a basis function is one-dimensional as in Rn, but there
are an infinite number of basis functions in total. This is the main source of similarities
(projections are nice) and differences (the infinite sum is not nice).

2.4. Linear operators. The linear operator of interest are operators that map a function
on some domain to another such function. For example,

f → df

dx

is a linear operator. Note that is not defined for all L2 functions, but we’ll get to the subtleties
there later. Another example, is

Lf →
∫ x

a

f(ξ) dξ for f ∈ L2([a, b]).

Linear operators can have eigenvalues λ and eigenfunctions φ satisfying

Lφ = λφ.

Since we have an inner product, the operator L should have an adjoint L∗, and we might
expect to have similar eigenfunctions and so on as in Rn. This turns out to be more or less
true, with some complications - our primary goal is to explore this generalization in depth.

3. Where are we going with all this?

Ignoring all the details, let’s see the general idea. This example is intended to motivate
some of the key questions. Consider a partial differential equation

∂u

∂t
= Lu, x ∈ (a, b), t > 0

for a function u(x, t) and a linear operator L with only x-derivatives like

Lu =
∂2u

∂x2
.

Suppose L and L∗ have eigenfunctions φj and ψj, and that the φj’s form a basis for L2(a, b).
Then we have that

u(x, t) =
∞∑
j=1

cj(t)φj(x)

for coefficients cj(t). Plug into the PDE:
∞∑
j=1

c′j(t)φj(x) =
∞∑
j=1

λjcj(t)φj(x)

from which it (should) follow that

c′j = λjcj.
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The orthogonal basis of eigenfunctions allows us to convert the PDE into a set of one
dimensional ODEs for the coefficients.

The Big Picture: The sketch above and the contrast between linear algebra in Rn and
functions in L2 raises some key questions that will motivate the topics to come. There are
some equivalences, and many questions left to answer:

vectors in Rn( or Cn) ⇐⇒ functions in L2[a, b]

linear systems Ax = b ⇐⇒ differential equations?

〈x,y〉 =
n∑

i=1

xiyi ⇐⇒ 〈f, g〉 =

∫ b

a

f(x)g(x) dx

n× n matrices ⇐⇒ linear operators L (e.g. d/dx, ??)

symmetric matrices ⇐⇒ self-adjoint operators?

spectral thm: L = L∗ → {φj} ⇐⇒ ????

• What is the operator? We want an orthogonal basis of eigenvectors for some linear
operator L. This means identifying the right operator and understanding when it will
do what we want.

• When does an operator have nice eigenfunctions? Self-adjoint matrices give a
basis of eigenvectors. When is this true of operators in L2? This is a key question that
will require some work to sort out.

• Infinite dimensions? The basis for the function space is infinite dimensional - this
has consequences that make the story more complicated than linear systems in Rn.
We’ll also need to get around some problems that arise with infinite series - finite sums
can be added and differentiated and so on freely, but infinite series take more care.

• What are the eigenfunctions? We will need to compute the eigenfunctions to have
practical solutions, or at least understand their properties.
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