
MATH 5410 LECTURE NOTES

MULTI-DIMENSIONAL PDES: QUICK SUMMARY

1. Remarks: coefficients vs. eigenfunctions
Eigenfunctions for time-dependent PDEs like ut = ∇2u in Ω ⊂ RN solve Helmholtz’ equation

− ∇2φ = λφ, x ∈ Ω, (...+BCs...). (1.1)

The solution has coefficients in t and eigenfunctions in x (space); u =
∑
ck(t)φk(x).

That is, there are N -dimensional eigenfunctions and coefficients in the t-direction.

For Laplace’s equation 0 = ∇2u in N dimensions, the eigenfunctions are in N − 1 vari-
ables, e.g.

∑
cn(r)Y m

n (θ, φ) in a sphere with eigenfunctions in θ, φ. The last direction is the
‘coefficient’ direction, which can have inhomogeneous BCs. To use SoV, the BCs must be
homogeneous in the eigenfunction directions.

2. A summary table

The entries for the disk (r, θ) are the same as the cylinder. A more expanded version
is on the next page (with solutions, equations etc.). ‘Oscillatory’ solutions are used for
eigenfunctions, and ‘non-oscillatory’ for coefficients (for Laplace).

Geometry (dir.) oscillatory non-oscillatory

‘Flat’ (x, z, ·) cosµx, sinµx coshµx, sinhµx or e±µx

Sphere (r) Spherical Bessel Cauchy-Euler (xr, · · · ) or mod. Bessel

Sphere (θ) cosmθ, sinmθ -

Sphere (φ) Legendre poly. Pm
n (cosφ) *

Cylinder (r) Bessel Jν(r
√
λ), Yν(r

√
λ) Cauchy-Euler (disk) or Mod. Bessel (Kν , Iν)

Cylinder (θ) cosmθ, sinmθ -

Some stray remarks:

• Positive eigenvalues: Check using the Rayleigh quotient or use knowledge of the
problem (e.g. Dirichlet, Neumann, periodic all have no negative eigenvalues).

• Shortcut (zero terms): If all data is in the span of some set of eigenfunctions (e.g.
all f(r) cos θ) then the solution is also in this span e.g.

∑
n cnRn(r) cos θ).

• Eigenfunctions form an orth. basis (in L2 inner product) for their domain. Note that
this is not necessarily the PDE domain (one dim. less for Laplace). Equivalent to 1d
inner products via SL theory for fully separated problems. To find coefficients:

f =
∑
k

ckφk =⇒ ck =
〈f, φk〉
〈φk, φk〉

.
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3. Eigenvalue problems by geometry

In all cases, the eigenfunctions/values are for the Helmholtz equation (1.1) in the appro-
priate domain. Note that ‘or’ refers to the periodic case with cos / sin.
In all cases positive eigenvalues have been assumed (writing e.g. µ2 for eigenvalues), even
when it is possible (with nasty BCs) to get negative eigenvalues.
‘Dependence’ means later eigenvalue problems depend on earlier ones.

Rectangle. Width L and height H, φ = g(x)h(y). Dependence: (none)

x-dir: − g′′ = µ2g, x ∈ [0, L]

y-dir: − h′′ = η2h, y ∈ [0, H]

Disk. Radius a. Dependence: θ → r

θ-dir: − g′′ = µ2g, θ ∈ [0, 2π], (2π-periodic)

r-dir: R′′ +
1

r
R′ +

(
λ− µ2

r2

)
R = 0, r ∈ [0, a], (R bounded)

Solutions (r-dir, λ > 0): Jµ(r
√
λ), Yµ(r

√
λ); |Y (0)| =∞ (unbounded)

Cylinder. Radius a. height H, φ = R(r)g(θ)h(z). Dependence: θ, z → r

θ-dir: − g′′ = µ2g, θ ∈ [0, 2π], (2π-periodic)

z-dir: − h′′ = η2h, y ∈ [0, H]

r-dir: R′′ +
1

r
R′ +

(
λ− η2 − µ2

r2

)
R = 0, r ∈ [0, a], (R bounded)

Solutions: As in disk, but
√
λ− η2 replaces

√
λ (assume λ > η2).

Sphere. Radius a. φ = R(r)Y (θ, φ) = R(r)g(θ)h(φ). Dependence: θ → φ→ r.

θ-dir: − g′′ = η2g, θ ∈ [0, 2π], (2π-periodic)

φ-dir:*
1

sinφ
(sinφh′)′ +

(
λ− m2

sin2 φ

)
h = 0

r-dir: R′′ +
2

r
R′ +

(
λ− n(n+ 1)

r2

)
R = 0, r ∈ [0, a], (R bounded)

*transformed: ((1− ξ2)y′)′ + (λ− m2

1− ξ2
)y = 0, ξ = cosφ, y(ξ) = h(φ)

Solutions: (θ, φ): Y m
n = Pm

n (cosφ)(cosmθ or sinmθ), eigvals λn = n(n+1) for 0 ≤ m ≤ n

r-dir, λ > 0:
Jn+1/2(r

√
λ)√

r
and

Yn+1/2(r
√
λ)√

r
(Y unbounded in [0, a])
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4. Coefficient equations for Laplace

ODEs to solve for coefficients with Laplace’s equation. Assumes eigenfunctions obtained
as in previous list. These are the ‘non-oscillatory’ solutions to the typical ODEs.

Rectangle. Eigenfunctions φ(x)

y-dir: h′′ = λh, y ∈ [0, H]

Disk (inside/outside). Eigenfunctions φ(θ)

r-dir: R′′ +
1

r
R′ − λR = 0, r ∈ [0, a] or [a,∞), (R bounded)

Solution (Cauchy-Euler): p(α) = α2−λ =⇒ rα1 , rα2 or other cases [see Euler procedure]

Cylinder (inside/outside). Eigenfunctions φ(θ, z), coeffs. in r

r-dir: R′′ +
1

r
R′ −

(
λ+

m2

r2

)
R = 0, r ∈ [0, a] or [a,∞), (R bounded)

Solution: Modified Bessel Im(r
√
λ), Km(r

√
λ) with |Km(0)| =∞ (unbounded)

4.1. Cylinder. Eigenfunctions φ(r, θ), coeffs. in z

z-dir: h′′ = λh, z ∈ [0, H]

Sphere (inside/outside). Eigenfunctions Y (θ, φ)

r-dir: R′′ +
2

r
R′ − λR = 0, r ∈ [0, a] or [a,∞), (R bounded)

Solution (Cauchy-Euler): p(α) = α2+α−λ =⇒ rα1 , rα2 or other cases [see Euler procedure]

5. Solutions to ODEs, properties

For details on Bessel functions and Legendre polynomials, see special functions notes.

6. Extra: other geometries to be aware of

Not part of the course, but good to be aware of a few other common geometries:

• parabolic coordinates: Used e.g. for air flow past a rounded object or some
problems in a half-infinite plane. x = σ2 − τ 2 and y = στ . The ‘axes σ = 0 and
τ = 0 are the positive/negative halves of the x-axis and other coord. = const. lines
are parabolas. Eigenvalue problems require parabolic cylinder functions.

• Elliptical problems: Like a sphere/circle, but for deformed objects. Truly horrible
formulas involved. If nearly circular, a ‘perturbation’ method using some approxi-
mation might be preferable (see e.g. Section 9.6 of the book).

• Orthogonal/curvilinear coordinates: General coordinates (x, y, z)→ (u1, u2, u3)
generalizing all the typical cases. Nice when orthogonal but requires serious alge-
bra/geometry in complicated coordinate systems.
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