MULTI-VARIABLE CALCULUS REVIEW/REFERENCE

Notation: Throughout, bold indicates vector quantities.

- $\int_{\Omega} (\cdots) dV$ is the integral over a region Ω (either volume or area, sometimes dA)
- $\partial\Omega$ = boundary of Ω and $\int_{\partial\Omega}(\cdots)\,dS$ is the surface integral over $\partial\Omega$.
- $\mathbf{x} = (x_1, \dots, x_m)$ or $\mathbf{x} = (x, y)$ or $\mathbf{x} = (x, y, z)$ (\mathbb{R}^2 or \mathbb{R}^3)
- $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are standard unit vectors in \mathbb{R}^3 and \mathbf{n} is the outward normal to Ω

1. Operators and identities

Operators defined in \mathbb{R}^m (or \mathbb{R}^3 for curl):

gradient:
$$\nabla u = \left(\frac{\partial u}{\partial x_1}, \cdots, \frac{\partial u}{\partial x_m}\right)$$

Divergence:
$$\nabla \cdot \mathbf{v} = \sum_{j=1}^{m} \frac{\partial v_j}{\partial x_j}$$

Laplacian:
$$\nabla \cdot (\nabla u) = \sum_{j=1}^{m} \frac{\partial^{2} u}{\partial x_{j}^{2}}$$
 (also Δu or $\nabla^{2} u$)

Curl (
$$\mathbb{R}^3$$
): $\nabla \times \mathbf{v} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ v_1 & v_2 & v_3 \end{bmatrix}$

'planar' curl:
$$\nabla \times (v_1, v_2, 0) = \left(\frac{\partial v_1}{\partial y} - \frac{\partial v_2}{\partial x}\right) \mathbf{k}$$

directional derivative: $\frac{\partial f}{\partial \mathbf{n}} = \nabla f \cdot \mathbf{n}$ (where \mathbf{n} is a direction)

Physical/intuitive interpretations:

• flux of a vector quantity **F** through a boundary $\partial\Omega$:

flux (out) =
$$\int_{\partial\Omega} \mathbf{F} \cdot \mathbf{n} \, dS$$

- Curl $\nabla \times \mathbf{v} \to \text{local rotation of the vector field } \mathbf{v}$ (up to a factor of 1/2)
- Divergence $\nabla \cdot \mathbf{v} \to \text{source of } \mathbf{v} \ (\nabla \cdot \mathbf{v} > 0 \to \text{source}; \ \nabla \cdot \mathbf{v} < 0 \to \text{sink})$

Useful formulas/identities: Let $f(\mathbf{x})$ be a scalar function, \mathbf{v}, \mathbf{w} vector fields.

$$\nabla \cdot (f\mathbf{v}) = \mathbf{v} \cdot \nabla f + f \nabla \cdot \mathbf{v}$$

$$\nabla \times (f\mathbf{v}) = \nabla f \times \mathbf{v} + f \nabla \times \mathbf{v}$$

$$\nabla \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{w} \cdot \nabla + \nabla \cdot \mathbf{w})\mathbf{v} - (\nabla \cdot \mathbf{v} + \mathbf{v} \cdot \nabla)\mathbf{w}$$

$$\nabla \times (\nabla \times \mathbf{v}) = \nabla(\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v}$$

2. Multi-variable calculus theorems

• Gradient field: A vector field is a gradient if and only if it is curl free:

$$\mathbf{v} = \nabla f$$
 for some $f \iff \nabla \times \mathbf{v} = 0$

Also, $\mathbf{v} = \nabla f \iff \mathbf{v}$ is conservative (line integrals of \mathbf{v} independent of path)

• 'Solenoidal' field: A vector field is a curl if and only if it is divergence free:

$$\mathbf{v} = \nabla \times \mathbf{w} \text{ for some } \mathbf{w} \iff \nabla \cdot \mathbf{v} = 0$$

- In particular, it is always true that $\nabla \cdot (\nabla \times \mathbf{v}) = 0$ and $\nabla \times (\nabla f) = 0$
- For the general theorem and technical requirements: see **Helmholtz decomposition**.

Let $\mathbf{n} = (n^1, \dots, n^m)$ and let $\Omega \subset \mathbb{R}^m$.

Gradient theorem:
$$\int_{\Omega} \frac{\partial u}{\partial x_i} dV = \int_{\partial \Omega} u n^i dS,$$
 (combined)
$$\int_{\Omega} \nabla u \, dV = \int_{\partial \Omega} u \mathbf{n} \, dS$$
 Divergence theorem:
$$\int_{\Omega} \nabla \cdot \mathbf{v} \, dV = \int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n} \, dS.$$

(Integral of divergence in a region equals integral of flux out the surface.)

Integration by parts: (rule: replace $\partial/\partial x_i$ with n^i or ∇ with \mathbf{n} in boundary term)

1d:
$$\int_{[a,b]} \frac{df}{dx} g \, dx = fg \Big|_a^b - \int_{[a,b]} f \frac{dg}{dx} \, dx.$$
multi-d:
$$\int_{\Omega} \frac{\partial f}{\partial x_i} g \, dV = \int_{\partial \Omega} fg n^i \, dS - \int_{\Omega} f \frac{\partial g}{\partial x_i} \, dV$$

$$\implies \text{(e.g.)} \int_{\Omega} \mathbf{v} \cdot \nabla f \, dV = \int_{\partial \Omega} (\mathbf{v} \cdot \mathbf{n}) f \, dS - \int_{\Omega} (\nabla \cdot \mathbf{v}) f \, dV$$

Green's formulas/identities:

$$\int_{\Omega} f \nabla^2 g \, dV = \int_{\partial \Omega} f \frac{\partial g}{\partial \mathbf{n}} \, dS - \int_{\Omega} \nabla f \cdot \nabla g \, dV$$
$$\int_{\Omega} (f \Delta g - g \Delta f) \, dV = \int_{\partial \Omega} f \frac{\partial g}{\partial \mathbf{n}} - g \frac{\partial f}{\partial \mathbf{n}} \, dS$$

Stokes' theorem: S = surface with edge curve Γ , $\mathbf{t} = \text{tangent}$ vector to Γ ; then

$$\oint_{\Gamma} \mathbf{v} \cdot \mathbf{t} \, ds = \int_{S} (\nabla \times \mathbf{v}) \cdot \mathbf{n} \, dS$$

Green's theorems (2d): Let $\Omega \subset \mathbb{R}^2$ with no holes and $\mathbf{v} = (v, w)$ and $\mathbf{x} = (x, y)$). Then

$$\oint_{\partial\Omega} \mathbf{v} \cdot \mathbf{n} \, ds = \int_{\Omega} \nabla \cdot \mathbf{v} \, dA \implies \oint_{\partial\Omega} -w \, dx + v \, dy = \int_{\Omega} \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \, dA$$

$$\oint_{\partial\Omega} \mathbf{v} \cdot \mathbf{t} \, ds = \int_{\Omega} (\nabla \times \mathbf{v}) \cdot \mathbf{k} \, dA \implies \oint_{\partial\Omega} v \, dx + w \, dy = \int_{\Omega} \frac{\partial w}{\partial x} - \frac{\partial v}{\partial y} \, dA$$

3. Coordinate transforms

3.1. **Geometry.** Here \mathbf{n} is an outward normal; $\hat{\mathbf{n}}$ is a unit (outward) normal. normal vectors:

surface (2d):
$$\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v)) \implies \mathbf{n} = \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}, \ \hat{\mathbf{n}} = \frac{\mathbf{n}}{\|\mathbf{n}\|}$$
 graph (1d): $(x,f(x)) \implies \hat{\mathbf{n}} = \frac{(-f_x,1)}{\sqrt{1+f_x^2}}$ graph (2d): $(x,y,f(x,y)) = \implies \hat{\mathbf{n}} = \frac{(-f_x,-f_y,1)}{\sqrt{1+f_x^2+f_y^2}}$

area integral: Let $\mathbf{x}(u,v) = x\mathbf{i} + y\mathbf{j} = (x(u,v),y(u,v))$ (coordinates (u,v))

$$dA = dx dy = |J| du dv, \quad J = \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} = \det \begin{bmatrix} x_u & y_u \\ x_v & y_v \end{bmatrix}$$

For instance for polar coordinates $x = r \cos \theta$, $y = r \sin \theta$:

$$J = x_r y_\theta - x_\theta y_r = (\cos \theta)(r \cos \theta) - (-r \sin \theta)(\sin \theta) = r$$
$$\implies dA = r dr d\theta$$

volume integral: Let $\mathbf{x}(u, v, w) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = (x(u, v, w), y(u, v, w), z(u, v, w)).$ $dV = dx \, dy \, dz = |J| \, du \, dv \, dw, \quad J = \frac{\partial \mathbf{x}}{\partial \mathbf{w}} \cdot \left(\frac{\partial x}{\partial u} \times \frac{\partial x}{\partial v}\right) = \det[\nabla x \, | \, \nabla y \, | \, \nabla z]$ where $\nabla x = (x_u, x_v, x_w)^T$ etc.

Surface integral: Let $\mathbf{x}(u, v) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, x = x(u, v) etc.

$$dS = \left| \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right| du \, dv = \left| \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix} \right| du \, dv$$

with the ||(matrix)|| denoting abs. of the determinant.

4. FORMULAS FOR CYLINDRICAL/SPHERICAL COORDINATES:

For more details, see any reference on multi-variable calculus (good tables are easy to find). **Caution:** be aware of the differing conventions for spherical coordinates!

Cylindrical: radius r, angle θ (in xy plane)

$$\begin{aligned} & \textbf{Coordinates:} & \begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \quad, \quad \theta \in [0, 2\pi], \ r \geq 0 \\ z = z \end{cases} \\ & \textbf{Unit vectors:} & \begin{cases} \hat{r} = \cos \theta \, \hat{x} + \sin \theta \, \hat{y}, \\ \hat{\theta} = -\sin \theta \, \hat{x} + \cos \theta \, \hat{y}, \\ \hat{z} = \hat{z} \end{cases} \\ & \textbf{volume:} & dV = r \, dr \, d\theta \, dz \end{cases}$$

cyl. surface (rad. a): $dS = a dz d\theta$

Gradient:
$$\nabla f = f_r \hat{r} + \frac{1}{r} f_\theta \hat{\theta} + f_z \hat{z}$$

Divergence:
$$\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF^r) + \frac{1}{r} \frac{\partial F^{\theta}}{\partial \theta} + \frac{\partial F^z}{\partial z}$$

$$\textbf{Laplacian:} \ \nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial f}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$$

Spherical: radius ρ , azimuthal angle θ , polar angle ϕ (see note¹)

$$\begin{aligned} & \textbf{Coordinates:} & \begin{cases} x = \rho \sin \phi \cos \theta, \\ y = \rho \sin \phi \sin \theta, & \theta \in [0, 2\pi], \ \phi \in [0, \pi], \rho \geq 0 \\ z = \rho \cos \phi \end{cases} \\ & \textbf{Unit vectors:} & \begin{cases} \hat{\rho} = \sin \phi \cos \theta \, \hat{x} + \sin \theta \sin \phi \, \hat{y} + \sin \phi \, \hat{z}, \\ \hat{\theta} = -\sin \theta \, \hat{x} + \cos \theta \, \hat{z} \\ \hat{\phi} = \cos \phi \cos \theta \, \hat{x} + \cos \phi \sin \theta \, \hat{y} - \sin \phi \, \hat{z} \end{cases} \\ & \textbf{volume:} & dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \\ & \textbf{sphere surface (rad. } a): & dS = a^2 \sin \phi \, d\phi \, d\theta \end{cases} \\ & \textbf{Gradient:} & \nabla f = \frac{\partial f}{\partial \rho} \hat{\rho} + \frac{1}{\rho \sin \phi} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi} \\ & \textbf{Divergence:} & \nabla \cdot \textbf{F} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} (\rho^2 F^{\rho}) + \frac{1}{\rho \sin \phi} \frac{\partial F^{\theta}}{\partial \theta} + \frac{1}{\rho \sin \phi} \frac{\partial}{\partial \phi} (\sin \phi F^{\phi}) \end{cases} \\ & \textbf{Laplacian:} & \nabla^2 f = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} (\rho^2 \frac{\partial f}{\partial \rho}) + \frac{1}{\rho^2 \sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} + \frac{1}{\rho^2 \sin \phi} \frac{\partial}{\partial \phi} (\sin \phi \frac{\partial}{\partial \phi}) f \end{cases}$$

¹Here ϕ is the angle of **x** from the z-axis and θ is the angle in the (x,y) plane. The opposite convention is also often used. Be careful (look for the $\cos \phi$ vs. $\cos \theta$ in the z-equation). Also watch for the range of ϕ and θ (one goes up to π , the other to 2π ; sometimes one ranges from $-\pi$ to π instead.