Section 1.7: Limits of Functions Using Numerical and Graphical Techniques

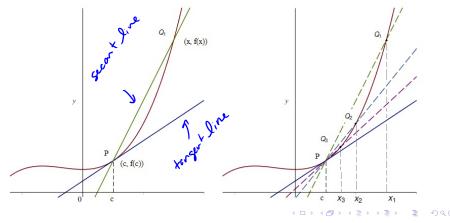
Recall: For a line y = mx + b, the slope tells us how a change in x (Δx) causes a change in y (Δy). In fact, the slope $m = \frac{\Delta y}{\Delta x}$.

For a non-line curve, y = f(x) we wanted to define *slope*. We still want slope to say something about how *y* changes if *x* changes. But we don't expect slope to be the same number for every *x*.

We want to define the slope of a tangent line.

Slope of the Tangent Line

We consider a sequence of points $Q_1 = (x_1, f(x_1))$, $Q_2 = (x_2, f(x_2))$, and so forth in such a way that the *x*-values are getting closer to *c*. Note that the resulting secant lines tend to have slopes closer to that of the tangent line.



Slope of the Tangent Line

$$m_{sec} = \frac{f_{b0} - f_{c0}}{x - c}$$

This is a limit process. We can write this as

Msu

$$m_{tan} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

MEM

(read "the limit as *x* approaches *c* of ...").

This required us to define what a limit is.

A Working Definition of a Limit

Definition: Let *f* be defined on an open interval containing the number *c* except possibly at *c*. Then

$$\lim_{x\to c}f(x)=L$$

provided the value of f(x) can be made arbitrarily close to the number *L* by taking *x* sufficiently close to *c* but not equal to *c*.

We considered the example (using a calculator)

		$\lim_{x \to 0} \frac{e^x - 1}{x} \qquad \qquad \lim_{x \to \infty} f(x) = L$:=0
X	$f(x) = \frac{e^{x}-1}{x}$		L =
-0.1	0.9516	X close to then C but C	
-0.01	0.9950		
-0.001	0.9995		
0	undefined		
0.001	1.0005	to the C that C	
0.01	1.0050	x close to C than C but greath than C	
0.1	1.0517	J vor.	

From the values, we conclude that $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

Left and Right Hand Limits

In our examples, we considered x-values to the left (less than) and to the right (greater than) c. This illustrates the notion of **one sided limits**. We have a special notation for this.

Left Hand Limit: We write

$$\lim_{x\to c^-}f(x)=L_L$$

and say the limit as x approaches c from the left of f(x) equals L_L provided we can make f(x) arbitrarily close to the number L_L by taking x sufficiently close to, but less than c.

Left and Right Hand Limits

Right Hand Limit: We write

$$\lim_{x\to c^+} f(x) = L_R$$

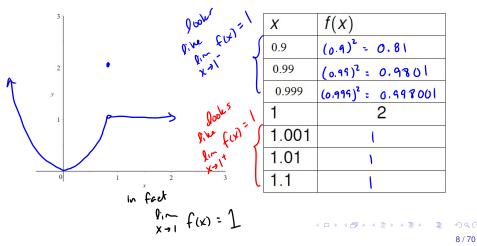
and say the limit as x approaches c from the right of f(x) equals L_R provided we can make f(x) arbitrarily close to the number L_R by taking x sufficiently close to, but greater than c.

Some other common phrases:

"from the left" is the same as "from below" "from the right" is the same as "from above."

Example

Plot the function
$$f(x) = \begin{cases} x^2, & x < 1 \\ 2, & x = 1 \\ 1, & x > 1 \end{cases}$$
 Investigate $\lim_{x \to 1} f(x)$ using the graph.



Observations

Observation 1: The limit *L* of a function f(x) as *x* approaches *c* does not depend on whether f(c) exists or what it's value may be.

Observation 2: If $\lim_{x\to c} f(x) = L$, then the number *L* is unique. That is, a function can not have two different limits as *x* approaches a single number *c*.

Observation 3: A function need not have a limit as *x* approaches *c*. If f(x) can not be made arbitrarily close to any one number *L* as *x* approaches *c*, then we say that $\lim_{x\to c} f(x)$ **does not exist** (shorthand **DNE**).

Questions

(1) True or False It is possible that both
$$\lim_{x\to 3} f(x) = 5$$
 AND $f(3) = 7$.
 $f(c)$ doesn't have to effect the first.

(2) **True or False** It is possible that both
$$\lim_{x\to 3} f(x) = 5$$
 AND $\lim_{x\to 3} f(x) = 7$.