Calculus for the Biological Sciences Lecture Notes – Introduction

Ahmed Kaffel, ⟨ahmed.kaffel@marquette.edu⟩

 $\begin{tabular}{ll} Department of Mathematics and Statistics \\ Marquette University \end{tabular}$

Spring2021

Outline

- Introduction
 - \bullet Why Math 1410 is needed for Biologists
 - Mathematical Models

Math 1410:Introduction

- Biology is rapidly expanding more quantitative analysis of the data
- Mathematics and computers are more important
- This course in Calculus for Biology
 - Emphasis on mathematical modeling of biological systems
 - Lecture notes show how Calculus naturally arises in biological examples
 - Begin with a biological model
 - Mathematical theory required to analyze the biological problem
- Use real or realistic examples
- Computer labs aid the more complicated models

Math 1410:Introduction — Mathematical Biology

Mathematical Biology

- Mathematical tools
 - Better qualitative and quantitative understanding of biological problems
 - Suggest alternate possibilities
 - Reject inconsistent ideas
- Biological problems
 - Often stretch mathematical techniques
 - Illustrate mathematical tools well
 - Build intuition for problem techniques

Math 1410:Introduction — Mathematical Model

So what is a mathematical model?

Math 1410:Introduction — Mathematical Model

- A mathematical model is a representation of a real system
- It is simple in design
- It exhibits the basic properties of the real system
- The model should be testable against empirical data
- Comparisons of the model to the real system should lead to improved mathematical models
- The model may suggest improved experiments

.

Introduction – Example – Diabetes mellitus

Biological Information

- Metabolic disease characterized by too much sugar in the blood and urine
- β -cells in the pancreas release insulin in response to rises in levels of glucose in the blood
- Stores energy as glycogen in the liver
- Juvenile diabetes (Type I) failure of the β -cells to release insulin to blood glucose levels an autoimmune response killing β -cells
- Adult onset diabetes (Type II) results in insulin resistance
 cells fail to use insulin properly

Diabetes mellitus – Ackerman Model

Ackerman Model for Diabetes

- Glucose Tolerance Test (GTT)
 - Subject fasts for 12 hours
 - Given a large quantity of glucose
 - Blood sampled regularly for 4-6 hours
- Mathematical Model
 - 2-Component model Blood glucose and insulin levels
 - Linear system of differential equations (Damped harmonic oscillator)
 - Simple solution with exponentials and trig functions
 - Solution fit to data
 - Parameter values indicate health of subject

Introduction

Ackerman Model for Diabetes

Glucose Tolerance Test

Introduction – Example – Predator-Prey Model

Predator-Prey Model

Thanks to Tom and Pat Leeson

Example – Predator-Prev Model

Predator-Prey Model

- ullet In the early 20^{th} century, Sir Ronald Ross used mathematical modeling to show that malaria could be eliminated without the total eradication of mosquitoes
- A. J. Lotka [1] first studied the population dynamics of predator-prey interactions
- Studies of Vito Volterra on fishing in the Adriatic Sea in 1924 showed value of a simple model for equilibrium analysis
- Predator-Prey models are often called Lotka-Volterra models
- Widely used by biologists however, significant flaws in the mathematical understanding often lead to poor conclusions
- A. J. Lotka (1912), Evolution in Discontinuous Systems, Journal of the Washington Academy of Sciences, 2, pp.2, 49, 66

Example – Predator-Prey Model

Classic Lynx-Hare Data

- Records of the Hudson Bay Company show that the pelts of the lynx and hares seemed to oscillate with a fairly regular period
- Simple ecological system, as the lynx is a very specialized predator that primarily feeds on snowshoe hares
- Books often cherry-pick to show limited data Model fails badly over the complete data set
- We'll examine this model late in the semester

Example – Predator-Prey Model

- Graph shows a clear correlation between the populations of lynx and hares
- Rapid rise in the population of the hares is followed by a rapid rise in the lynx population
- Next the hare population plummets, which is followed by lynx population plummeting