Section 1.8: Limits of Functions Using Properties of Limits
We recall Theorem: If f(x) = A where Ais a constant, then for any
real number ¢

lim f(x) =1lim A=A

X—C X—C

Theorem: If f(x) = x, then for any real number ¢

lim f(x) = limx=c
X—C X—C
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Limit Law Theorems
Suppose
lim f(x) =L, limg(x)=M, andkis constant.

X—C X—C

Theorem: (Sums) )I(iLnC(f(x)Jrg(x)) =L+M
Theorem: (Differences) )I(igﬂc(f(x)—g(x)) =L-M
Theorem: (Constant Multiples) )I('an kf(x) = kL
Theorem: (Products) )I(@C f(x)g(x) = LM

fx) L

Theorem: (Quotient)  lim a0 = M

if M £ 0
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Limit Law Theorems

Theorem: (Power) )I(iLnC(f(x))” =L"

Note in particular that this tells us that )I(iipcx” =c".
Theorem: (Root) J@C Y/f(x) = VL (if this is defined)

Theorem: If R(x) is a rational function, and c is in the domain of R,
then

lim R(x) = R(c).

X—C

Note that this includes all polynomials, and recall that the domain of
any polynomial is all reals.
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Observations

In limit taking, the form " %” sometimes appears. This is called an
indeterminate form. Standard strategies are

(1) Try to factor the numerator and denominator to see if a common
factor—(x — c)—can be cancelled.

(2) If dealing with roots, try rationalizing to reveal a common factor.

The form
, honzero constant,,

0

is not indeterminate. It is undefined. When it appears, the limit doesn’t
exist.
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Example
Evaluate if possible lim
X—2
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Question

im x2—2x+1 i~ M
X—1 X2 — 1 X9\ (x -1 ) (x4
(a) DNE o N T R Y
Ko | Xt | Tl 2°0

(c) may exist, but can’t be determined without a graph
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Example
Let f(x) = x® + 2x. Determine the difference quotient

f(x + h) — f(x)
h

for h#0.

Next, take the limit as h — 0 of this difference quotient.
Pop= X +2x
Flxan) = (x+h)3+ 26cPn) = () Cerl) + Z(cth) S
2 %3 3dh ¢ W o 2x+2h Qr“}ﬁ‘)\
l
- Por ek +30F 4 W 2ca 2 = (0F+2%)

h h
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Section 1.3: Continuity

We have seen that their may or may not be a relationship between the
quantities
lim f(x) and f(c).

X—C

One or the other (or both) may fail to exist. And even if both exist, they
need not be equivalent.

We’ve also seen that for polynomials at least, that the limit at a point is

the same as the function value at that point. Here, we explore this
property that polynomials (and lots of other functions, but not all) share.
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Definition: Continuity at a Point

Definition: A function f is continuous at a number c if
lim f(x) = f(c).

X—C

Note that three properties are contained in this statement:
(1) f(c) is defined (i.e. c is in the domain of f),

2 )I(@C f(x) exists, and

(3) the limit actually equals the function value.

If a function f is not continuous at ¢, we may say that f is
discontinuous atc
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Polynomials and Rational Functions

In the previous section, we saw that:

If P is any polynomial and c is any real number, then )I(Ian P(x) = P(c),
and

If R is any rational function and c is any number in the domain of R,
then )I(imc R(x) = R(c).
—

Conclusion Theorem: Every rational function' is continuous at each
number in its domain.

"Note that polynomials can be lumped in to the set of all.rational functions.
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Examples: Determine where each function is
discontinuous.
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Question

Determine whether f is continuous at 1 where f(x) = { x—17

(a) No because f(1) is not defined.
Yes because all three conditions hold.

(c) No because lim f(x) doesn’t exist.
X—1

(d) No because f is piecewise defined.

e P
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January 26, 2017 18 /59



Removable and Jump Discontinuities

Definition: Let f be defined on an open interval containing ¢ except
possibly at c. If )I('an f(x) exists, but f is discontinuous at c, then f has a
removable discontinuity at c.

T‘I\.L fwa\‘.m cow lx_ rCéQ('\MA aL "'\\L ()0\’\'Q c Ss
thot  Hha regudk WS Coatimuans .

Definition: If lim f(x) = L; and lim f(x) = L, where Ly # L5 (i.e.
X—C~ X—ct

both one sided limits exist but are different), then f has a jump
discontinuity at c.
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Removable and Jump Discontinuities
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Figure: Example of a removable (left) discontinuity and a jump (right)

discontinuity.
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One Sided Continuity Example:

Consider the function f(x) = v9 — x2. Plot a rough sketch of the graph
of f, and determine its domain.
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f(x) =v9 — x?

Note that f is continuous on —3 < x < 3. What can be said about

lim 7(x) or lim f(x)?
x——3 x—3
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Continuity From the Left & Right

Definition: Let a function f be defined on an interval [c, b). Then f is
continuous from the right at c if
lim f(x) = f(c).
Xx—ct

Let f be defined on an interval (a, c]. Then f is continuous from the left

at cif
lim f(x) = f(c).

X—C™
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Example: f(x) = v9 — x?

Compare f(—3) and Iim3+ f(x). Is f continuous from the right at —37?
X——

= [q-cor -Ja-a cloo=

b~ foo = ;0‘\ - a- ’yl“(’”: =©

Ko -3% T xo-3

s. £ s ebimoonr fron A 5y

C -3.

January 26, 2017

25/59



