
MATH 5410 LECTURE NOTES

MULTI-DIMENSIONAL PDES: SEPARABLE PROBLEMS

Note: the discussion here makes use of the notes on ‘special functions’ posted separately 
for the problems in curved geometries (cylinder, sphere).

Topics covered
• Theory for the Laplacian (∇2) in bounded domains
◦ Partial separation for problems with time (heat, wave)
◦ Helmholtz equation (−∇2φ = λφ)
◦ L2 theory (adjoint, orthogonality) in 2d
◦ Sturm-Liouville theory for general domains
◦ Rayleigh quotient (proving eigenvalue are > 0)

• Separable problems in multiple dimensions
◦ Heat/wave equation in a disk (Bessel functions, cylinder
◦ Sphere, radially symmetric (spherical Bessel functions)
◦ Surface of a sphere (spherical harmonics, Legendre polynomials)
◦ Laplace/heat equation in a sphere
◦ Handling negative eigenvalues for Bessel’s equation

• Special functions
◦ Bessel functions (first/second kind and modified)
◦ Properties: oscillation, small |x| behavior
◦ Legendre functions/polynomials

1. Separation of variables

Consider the heat equation in a bounded region Ω ⊂ R2 in the plane:

ut = ∇2u, x ∈ Ω, t > 0

(hom. BCs on ∂Ω) for t > 0

u(x, 0) = f(x).

(1.1)

Here we write x = (x, y) and u = u(x, y, t) or u(x, t), depending on which is convenient.

To solve, we can use partial separation to separate the t-part from the spatial part,
leading to ODEs in t and an eigenvalue problem in Ω. Look or a solution

u(x, t) = T (t)φ(x) (1.2)

Plug into the PDE (3.4) and separate t to get

T ′(t)

T (t)
=
∇2φ(x)

φ(x)
= −λ

using the standard argument for SoV that

function of t = function of x =⇒ both equal to a constant.
1
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This leaves us with Helmholtz’ equation

−∇2φ = λφ, x ∈ Ω. (1.3)

With boundary conditions on ∂Ω, this is the eigenvalue problem for the (minus) Laplacian
operator −∇2 in the region Ω, for instance the Dirichlet problem

−∇2φ = λφ, x ∈ Ω, φ = 0 for x ∈ ∂Ω.

There are two main cases, depending on the applicability of further separation:

• Fully separable: We may separate (1.3) completely and seek solutions

φ(x, y) = X(x)Y (y).

This works so long as the domain and boundary conditions are ‘separable’ in the sense
that they reduce to independent BCs for X and Y . The result is a set of one-
dimensional eigenvalue problems.
• Non-separable: No further separation is possible. Either the domain Ω is too compli-

cated (no good cooordinate system) or the boundary conditions are not separable

In either case, it is useful to extend the ‘L2 theory’ (Sturm-Liouville theory, adjoints, or-
thogonality and so on) to multiple dimensions.

2. Extending theory to 2d/3d

Let Ω ⊂ Rn be a bounded region (in R2 or R3). Define the L2 inner product on Ω as

〈f, g〉 =

∫
Ω

f(x)g(x) dV =

∫
Ω

f(x, y)g(x, y) dx dy. (2.1)

Also define the operator (the Laplacian, with the convential minus sign)

Lu = −∇2u.

Recall Green’s formula (from integrating by parts twice)∫
Ω

v∇2u =

∫
∂Ω

v
∂u

∂n
− u∂v

∂n
dS +

∫
Ω

u∇2v dV

=⇒ 〈Lu, v〉 =

∫
∂Ω

u
∂v

∂n
− v ∂u

∂n
dS + 〈u, Lv〉. (2.2)

In particular, suppose the boundary conditions are one of the standard types,

α(x)u+ β(x)
∂u

∂n
= 0 for x ∈ ∂Ω. (2.3)

One common example is if u or ∂u/∂n are zero on all points of the boundary.

Adjoint formula: Suppose L = −∇2. Then, in general, we have Green’s formula

〈Lu, v〉 =

∫
∂Ω

u
∂v

∂n
− v ∂u

∂n
dS + 〈u, Lv〉

and with boundary conditions (2.3), L is self-adjoint:

〈Lu, v〉 = 〈u, Lv〉 for all u, v satisfying the BCs (2.3)
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2.1. Eigenfunctions. The eigenfunctions for L satisfy Helmholtz’ equation

−∇2φ = λφ

plus whatever BCs are imposed (assume they are of the standard type (2.3)). We can easily
show that eigenfunctions are orthogonal for distinct eigenvalues.

Proof. The proof is familiar. Let φ, ψ be eigenfunctions for eigenvalues λ and γ and let 〈·, ·〉
denote the L2(Ω) inner product (2.1). Then

λ〈φ, ψ〉 = 〈Lφ, ψ〉 = 〈φ, Lψ〉 = γ〈φ, ψ〉

so 〈φ, ψ〉 = 0 if λ 6= γ. Note that the boundary terms vanish since φ, ψ have hom. BCs. �

‘Spectral’ theory (extending Sturm-Liouville theory): The situation is more com-
plicated than in 1d. For instance, we could have a ring in the plane with periodic boundary
conditions, leading to multiple eigenfunctions per eigenvalue.

Aside from this, the result is similar to the theorem for regular SL operators, except that
the eigenfunctions are often best indexed by a ‘multi-index’

k = (k1, k2)

(or whatever other symbols, e.g. k = (m,n)). The result is as follows:

Eigenfunctions for −∇2 in 2d/3d: Let Lu = −∇2u with standard hom. BCs (2.3).
Then there is a discrete set of eigenvalues λk and eigenfunctions φk such that

i) The eigenvalues are bounded below (there is a smallest eigenvalue, possibly negative
and λk →∞ as |k| → ∞ (i.e. increasing in either index).

ii) Each eigenvalue has finite multiplicity (solution for each distinct eigenvalue is spanned
by a finite number of eigenfunctions)

iii) The smallest eigenvalue has multiplicity one (so it has one eigenfunction)

iv) The eigenfunctions are orthogonal in the L2 inner product (2.1) and are a basis for
L2(Ω), i.e. every L2 function in Ω can be written in the form

f =
∑
k

ckφk(x), ck =
〈f, φk〉
〈φk, φk〉

=

∫
Ω
f(x)φk(x)dV∫
Ω
φk(x)2 dV

.

With this result, we can then express functions f in terms of the eigenfunctions. For
instance, for a region Ω in the plane, we might have a series like

f(x, y) =
∞∑
m=1

∞∑
n=1

cmnφmn(x, y) =⇒ cmn =
〈f, φmn〉
‖φmn‖2

=

∫
Ω
f(x, y)φmn(x, y) dx dy∫

Ω
φmn(x, y)2 dx dy

where ‖φ‖2 = 〈φ, φ〉 is the square of the L2 norm (easier to write than the inner product).
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2.2. Rayleigh quotient. As in 1d, The Rayleigh quotient can be used to show all eigen-
values are positive. Consider, for instance, the ‘Neumann’ eigenvalue problem for −∇2 in a
bounded region Ω ⊂ R2 (or R3):

−∇2φ = λφ in Ω , (2.4)

∂φ

∂n
= 0 for x ∈ ∂Ω. (2.5)

Take the inner product with φ of the eigenvalue equation (2.4) and integrate by parts once:

−
∫

Ω

φ∇2φ dV = λ

∫
Ω

φ2 dV

=⇒ −
∫
∂Ω

φ
∂φ

∂n
dS +

∫
Ω

∇φ · ∇φ dV = λ

∫
Ω

φ2 dV.

This gives the general Rayleigh quotient formula (noting that v · v = ‖v‖2)

λ =

−
∫
∂Ω

φ
∂φ

∂n
dS +

∫
Ω

‖∇φ‖2 dV∫
Ω
φ2 dV

. (2.6)

Using the Neumann BCs (2.5) we find that the boundary term is zero so

λ =

∫
Ω
‖∇φ‖2 dV∫
Ω
φ2 dV

≥ 0

Furthermore, it follows from the above that

λ = 0 ⇐⇒ ∇φ = ~0 for all x ∈ Ω ⇐⇒ φ = const.

Thus we cannot exclude λ = 0. In fact, it is an eigenvalue with φ = const. (check explicitly!).

Another example: Consider the heat equation in a half-disk,

ut = ∇2u =
1

r
(rur)r +

1

r2
uθθ x ∈ Ω, t > 0

u(r, 0, t) = u(r, π, t) = 0

− ur(1, θ, t) = ku(1, θ, t)

(2.7)

where k is a constant. This describes a flux ku at the curved boundary. We therefore expect
that if k > 0 (flux out), the eigenvalues should be positive (solutions decay) but not if k < 0.

λ

∫
Ω

φ2 dV = −
∫
∂Ω

φ
∂φ

∂n
dS +

∫
Ω

‖∇φ‖2 dV

= −
∫ π

0

φφr

∣∣∣
r=1

dθ +

∫
Ω

‖∇φ‖2 dV

= k

∫ π

0

(φ(1, θ))2 dθ +

∫
Ω

‖∇φ‖2 dV

so it is true that if k > 0 the eigenvalues are ≥ 0. Further, note that λ = 0 if and only if

φ(1, θ) = 0 for θ ∈ [0, π], ∇φ = 0 in Ω.

it follows that φ is constant; but then φ = 0 on the bottom face implies φ = 0 (so no zero
eigenvalue) if k ≥ 0. If k < 0 then the argument fails (see subsection 4.2).
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3. Squares and disks

3.1. Heat equation in a square (simplest case). Let Ω = [0, 1] × [0, 1] be a square of
side length one, let u = u(x, y, t) and suppose u solves the heat equation with Dirichlet BCs
on the top/bottom faces and Neumann BCs on the left/right faces:

ut = ∇2u, (x, y) ∈ Ω, t > 0

u(x, 0, t) = u(x, 1, t) = 0,

ux(0, y, t) = ux(1, y, t) = 0

u(x, y, 0) = f(x, y).

(3.1)

Since the problem is homogeneous, separation of variables can be used for the whole problem
(the inhomogeneous case will be treated after). Either way, we use the homogeneous problem
to find the eigenfunctions/values first.

1) Partial separation: Separate out time by looking for a solution of the form

u(x, y, t) = T (t)φ(x, y)

to obtain T (t) = −λT and Helmholtz’ equation

−∇2φ = λφ. (3.2)

2) Separate the eigenvalue problem: Look for an eigenfunction φ of the form

φ(x, y) = X(x)Y (y). (3.3)

Plug this into (3.2) to get (divide by XY )

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= −λ

=⇒ X ′′

X
= −λ− Y ′′

Y
= −µ2.

Note (shorcut): The ‘constant’ on the right has been written as µ2, anticipating that it
should be positive. Technically, we need to check later that it is positive (see part (3)).
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For the BCs, plug the separated eigenfunction (3.3) into the BCs for u to get

ux(0, y) = ux(1, y) = 0 =⇒ X ′(0) = X ′(1) = 0

u(x, 0) = u(x, 1) = 0 =⇒ Y (0) = Y (1) = 0

which verifies that the BCs are separable: they become a pair of BCs for X and Y separately.

3) Solve each eig.problem: The 1d eigenvalue problems have the form

X ′′ + µ2X = 0, X ′(0) = X ′(1) = 0,

Y ′′ + η2Y = 0, Y (0) = Y (1) = 0.

with η2 = λ− µ2. Note that from earlier that both problems have no negative eigenvalues,
so the use of µ2 and η2 is justified.1

Solving, we get

Xm(x) = cosmπx, µ2
m = m2π2, m ≥ 0,

Yn(y) = sinnπy, η2
n = n2π2, n ≥ 1.

Any product of Xm’s with Yn’s will give an eigenfunction, so we have{
φmn(x, y) = Xm(x)Yn(y)

λmn = µ2
m + η2

n = π2(m2 + n2)
m ≥ 0, n ≥ 1.

Note on eigenvalues: Observe that

λmn > λ01 = π2

so the eigenvalues are strictly positive (due to the Dirichlet part of the BCs). The Fredholm
alternative then ensures a unique solution (not required but good to check).

4) Solve the PDE: The problem is homogeneous, so continue with SoV. From step (1),

T ′ = −λT =⇒ Tmn(t) = cmne
−λmnt.

Thus the solution is

u(x, y, t) =
∑
m,n

Tmn(t)φmn(x, y)

=
∞∑
m=0

∞∑
n=1

cmne
−λmntφmn(x, y).

To obtain the coefficients, take the L2(Ω) inner product of the IC with φmn:

f(x, y) = u(x, y, 0) =
∞∑
m=0

∞∑
n=1

cmnφmn(x, y)

〈·, φmn〉 =⇒ cmn =
〈f, φmn〉
‖φmn‖2

=

∫
Ω
f(x, y)φmn(x, y) dx dy∫

Ω
φmn(x, y)2 dx dy

.

1We could have written the constants as, say, α, β and obtained X ′′ + αX = 0 and Y ′′ + βY = 0. Then
we would solve the eigenvalue problems and conclude that α, β have to be positive, so α = µ2 and β = η2.
A bit of intuition and/or Rayleigh quotient arguments help to avoid this extra work.
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4b) Inhomogeneous procedure: Suppose the PDE/BCs were inhomogeneous, e.g.

ut = ∇2u+ s(x, y, t), (x, y) ∈ Ω, t > 0

u(x, 0, t) = f1(x, t), u(x, 1, t) = f2(x, t),

ux(0, y, t) = 0, ux(1, y, t) = 0

(3.4)

The steps are as in 1d: write the source term as an eigenfunction series, then take 〈·, φn〉
and use the (self-)adjoint property to convert 〈Lu, φ〉 → 〈u, L〉φ+ bdry terms.
The main difference is that the boundary part is an integral over ∂Ω via Green’s formula

To start (after completing Steps (1)-(3) to get the eigenfunctions/values), let

kmn = 〈φmn, φmn〉 = ‖φmn‖2.

and write the source in terms as an eigenfunction series:

s(x, y, t) =
∑
m,n

smn(t)φmn(x, y), smn(t) =
1

kmn
〈s, φmn〉.

Now take the L2(Ω) inner product of the PDE with φmn:

〈ut, φmn〉 = 〈∇2u, φmn〉+ 〈s, φmn〉
Use Green’s formula (2.2) (the self-adjoint calculation for L = −∇2u) to get

kmncmn(t) =

∫
∂Ω

φmn
∂u

∂n
− u∂φmn

∂n
dS + 〈u,∇2φmn〉+ knsmn

=

∫
∂Ω

φmn
∂u

∂n
− u∂φmn

∂n
dS − λmnkmncmn(t) + knsmn

so the coefficient ODE has the form

cmn(t) + λmncmn(t) = bmn(t) + smn(t).

To simplify the boundary term, first note that only the y = 0 and y = 1 parts of the integral
are non-zero and that

∂φmn/∂y = nπ cos(mπx) cos(nπy).

Using this we get

bmn(t) =
1

kmn

∫ 1

0

(
f1(x, t)

∂φmn
∂y

(x, 0)− f2(x, t)
∂φmn
∂y

(x, 1)

)
dx

=
nπ

kmn

∫ 1

0

(f1(t)− f2(t)) cos(mπx) dx.

Note that n̂ = −ŷ at y = 0 and n̂ = ŷ at y = 1.
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3.2. Heat equation in a disk (Bessel functions). Let (r, θ) be polar coordinates and let
the domain Ω be a circle of radius 1:

Ω = {(r, θ) : r ≤ 1}, ∂Ω = {(r, θ) : r = 1}.
For simplicity, consider Dirichlet boundary conditions on ∂Ω:

ut = ∇2u, x ∈ Ω, t > 0

u(1, θ, t) = 0, θ ∈ [0, 2π]

u(x, 0) = f(x)

(3.5)

with the additional implied boundary conditions

u is 2π-periodic in θ, u is bounded in Ω.

Using the polar coordinates formula for ∇2, the PDE is

ut =
1

r
(rur)r +

1

r2
uθθ.

1) Partial separation: Look for a separated solution

u(r, θ, t) = T (t)φ(r, θ)

to obtain T ′(t) = −λT (t) and Helmholtz’ equation in polar coordinates:

1

r
(rφr)r +

1

r2
φθθ = −λφ.

Plugging into the boundary conditions, we get (writing the periodic boundary condition in
the usual way for second-order equations)

φ(R, θ) = 0, φ bounded, φ(r, 0) = φ(r, 2π), φθ(r, 0) = φθ(r, 2π).

2) Separate eig. problems Separate fully:

φ = R(r)g(θ)

=⇒ 1

rR
(rR′)′ +

1

r2

g′′

g
= −λ

to conclude that g′′/g must be a constant µ2. This leads to the eigenvalue problems

(g-dir) − g′′ = µ2g, g(0) = g(2π), g′(0) = g′(2π) (3.6)

(r-dir) − 1

r
(rR′)′ +

µ2

r2
R = λR, R(1) = 0, R bounded in [0, 1] (3.7)
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3) Solve the eig. problems: For g we have solved the problem (3.6) before; the previous
calculations justify using µ2 (eigenvalues are non-negative for (3.6)). The result is

µ2
m = m2, gm = cosmθ or sinmθ, for n ≥ 0

noting that for µ0 = 0, there is only one eigenfunction: g0 = 1. The ‘or’ indicates these are
the two (orthogonal) eigenfunctions for the m-th eigenvalue.

For R, more work is needed. First, it is convenient to rescale by setting

ξ = r
√
λ.

The result is that (3.7) becomes Bessel’s equation for y(ξ) = R(ρ):

y′′ +
1

ξ
y +

(
1− m2

ξ2

)
y = 0.

(*see notes on special functions) The general solution for y is

y(ξ) = aJm(ξ) + bYm(ξ) =⇒ R(r) = aJm(r
√
λ) + bYm(r

√
λ).

where Jm and Ym are the regular/modified Bessel functions of order m. We need two facts:

• Ym is singular at r = 0 and Jm is bounded
• Jm(x) has an infinite sequence of positive zeros γmn with

γm1 < γm2 < γm3 < · · · → ∞.
Applying the BCs and the above facts, we get

R bounded in [0, 1] =⇒ R = Jm(r
√
λ)

R(1) = 0 =⇒ Jm(
√
λ) = 0 =⇒ λmn = γ2

mn.

Remark (order of solving): There is a chain of dependence; the result of the r-equation
(m,n) depends on the θ-equation (m) through the values of λmn. In short the dependence is

θ → r (solve θ-dir. first, then r).

The eigenfunctions/values for the full eigenvalue problem are then{
φmn(r, θ) = Jm(r

√
λmn)(cosmθ or sinmθ)

λmn = γ2
mn

, m ≥ 0, n ≥ 1. (3.8)

Note that φ0n = J0(r
√
λ0n) (the m = 0 case has only one g eigenfunction). The ‘or’ here, as

noted earlier, is just short for listing the two eigenfunctions per λmn,

φamn(r, θ) = Jm(r
√
λmn) cosmθ, φbmn = Jm(r

√
λmn) sinmθ

Practical note: For convenience, it is common (e.g. in in engineering applications) to write
the θ part as a complex exponential, so

φmn(r, θ) = Jm(r
√
λmn)eimθ

but now the coefficients in the full solution can be complex and we must take the real part
to get a real solution.
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4) Solve the PDE: The problem is homogeneous, so use SoV:

T ′ + λT = 0 =⇒ Tmn = cmne
−λmnt.

The solution is then (with bm0 = 0 to avoid writing the n = 0 case separately)

u(r, θ, t) =
∞∑
m=0

∞∑
n=1

e−λmntJm(r
√
λmn)(amn cosmθ + bmn sinmθ)

Define symbols for the cos and sin eigenfunctions (which are orthogonal to each other):

φcmn = Jm(r
√
λmn) cosnθ, φsmn = Jm(r

√
λmn) sinnθ

Taking the L2(Ω) inner product of the IC with these eigenfunctions gives the coefficients:

u0(r, θ) =
∞∑
m=0

∞∑
n=1

Jm(r
√
λmn)(an cosnθ + bn sinnθ)

=⇒ amn =
〈u0, φ

c
mn〉

‖φcmn‖2
, bmn =

〈u0, φ
s
mn〉

‖φsmn‖2
.

In polar coordinates, L2 inner product is

〈f, g〉 =

∫
Ω

f(r, θ)g(r, θ)r dr dθ.

Connection to SL theory: It is important to note that Sturm-Liouville theory applies to
the 1d eigenvalue problems; the result here should be consistent. To check, by taking φ`n
and φmn, we find that

0 = 〈φmk, φmn〉 =⇒
∫ 1

0

Jm(r
√
λmk)Jm(r

√
λmn)r dr = 0 if k 6= n.

Note the factor of r from the area differential dA = r dr dθ here! The eigenvalue problem for
R, (3.7), is a Sturm-Liouville problem with weight function σ(r) = r, so it is consistent. The
1d Sturm-Liouville theory also justifies the calculations done for the 1d eigenvalue problems.

Some analysis: We can show the eigenvalues are all positive using a Rayleigh quotient
argument (subsection 2.2; detailed omitted here). It follows that

lim
t→∞

u(r, θ, t) = u(r, θ)

for a steady state u. It is not hard to check that this steady state is just u = 0.2

Now after a long time, the term with the smallest λ will be much larger than the rest since
each term decays exponentially with rate λmn. We know from the indexing that

λm1 < λm2 < · · ·
and one can then check that λ01 is the smallest of the λm1’s. It follows that

max
(r,θ)∈Ω

|u(r, θ, t)| ∼ Ce−λ01t for large t.

This eigenvalue can be found numerically:

J0(
√
λ01) = 0 =⇒ λ01 = γ2

01 ≈ (2.405)2 = 5.78.

2Check that zero is a solution; assume the solution to Laplace’s equation ∇2u = 0 is unique.
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3.3. Application: vibrating membrane. Consider a thin membrane stretched over a disk
of radius 1 (like a drum). The displacement u(r, θ, t) of the membrane is described by the
wave equation:

utt = c2∇2u, x ∈ Ω,

u(1, θ, t) = 0

u(x, 0) = f(x)

(3.9)

with ∇2u = 1
r
(rur)r + 1

r2
uθθ. The solution via separation of variables is the same as the

previous example, except that

T ′′ + c2λT = 0 =⇒ T (t) = a sin c
√
λt+ b cos c

√
λt.

The eigenfunctions/values are the same; λmn = γ2
mn (Jm(γmn) = 0) and

φmn = Jm(r
√
λmn)(cosmθ or sinmθ).

Assuming no cos c
√
λt terms for simplicity, the solution is a superposition of modes

sin(
√
λmnt)Jm(r

√
λmn)(cosmθ or sinmθ)

Each mode of vibration has nodal sets

Smn = {(r, θ) : the m,n mode is zero for all t}
which is the set of points that do not move (for that mode). For these eigenfunctions, the
nodal sets are concentric circles plus rays:

Smn = {θ = 2πk/m, k = 0, · · · ,m− 1} ∪ {r = γm`/
√
λmn, ` = 0, · · · , n− 1}

i.e. r
√
λmn must be one of the zeros of Jm less than the zero used to find λmn. The nodal

sets can be visualized in experiments by placing particles like sand on the disk; they will
collect at the nodes. Some modes are shown below; for more examples and nodal sets, see
p320-321 of Haberman.

More complicated patterns can be found by imposing more complicated boundary condi-
tions, changing the domain, exciting multiple modes and so on.
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4. Cylinders and spheres

4.1. Heat equation: half-cylinder. Let (r, θ, z) be cylindrical coordinates and Ω be a
half-cylinder of radius 1 and length L (the full cylinder case is similar):

Ω = {(r, θ, z) : r ≤ 1, 0 ≤ z ≤ L, 0 ≤ θ ≤ π}.

Decompose ∂Ω into four parts: the two ends, the flat bottom and circular part:

∂Ω− = {z = 0}, ∂Ω+ = {z = L}, ∂Ωc = {r = 1, 0 ≤ θ ≤ π}, ∂Ωb = {θ = 0 or π}.

Suppose that the cylinder is closed, so the flux through each boundary is zero. This Neu-
mann problem is given by (writing out the ∂u/∂n = 0 terms on each face separately)

ut =
1

r
(rur)r+

1

r2
uθθ + uzz x ∈ Ω, t > 0

uz(r, θ, 0, t) = uz(r, θ, 1, t) = 0

ur(1, θ, z, t) = 0

uθ(r, 0, z, t) = uθ(r, π, z, t) = 0

(IC:) u(r, θ, z, 0) = f(r, θ, z).

(4.1)

1) Partial separation: Same as before; u = T (t)φ(r, θ, z) and

T ′(t) = −λT, −∇2φ = λφ.

2) Separated eig. problems: Look for a separated solution, now in three variables:

φ = R(r)g(θ)h(z).

Plug into the Helmholtz equation and divide by Rgh:

1

r

(rR′)′

R
+

1

r2

g′′

g
+
h′′

h
= −λ.

First, this is has the form

(function of r, θ) + (function of z) = constant

so it follows that (assuming the constant η2 is positive)

h′′ = −η2h,
1

r

(rR′)′

R
+

1

r2

g′′

g
= −λ+ η2.

From here, separate r and θ (again, assuming the new constant is positive) to get

g′′ = −µ2g,

1

r
(rR′)′ − µ2

r2
R− η2R = −λR.
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After plugging into the boundary conditions we obtain the eigenvalue problems

−h′′ = η2h, h′(0) = h′(L) = 0

−g′′ = µ2g g′(0) = g′(π) = 0

−1

r
(rR′)′ +

(
µ2

r2
+ η2

)
R = λR, R′(0) = R′(1) = 0

The chain of dependence here is θ, z → r; the R-equation depends on the g, h equations.

3) Solve the eig. problems: The first two problems are the easy cases:

hk = cos
kπz

L
, η = kπ/L, k ≥ 0

gm = cosmθ, µ = m, m ≥ 0

To solve the R equation, note that it is essentially Bessel’s equation:

R′′ +
1

r
R′ +

(
(λ− η2)− µ2

r2

)
R = 0.

Note that if λ < η2 then the equation is instead the modified Bessel’s equation (wrong sign),
which would yield no solutions (*see notes on special functions).
To rescale the problem, set α = λ− η2 = λ− (kπ/L)2 and

ξ = r
√
α

so that the equation for y(ξ) = R(r) becomes the standard Bessel equation

y′′ +
1

ξ
y′ +

(
1− µ2

ξ2

)
y = 0.

Using the bounded condition, we get y = Jm(ξ) so

R(r) = Jm(r
√
λ− (kπ/L)2).

Applying the Neumann boundary condition we get the equation for the eigenvalues:

J ′m(
√
λ− (kπ/L)2) = 0. (4.2)

The relevant properties are:

• J ′m(0) = 0; set γ′m0 = 0
• J ′m has a sequence of positive zeros (minima/maxima of Jm) γ′mn where

0 = γ′m0 < γ′m1 < γ′m2 < · · · → ∞.
It follows from (4.2) that the solutions to the R-equation are (for n ≥ 0)

λkmn = (kπ/L)2 + (γ′mn)2, Rn(r) = Jm(r
√
λkmn).

The eigenvalues/functions for the full problem are then (k,m, n ≥ 0){
λkmn = (kπ/L)2 + (γ′mn)2,

φkmn(r, θ, z) = cos
(
kπz
L

)
cos(mθ)Jm(r

√
λkmn)

, k,m, n ≥ 0. (4.3)

Note that Rn depends on the solutions for hk and gm through the eigenvalue.
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4) Solve the PDE: This part is the same as before.

T ′ = −λT =⇒ Tkmn = ckmne
−λkmnt.

The solution is then

u(r, θ, z, t) =
∑

k,m,n≥0

ckmne
−λkmntφkmn(t) =

∑
k

cke
−λktφk(t)

where k = (k,m, n) is a multi-index and the sum is over {k,m, n ≥ 0}. The L2 inner product
for the half-cylinder is, in cylindrical coordinates,

〈f, g〉 =

∫
Ω

fg dV =

∫ L

0

∫ π

0

∫ 1

0

f(r, θ, z)g(r, θ, z)r dr dθ dz.

Taking this inner product with the IC we get

ckmn =
〈f, φkmn〉
‖φkmn‖2

= · · · .

Some analysis: In this case, because of the Neumann problem, λ000 = 0 is an eigen-
value. The eigenfunction is just a constant since

J(r
√
λ− (kπ/L)2) = J(0) = 1

All the other eigenvalues are positive (again, can be shown via the Rayleigh quotient). Thus

lim
t→∞

u(r, θ, z, t) = c000φ000 = c000.

The rate is given by the smallest positive eigenvalue. Since

λkmn = (kπ/L)2 + (γ′mn)2

this occurs for k = 0 and (by the same argument as for the disk) for m = 0 and n = 1, so

max
(r,θ,z)∈Ω

|u(r, θ, z, t)| ∼ Ce−λ001t, λ001 = (γ′01)2 ≈ 14.7

after looking up zeros of J ′m (γ′01 ≈ 3.83). The steady state value is just the (0, 0, 0) coefficient
in the solution, which is easy to compute since the eigenfunction is constant:

c000 =

∫
Ω
f dV∫

Ω
1 dV

= avg. value of f in Ω.

The distribution of heat in the closed container converges to its average value as t→∞.
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4.2. A case with negative eigenvalues. Suppose we have the following problem for the
heat equation in a half-disk Ω = {(r, θ) : 0 ≤ θ ≤ π, r ≤ 1}.

ut = ∇2u =
1

r
(rur)r +

1

r2
uθθ x ∈ Ω, t > 0

u(r, 0, t) = u(r, π, t) = 0

ur(1, θ, t) = 2u(1, θ, t)

(4.4)

which models a problem with inflow on the curved part into the domain, proportional to
u. We observed (example in subsection 2.2) that the Rayleigh quotient does not show the
eigenvalues are positive, which suggests we must be on the lookout for negative ones.

By similar calculations to the disk with φ(r, θ) = R(r)g(θ) that

−g = µ2g, g(0) = g(π) = 0 =⇒ gm = sinmθ, µm = m

−1

r
(rR′)′ +

m2

r2
R = λR, R′(1) = 2R(1), R bounded.

For positive eigenvalues, set y(ξ) = R(r) with ξ = r
√
λ as before to get

y′′ +
1

ξ
y +

(
1− m2

ξ2

)
y = 0 =⇒ R(r) = Jm(r

√
λ)

and then the boundary condition at 1 yields the equation for positive eigenvalues:
√
λJ ′m(

√
λ) = 2Jm(

√
λ).

For negative eigenvalues, set y(ξ) = R(r) with ξ = r
√
−λ to get

y′′ +
1

ξ
y +

(
1 +

m2

ξ2

)
y = 0

This has modified Bessel functions I,K as solutions. Since K is not bounded,

y(ξ) = Im(ξ) =⇒ R(r) = Im(r
√
−λ)

and then the BC at 1 yields (letting η =
√
−λ)

ηI ′m(η) = 2Im(η)

which has at most one positive solution. Here, of the
possible values m = 1, 2, · · · only m = 1 has a solution,
yielding (see plot)

λ1,−1 ≈ −2.2, R = I1(r
√
−λ1,−1).

There are no solutions for other values of m (not always
true, e.g. ur = 4u gives a solution for m = 2 as well). 0 0.5 1 1.5 2 2.5

-1

0

1

2

3

4

5

The solution to the PDE then has the form (letting λ∗ = −λ1,−1)

u(r, θ, t) = c1,−1e
λ∗tI1(r

√
λ∗) sin θ +

∑
m,n≥1

cmne
−λmntJm(r

√
λmn) sinmθ

so the solution grows exponentially with rate λ∗ ≈ 2.2 (unless the initial condition is
orthogonal to this growing mode).
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5. Laplace in a cylinder (more modified Bessel functions)

Modified Bessel functions also appear in solving Laplace’s equation. To get the idea, we
review the rectangle case first.

5.1. Review (square): Consider Laplace’s equation in a square of side length 1,

uxx + uyy = 0, (x, y) ∈ [0, 1]× [0, 1]

with Dirichlet BCs, homogeneous on the left/right faces:

u(0, y) = u(1, y) = 0, u(x, 0) = f1(x), u(x, 1) = f2(x).

Look for a solution u = X(x)Y (y) to get

−X ′′ = λX, X(0) = X(1) = 0

Y ′′ = λY

Note that the signs of λ are opposite for the two equations. The eigenvalue problem requires
the ‘right’ sign for λ (positive):

λ > 0, −X ′′ = λX =⇒ oscillating solns. =⇒ Xn = nπx

The oscillatory solution is needed to get eigenvalues out of sin
√
λ = 0. The solution is then

u =
∞∑
n=1

Yn(y)︸ ︷︷ ︸
coeffs

Xn(x)︸ ︷︷ ︸
eig-funcs

.

The ODE for the ceofficients is not an eigenvalue problem and it has the opposite sign:

Y ′′ = λY =⇒ non-oscillating solns.Y = ae
√
λy + be−

√
λy.

This suggests that we need to be able to solve the typical ODEs in both the positive eigen-
value cases (for the actual eigenfunctions) and the negative eigenvalue cases (for coefficients).

5.2. Cylinder case 1: (r, θ) eigenfunctions. Consider a cylinder of height L, radius 1
and Dirichlet BCs, inhomogeneous only at z = L:

0 =
1

r
(rur)r+

1

r2
uθθ + uzz x ∈ Ω,

u(1, θ, z) = 0

u(r, θ, 0) = 0

u(r, θ, L) = f(r, θ)

(5.1)

Since the BCs are inhomogeneous in z (but the others are homogeneous) we choose z as the
‘coefficient’ direction to separate out and seek a solution

u =
∑
k

ck(z)φk(r, θ).
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Look for (partially) separated solutions

u = h(z)φ(r, θ)

which gives

(coeff ODE.) h′′ − λh = 0, h(0) = 0

(eigenvalue prob.)
1

r
(rφr)r +

1

r2
φθθ = −λφ, φ(1, θ) = 0.

The BC at z = L cannot be applied yet since it is inhomogeneous. The eigenvalue problem
is the Dirichlet problem in a disk, solved by (3.8) in subsection 3.2:{

λmn = γ2
mn, γmn = n-th pos. zero. of Jm

φmn = Jm(r
√
λmn)(cosmθ or sinmθ)

, m ≥ 0, n ≥ 1.

Now solve for h, applying the one homogeneous BC at z = 0:

h′′ − λh = 0, =⇒ h = a sinh(z
√
λ) + b cosh(z

√
λ)

h(0) = 0 =⇒ h = a sinh(z
√
λ).

Since the BCs are homogeneous in the directions of the eigenfunctions, the full solution is a
superposition of the separated solutions:

u(r, θ, z) =
∑

m≥0,n≥1

sinh(z
√
λmn)(amnφmn,c + bmnφmn,s)

Finally, apply the inhomogeneous BC at z = L to get the coefficients:

u(r, θ, 1) = f(r, θ)

=⇒ amn =
1

sinh(
√
λmn)

〈f, φmn,c〉
‖φmn,c‖2

, · · · (5.2)

with a similar formula for bmn. Here the inner product is the L2 inner product in the cylinder,

〈f, g〉 =

∫ L

0

∫ 2π

0

∫ 1

0

fg r dr dθ dz.

Note on eigenvalues: The coefficients are all uniquely defined by (5.2) since the eigenvalues
are positive. To verify this, we can use the Rayleigh quotient. The eigenvalue problem is

−∇2φ = λφ, φ(1, θ) = 0

where ∇2 is the Laplacian in the disk D = {(r, θ) : r ≤ 1}. Multiply by φ and IBP:∫
D

∇φ · ∇φ dA−
∫
∂D

φ
∂φ

∂r
dS = λ

∫
D

φ2 dA.

But φ = 0 on ∂D (the boundary of the disk), so

λ =

∫
D
‖∇φ‖2 dA∫
D
φ2 dA

≥ 0.

If λ = 0 then ∇φ = 0 in all of D, i.e. φ is constant. But φ = 0 on the boundary, so this
implies φ = 0 everywhere. It follows that λ 6= 0.
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5.3. Cylinder case 2: (θ, z) eigenfunctions. The process is the same as above, but the
‘coefficient’ and ‘eigenfunction’ directions are different. Consider

0 =
1

r
(rur)r+

1

r2
uθθ + uzz x ∈ Ω,

u(1, θ, z) = f(θ, z)

u(r, θ, 0) = 0

u(r, θ, L) = 0

(5.3)

This time, we have inhomogeneous BCs in the r-direction, so we use r as the ‘coefficient’
direction and look for a solution

u =
∑
k

ck(r)φk(θ, z).

Proceeding with SoV again, look for a partially separated solution

u = R(r)φ(θ, z)

and then separate again with φ = g(θ)h(z).

Remark (the eigenvalues): The 1/r2 factor is a nuisance here. Define the ‘θz’ part of the
Laplacian operator as

∇̃u :=
1

r2
uθθ + uzz.

It is not quite true that −∇̃φ = λφ (i.e. the ‘eigenfunctions’ φ are not exactly solutions of
Helmholtz’ equation as in previous examples). Instead, we require that

−∇̃φ = (
α

r2
+ β)φ

The solution procedure does not change; just the ‘eigenvalue’ λ now has two terms, one with
a factor of 1/r2 and one without.

The standard procedure yields the 1d problems

−g′′ = µ2g, g is 2π-periodic

−h′′ = η2h, h(0) = h(L) = 0

1

r
(rR′)′ −

(
η2 +

µ2

r2

)
R = 0.

After solving the θ, z eigenvalue problems (both standard) we get eigenfunctions

φmn(θ, z) = (cosmθ or sinmθ) sin ηnz, m ≥ 0, n ≥ 1

where ηn = nπ
L
. The ODE for R is Bessel’s equation:

R′′ +
1

r
R′ +

(
−η2

n −
m2

r2

)
R = 0
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but with λ = −η2
n (negative, unlike before). Now, we transform with

ξ = ηnr, y(ξ) = R(r)

to obtain the modified Bessel’s equation

y′′ +
1

ξ
y′ +

(
−1− m2

ξ2

)
y = 0.

Due to the different sign, the solution is instead in terms of modified Bessel functions:

R(r) = aK(rηn) + bI(rηn).

By the boundedness condition, the K term is zero, so

R = Im(rηn).

The full solution is a superposition of the separated solutions (since the BCs are homogeneous
in the θ, z directions):

u(r, θ, z) =
∑
m,n

cmn(r)Im(rηn)(amnφmn,c + bmnφmn,s)

Now all that is left is the inhomogeneous BC at r = 1, which determines the coefficients:

f(θ, z) = u(1, θ, z)

=⇒ amn =
1

Im(ηn)

〈f, φmn,c〉
‖φmn,c‖2

, · · · .

Remark on coefficients: In general, it is true that

I(r)→∞ as r →∞
K(r)→ 0 as r →∞

like the e±x solutions for Laplace’s equation in a square. Since the domain is bounded, the
fact that I diverges as r →∞ is not relevant here. If the domain were outside a cylinder,
then K would be kept and I discarded instead.
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6. Spherical harmonics

6.1. Radial part (spherical symmetry). A nice case where the eigenfunctions can be
found explicitly. Consider spherically symmetric waves in a sphere of radius a with a
reflecting boundary (waves reflect off the sphere surface). Let

Ω = sphere of radius a, u(r, θ, φ, t) = u(r, t).

Note that if u = u(r, t) then only the r-derivative terms of ∇2u are non-zero. This leaves
the ‘spherically symmetric’ wave equation

utt =
1

r2
(r2ur)r, x ∈ Ω

ur(a, t) = 0

u(r, 0) = f(r), ut(r, 0) = g(r).

(6.1)

Separated equations: After separating with u = R(r)T (t) we find

T ′′(t) + λT = 0,

1

r2
(r2R′)′ = −λR, R′(a) = 0, R bounded in [0, a]. (6.2)

The eigenvalue ODE is a special case (m = 0) of the spherical Bessel equation

R′′ +
2

r
R′ +

(
λ− m(m+ 1)

r2

)
R = 0, (with m = 0).

First note that when λ = 0 there is a bounded solution:

λ0 = 0, R0 = 1. (6.3)

For non-zero eigenvalues, convert to Bessel’s equation using the transformation3

R = y/
√
r.

After some unpleasant calculation, we find that y satisfies

y′′ +
1

r
y′ +

(
λ− (m+ 1/2)2

r2

)
y = 0.

Here m = 0 so this is Bessel’s equation of order 1/2. Now solve for λ 6= 0 to get

R(r) = c1

J1/2(r
√
λ)√

r
+ c2

Y1/2(r
√
λ)√

r
.

By the properties of Bessel functions, Y1/2/
√
r ∼ r−1/2/r1/2 ∼ 1/r as r → 0 so it is unbounded

and J1/2/
√
r ∼ r1/2/r1/2 ∼ 1 is bounded. Thus we must exclude the Y term (but can keep

the J term) so

R(r) =
J1/2(r

√
λ)√

r
.

The positive eigenvalues λ satisfy

a
√
λJ ′1/2(a

√
λ) =

1

2
J1/2(a

√
λ).

3This is one of many specific tricks for converting common differential equations to standard ones. Here,
it is the rule that the spherical Bessel equation given m is the regular Bessel equation of order m+ 1/2.
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The solutions to this equation plus the zero eigenvalue (6.3) yield eigenvalues

0 = λ0 < λ1 < · · ·
and corresponding eigenfunctions

R0(r) = 1, Rn(r) = J1/2(r
√
λn)/
√
r, n ≥ 1.

Simplification (‘spherical’ Bessel function of order zero): The Bessel functions J1/2

that show up for this sphere problem are actually nice due to the identity

J1/2(x) =
sinx√
x
.

Using this identity, we get

R(r) =
sin r
√
λ

r
and the eigenfunctions/eigenvalues λn > 0 are given more simply by

R0 = 1, Rn =
sin r
√
λn

r
, a
√
λ = tan a

√
λ.

Solve the PDE: The solution to the wave equation is then

u(r, t) =
∞∑
n=0

cn(t)Rn(r)

where
cn(t) = an cos

√
λnt+ bn sin

√
λnt.

Applying the initial conditions:

u(r, 0) = f(r) =⇒ an =
〈f, φn〉
‖φn‖2

=

∫ a
0

[
g(r) sin(r

√
λn)/r

]
r2 dr∫ a

0
[sin(r

√
λn)/r]r2 dr

.

ut(r, 0) = g(r) =⇒
√
λnbn =

〈g, φn〉
‖φn‖2

where the inner product is the L2 inner product in the sphere. For functions of r only,

〈f, g〉 =

∫
Ω

f(r)g(r)r2 sinφ dr dθ dφ = 4π

∫ a

0

f(r)g(r)r2 dr

so for instance, the explicit formula for an is

an =
〈f, φn〉
‖φn‖2

=

∫ a
0

[
f(r) sin(r

√
λn)/r

]
r2 dr∫ a

0
[sin(r

√
λn)/r]2 r2 dr

.

Note that we can interpret this as the inner product in [0, a] with weight σ = r2. This is the
weight function for the 1d SL problem

− 1

r2
(r2R′)′ = λR

that defines the radially symmetric eigenfunctions. That is, our eigenfunctions Rn are or-
thogonal in the regular L2 inner product on the sphere, or orthogonal in the σ = r2 weighted
inner product in the 1d interval [0, a].
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6.2. Surface of a sphere: eigenfunctions. Now we look for eigenfunctions of −∇2 on the
surface of a sphere of radius 1. The coordinate system is shown below; note that θ ∈ [0, 2π]
is the angle in the x, y plane and φ ∈ [0, π] is the angle from the +z axis.4

In spherical coordinates, the Laplacian is

∇2u =
1

r2
(r2ur)r +

1

r2

(
1

sin2 φ
uθθ +

1

sinφ
(sinφuφ)φ

)
=

1

r2
(r2ur)r +

1

r2
∇2
su

where ∇2
su is the ‘surface’ Laplacian for the sphere,

∇2
su =

1

sin2 φ
uθθ +

1

sinφ
(sinφuφ)φ (6.4)

We seek eigenvalues λ and eigenfunctions Y (θ, φ) for∇2
s (the choice of letter here is standard;

note that Y is not a Bessel function). The eigenvalue problem is

1

sin2 φ
Yθθ +

1

sinφ
(sinφYφ)φ = −λY

Y is 2π-periodic in θ.
(6.5)

We solve this by looking for a fully separated eigenfunction:

Y = g(θ)h(φ)

=⇒ 1

sin2 φ

g′′(θ)

g(θ)
+

1

sinφ

(sinφh′)′

h
= −λ

which leads to the 1d eigenvalue problems

g′′ + µ2g = 0, g(0) = g(2π), g′(0) = g′(2π)

1

sinφ
(sinφh′)′ + (λ− µ2

sin2 φ
)h = 0. (6.6)

The θ-equation is standard, yielding eigenfunctions/values

gm = (cosmθ or sinmθ), µm = m, m ≥ 0.

4You’ll often encounter the opposite convention in physics.



SEPARABLE PDES IN Rn 23

For the φ equation, convert into a standard form with the transformation

y(ξ) = h(φ), ξ = cosφ

which maps φ in [0, π] to ξ in [−1, 1]. The derivative transforms as

∂

∂φ
=
∂ξ

∂φ

∂

∂ξ
= − sinφ

∂

∂ξ

so the eigenvalue problem (6.6) then becomes Legendre’s equation for y(ξ),

((1− ξ2)y′)′ + (λ− m2

1− ξ2
)y = 0 (6.7)

Note that this is a singular SL problem for a self-adjoint operator even though there are no
BCs (as shown in past homework for m = 0). No boundary conditions are needed here. The
standard result is that:

• A bounded solution exists if and only if λ = n(n+ 1) where n ∈ Z and n ≥ m

• These solutions are the ‘Legendre polynomials’5 y(ξ) = Pm
n (ξ) for n = m,m+ 1, · · ·

Converting back to the angle φ, the eigenvalues/functions for the h-problem (6.6) are

λn = n(n+ 1), h(φ) = Pm
n (cosφ), 0 ≤ m ≤ n.

Spherical harmonics: The eigenvalues λ and eigenfunctions Y (θ, φ) for

−∇2Y = λY on the surface of a sphere of radius 1

or explicitly,
1

sin2 φ
Yθθ +

1

sinφ
(sinφYφ)φ = −λY

are the spherical harmonics{
Y m
n (θ, φ) = Pm

n (cosφ)(cosmθ or sinmθ)

λmn = n(n+ 1)
, 0 ≤ m ≤ n (6.8)

For a given value of n, the eigenvalue λ = n(n + 1) has multiplicity n + 1: there are n + 1
eigenfunctions P 0

n , · · ·P n
n associated with λ.

Note that for a sphere of radius a, the result is the same except that λ = n(n+ 1)/a2.

6.3. Spherical harmonics (Laplace in a sphere). Now we use the spherical harmonics
to solve Laplace’s equation for u(r, θ, φ) in spherical coordinates. As an example, take Ω to
be a sphere of radius A and impose a Dirichlet condition at the surface:

0 =
1

r2
(r2ur)r +

1

r2 sin2 φ
uθθ +

1

r2 sinφ
(sinφuφ)φ

u(1, θ, φ) = f(θ, φ)

Look for a separated solution

u = R(r)Y (θ, φ)

5Be careful: they are only polynomials for even values of m despite the name.
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and plug into the equation to get

0 =
(r2Rr)r
R

+
∇2
sY

Y

where ∇2
s is the ‘surface’ Laplacian (6.4). It follows that

−∇2
sY = λY, Y is 2π-periodic in θ

(r2R′)′ − λR = 0.

The solutions for Y , from the previous section, are the spherical harmonics Y n
m with eigen-

values λ = n(n+ 1). The second equation is then

r2R′′ + 2rR′ − n(n+ 1)R = 0

which is a Cauchy-Euler equation with characteristic polynomial

p(α) = α(α− 1) + 2α− n(n+ 1) = α(α + 1)− n(n+ 1).

The zeros of this are n and −(n+ 1) so the general solution is

R(r) = cnr
n + dnr

−(n+1)

but by the boundedness condition, R(r) = rn. The full solution is then

u(r, θ, φ) =
∞∑
n=0

n∑
m=0

rnPm
n (cosφ)(amn cosmθ + bmn sinmθ).

Denote by 〈·, ·〉 the L2 inner product in the sphere,

〈f, g〉 =

∫
Ω

fg r2 sinφ dr dθ dφ,

and let for convenience let c and s subscripts denote the cos and sin parts of the spherical
harmonic (so Y m

n,c = P n
m(cosφ) cosmθ).

Applying the initial condition we have

f(A, θ, φ) = u(A, θ, φ) =
∞∑
n=0

n∑
m=0

An
(
amnY

m
n,c(θ, φ) + bmnY

m
n,s(θ, φ)

)
=⇒ amn =

〈f, Y m
n,c〉

An‖Y m
n,c‖2

, bmn =
〈f, Y m

n,s〉
An‖Y m

n,s‖2

since the eigenfunctions Y m
n,s’s and Y m

n,c’s are all orthogonal.

Practical note: Often, the spherical harmonics are defined in complex form:

Y m
n = Pm

n (cosφ)eimθ

and the complex coefficients of the solution

u =
∑

0≤m≤n

cmnY
m
n (θ, φ)

are computed using the complex inner product 〈f, g〉 =
∫

Ω
fg dV.
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6.4. For the heat equation. Finally, consider the heat equation in a sphere Ω of radius A
with Dirichlet boundary conditions:

ut = ∇2u x ∈ Ω, t > 0

u(A, θ, φ, t) = 0

u(r, θ, φ, 0) = f(r, θ, φ)

(6.9)

where the Laplacian is (rewriting for convenience)

∇2u =
1

r2
(r2ur)r +

1

r2 sin2 φ
uθθ +

1

r2 sinφ
(sinφuφ)φ =

1

r2
(r2ur)r +

1

r2
∇2
su

Look for a separated solution (keeping the surface part together)

u = T (t)R(r)Y (θ, φ).

Plugging this in and separating we get

T ′

T
=

1

r2
(r2R′)′ +

1

r2

∇2
sY

Y
.

After separation we get an ODE for T and eigenvalue problems for Y and R:

T ′ + λT = 0,

1

sin2 φ
Yθθ +

1

sinφ
(sinφYφ)φ = −µY, Y 2π-periodic in θ

1

r2
(r2R′)′ +

(
λ− µ

r2

)
R = 0, R(A) = 0

The chain of dependence here is
θ → φ→ r

with the first two steps covered by the spherical harmonics computed earlier:

µn = n(n+ 1), Y m
n = Pm

n (cosφ)(cos(mθ) or sin(mθ)), 0 ≤ m ≤ n

The R-equation was seen in the spherically symmetric problem; subsection 6.1).

By the transformation R = y/
√
r we get Bessel’s equation of order n+ 1/2:

y′′ +
1

r
y′ +

(
λ− (n+ 1/2)2

r2

)
y = 0.

Using the boundedness condition and the BC at r = A, the result is that

Rmnk(r) = Jn+1/2(r
√
λmnk)/

√
r, λmnk = γ2

n+1/2,k/A
2

where γν,k is the k-th positive zero of Jν . This gives separated solutions

Zmnk =
1√
r
Jn+1/2(r

√
λmnk)Y

m
n

and the full solution is then

u =
∞∑
k=1

∞∑
n=0

n∑
m=0

cmnke
−λmnktRmnk(r)P

m
n (cosφ)(amnk cos(mθ) + bmnk sin(mθ)).

The convergence rate as t → ∞ can be determined by identifying the smallest eigenvalue.
This value will be for m = 0, yielding ν = 1/2 and λ001 = γ2

1/2,1/A
2 = π2/A2.
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7. Example: heat equation on a sphere

Example on the surface of a sphere, with more explicit details on the Legendre polnyomials.

Let u(θ, φ, t) solve the heat equation on the surface of a sphere of radius 1:

ut = ∇2
su, θ ∈ [0, 2π], φ ∈ [0, π], t > 0

with initial condition
u(θ, φ, 0) = f(φ).

In general, the solution would be

u =
∞∑
n=0

n∑
m=0

e−λntPm
n (cosφ) (amn cosmθ + bmn sinmθ) .

However, the IC here has cylindrical symmetry (no θ dependence), so we expect that u
will also have this symmetry, u = u(φ, t). In particular, note that f(φ) is orthogonal to the
spherical harmonics for m > 0 (see box).

Note on orthogonality There are a few ways to view this claim. To check directly, compute
the L2 inner product on the sphere; for m ≥ 1,

〈f, Y m
n 〉 =

(∫ π

0

Pm
n (cosφ)f(φ) sinφ dφ

)(∫ 2π

0

1 · (cosmθ or sinmθ) dθ

)
= 0

by orthogonality of the θ eigenfunctions in L2[0, 2π].

That is, the inner product separates into the inner products for each 1d problem.
Since 1 is an eigenfunction for the θ problem (for m = 0), it is orthogonal to all the others
(m 6= 0) regardless of the φ part.

It follows that the solution also only contains these harmonics (m = 0), so

u =
∞∑
n=0

cne
−λntP 0

n(cosφ).

Let hn = P 0
n(cosφ) for convenience. The hn’s are orthogonal in [0, π] with weight σ = sinφ:

〈hk, hn〉σ =

∫ π

0

P 0
k (cosφ)P 0

n(cosφ) sinφ dφ = 0 for k 6= n

which is the result given by 1d Sturm-Liouville theory. By the same theory, they are also a
basis for functions of φ on [0, π]. This, again, is equivalent to using the L2 inner product on
the sphere.

Now from the initial condition,

f(φ) =
∞∑
n=0

cnhn(φ) =⇒ cn =
〈f, hn〉σ
〈hn, hn〉σ

=

∫ π
0
f(φ)P 0

n(cosφ) sinφ dφ∫ π
0
|P 0
n(cosφ)|2 dφ

.

Alternatively, one could regard 〈f, hn〉 as the L2 inner product on the sphere (the θ part just
gives a factor of 2π that cancels out).


	Topics covered
	1. Separation of variables
	2. Extending theory to 2d/3d
	2.1. Eigenfunctions
	2.2. Rayleigh quotient

	3. Squares and disks
	3.1. Heat equation in a square (simplest case)
	3.2. Heat equation in a disk (Bessel functions)
	3.3. Application: vibrating membrane

	4. Cylinders and spheres
	4.1. Heat equation: half-cylinder
	4.2. A case with negative eigenvalues

	5. Laplace in a cylinder (more modified Bessel functions)
	5.1. Review (square):
	5.2. Cylinder case 1: (r,) eigenfunctions
	5.3. Cylinder case 2: (,z) eigenfunctions

	6. Spherical harmonics
	6.1. Radial part (spherical symmetry)
	6.2. Surface of a sphere: eigenfunctions
	6.3. Spherical harmonics (Laplace in a sphere)
	6.4. For the heat equation

	7. Example: heat equation on a sphere



