MULTI-VARIABLE CALCULUS REVIEW/REFERENCE

Notation: Throughout, bold indicates vector quantities.

o J[,(---)dV is the integral over a region Q (either volume or area, sometimes dA)
e 9Q) = boundary of Q and [, ( aq(- -+ ) dS is the surface integral over €.
e x=(x1,  ,Ty) or x=(z,y) or x = (z,y,2) (R? or R?)

e i j, k are standard unit vectors in R?® and n is the outward normal to

1. OPERATORS AND IDENTITIES
Operators defined in R™ (or R? for curl):

gradient: Vu = (g—;l, SRR i—i)
Divergence: V- v = av]
= « Ox;
Laplacian: Z (also Au or V?u)
=1
i J k
Curl (R*): V xv=det |0/0x 0/0y 0/0z
(%1 (%) V3
‘planar’ curl: V X (vy,v9,0) = (%—21 — %) k
N s of e
directional derivative: o Vf-n (where n is a direction)

Physical /intuitive interpretations:

e flux of a vector quantity F through a boundary 02:

flux (out) = / F-ndS
onN

e Curl V x v — local rotation of the vector field v (up to a factor of 1/2)
e Divergence V - v — source of v (V- v > 0 — source; V- v < 0 — sink)

Useful formulas/identities: Let f(x) be a scalar function, v, w vector fields.
V-(fv)=v-Vf+fV.v
VXx(fv)=Vfxv+fVxv
Vx(vxw)=wW-V+V-w)v—(V-v+v -V)w
) =

Vx(Vxv)=V(V-v)- Vv
1
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2. MULTI-VARIABLE CALCULUS THEOREMS
e Gradient field: A vector field is a gradient if and only if it is curl free:
v=V/fforsome f +<— V xv=0
Also, v=Vf <= v is conservative (line integrals of v independent of path)
e ‘Solenoidal’ field: A vector field is a curl if and only if it is divergence free:
v=VXxwforsomew <= V.-v=0

e In particular, it is always true that V- (V x v) =0and V x (Vf) =0

e For the general theorem and technical requirements: see Helmholtz decomposition.

Let n = (n',--- ,n™) and let Q C R™.

Gradient theorem: Ou dV = / un®ds,
o O o0

(combined) /VudV:/ undS
Q G)

Divergence theorem: / V.-vdV = / v-ndS.
Q o0

(Integral of divergence in a region equals integral of flux out the surface. )

Integration by parts: (rule: replace 9/dz; with n’ or V- with n- in boundary term)

b
1d: / ﬁgdz:fg — f@daj.
[a,b] dx a [a,b] dz
multi-d: / O vav = [ tonias — / 199 4y
o 0z o0 o O

— (cg) /Qv-Vde:/m(v-n)de—/Q(V-v)de

Green’s formulas/identities:

/szng: faa—gdS—/Vf~ngV
Q o0 on Q

B dg af
[ng—gapav = [ 158—g5las

Stokes’ theorem: S = surface with edge curve I', t =tangent vector to I'; then

%v-tds:/(va)-ndS
r s

Green’s theorems (2d): Let  C R? with no holes and v = (v,w) and x = (z,y)). Then

ov Ow

j{ v-ndSZ/V-vdA =>jl{ —wdr+vdy= | —+—dA
0 Q 90 o O Oy

fv-tds:/(va)-de:> vdr +wdy = 8—w—@dA
1Y) Q o0 o Oz dy
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3. COORDINATE TRANSFORMS

3.1. Geometry. Here n is an outward normal; n is a unit (outward) normal.
normal vectors:

ox 0x
surface (2d): x(u,v) = (z(u,v),y(u,v), z(u,v)) = n = Rl i ﬁ
graph (1d): (z, f(z)) n = i/—lf—j—%

graph (2d): (z,y, f(z,y)) == n=

area integral: Let x(u,v) = zi+ yj = (z(u,v),y(u,v)) (coordinates (u,v))

ou ov Ty Yo
For instance for polar coordinates x = rcosf,y = rsin6:

dA = dzdy = |J| dudv, J= XX et [””“ y“]

J = x99 — woy, = (cosb)(rcosh) — (—rsinf)(sinf) = r
— dA=rdrdf

volume integral: Let x(u,v,w) = zi+ yj + zk = (x(u, v, w), y(u, v, w), z(u, v,w)).
ox (0r Ox

dV =dxdydz = |J|dudvdw, J= pa <% X %) =det|Vz |Vy | Vz]

where Va = (1, 7,,1,)" etc.

Surface integral: Let x(u,v) = xi+ yj + 2k, x = z(u, v) etc.

i j k
dS = ?xg—x dudv = ||xy Yy 2u|| dudv
v Ty Yo Zo

with the ||(matrix)|| denoting abs. of the determinant.
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4. FORMULAS FOR CYLINDRICAL/SPHERICAL COORDINATES:

For more details, see any reference on multi-variable calculus (good tables are easy to find).
Caution: be aware of the differing conventions for spherical coordinates!

Cylindrical: radius r, angle 6 (in xy plane)
(2 = rcos 0,
Coordinates: <y =rsinf, 6 cl0,2n], r>0
\z =z
=cosfz + sinfy,
Unit vectors: é = —sinfx + cosf y,
X
volume: dV = rdrdfdz
cyl. surface (rad. a): dS =adzdf
1 -
Gradient: Vf = f.7r + —f90 + f.z
X 19, .,  19F" OF
Divergence: V- F = ;E(TF ) ~ 0 T 5
190, 0f 1 82f 82f
. . 2
Laplacian: V°f = . 37"( 87“) t 5o T o2
Spherical: radius p, azimuthal angle 6, polar angle ¢ (see note')
(2 = psin ¢ cos 6,
Coordinates: <} y = psin¢sin6, 6 €[0,2n], ¢ €[0,7],p>0
|z =pcos¢
(ﬁ =sin¢cosf T +sinfsinpy + sing 2,
Unit vectors: { 0 = —sinf 7 + cosf 2
\ngﬁ =cos¢pcosf T+ cospsinfy —sing 2
volume: dV = p?sin ¢ dp df do
sphere surface (rad. a): dS = a*sin ¢ do df
. of . 1 of, 10f
Gradient: = —0
radient: V/ = 8,0 Pt psin ¢ 00 p 0
10 1 OF? 1 0
Di : V-F = (p*F" F?
ivergence: V 2o (p* )+psin¢ 50 +psm¢8¢(sm¢ )
1 0,,0f 1 0%f 1 9
Laplacian: V*f =
aplacian: V7f 02 p 25 8,0) p?sin® ¢ 002 p?sin¢ 3¢( m gb@qb)f

Here ¢ is the angle of x from the z-axis and 6 is the angle in the (z,y) plane. The opposite convention
is also often used. Be careful (look for the cos¢ vs. cos6 in the z-equation). Also watch for the range of ¢
and 6 (one goes up to m, the other to 27; sometimes one ranges from —= to 7 instead.
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