Math 3100

Section 1.7: Linear Independence

We already know that a homogeneous equation Ax = 0 can be
thought of as an equation in the column vectors of the matrix A
=[ajap --- ag] as

Xj@1 + Xo@o + - - - Xpan, = 0.

And, we know that at least one solution (the trivial one
X1 = X2 = --- = Xp = 0) always exists.

Whether or not there is a nontrivial solution gives us a way to
characterize the vectors ay, ..., an.
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Definition: Linear Dependence/Independence

An indexed set of vectors {v1,V»,...,Vvp} in R” is said to be linearly
independent if the vector equation

X{Vq + XoV2 + -+ - XpVp = 0

has only the trivial solution.

The set {vq,Vz,...,Vp} is said to be linearly dependent if there exists
a set of weights ¢y, ¢y, .. ., Cp at least one of which is nonzero such that

C1V1 + CoVo + -+ - CpVp = 0.

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation ¢1Vy + CoV2 + - - - CpVp = 0, with at least one ¢; # 0, is
called a linear dependence relation.

2/25



Theorem on Linear Independence

Theorem: The columns of a matrix A are linearly independent if and
only if the homogeneous equation Ax = 0 has only the trivial solution.
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Example
Determine if the set is linearly dependent or linearly independent.
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Example
Determine if the set is linearly dependent or linearly independent.
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Example

Determine if the set of vectors is linearly dependent or independent. If

dependent, find a linear dependence relation.
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Theorem

An indexed set of two or more vectors is linearly dependent if and only

if at least one vector in the set is a linear combination of the others in
the set.

Example: Let u and v be any nonzero vectors in R3. Show that if w is

any vector in Span{u, v}, then the set {u,v,w} is linearly dependent.
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Caveat!

A set may be linearly dependent even if all proper subsets are linearly
independent. For example, consider

1 1 0
vi=| 0|, vo=|1|, and vz=1| 1 |.
0 0 0

Each set {vq,Vv2}, {vq,v3}, and {vo,v3} is linearly independent. (You
can easily verify this.)

However,
V3 =Vo—Vy i.e. Vi{—Vo+Vv3=0,

so the set {v{, Vs, Vv3} is linearly dependent.
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Two More Theorems

Theorem: If a set contains more vectors than there are entries in each
vector, then the set is linearly dependent. That is, if {v{,v2,...,Vp} is
a set of vector in R”, and p > n, then the set is linearly dependent.

More Veches Hron oadres Yw 2ol Velor

Theorem: Any set of vectors that contains the zero vector is linearly
dependent.
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Determine if the set is linearly dependent or linearly
independent
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Determine if the set is linearly dependent or linearly
independent
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