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Rayleigh Quotient Trial Functions

Proof

Rayleigh Quotient

The Sturm-Liouville Differential Equation problem:

2 (1) 52) + atro 2ot =0,

Multiply by ¢ and integrate:

[[%(mjﬁ)m )ﬂdzm/ o)z = 0.

The eigenvalue satisfies:

- /ab [%i (p@jf) +q<x)¢2] da

B fj $20(x)dx
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Rayleigh Quotient Trial Functions

Proof

Rayleigh Quotient

Integrate the eigenvalue equation by parts:

bt (do)’ 2
— | - d
a+/a p (m) q(x)¢”| d
fab d%0(x)dx
which is the Rayleigh Quotient.

— pp2e

A=

)

The eigenvalues are nonnegative (A > 0), if
b
Q<0

These conditions commonly hold for Physical problems, where
q <0 or energy-absorbing.
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Rayleigh Quotient

Trial Functions
Proof

Minimization Principle

The eigenvalue satisfies:

Theorem (Minimization Principle)

The minimum value of the Rayleigh quotient for all continuous
functions satisfying the BCs (not necessarily the differential equation)

1s the lowest eigenvalue:
b 2
b du
e [ o (22) -aor] o
a
A = min

u f: u2o(z)dz

)

This minimum occurs at u = ¢1, the lowest eigenfunction.
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Trial functions: Cannot test all continuous functions satisfying
the BCs, but select trial functions, ur,

b b duT 2
— pur GE, +/ p (dx) - CI(JJ)UQT] dx

f; uzo(x)dr

A < RQur] =

)

This provides an upper bound for \p.

Example: Consider the Sturm-Liouville problem:
¢+ o =0, #(0)=0 and ¢(1)=0.

This example has an eigenvalue, A\; = w2, with an associated
eigenfunction, ¢; = sin(nzx).
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Example: We compute the Rayleigh quotient with 3 test
functions, uy (), us(z), and ug(x):

Tent function:

x, < %, 1r 1

Uy (.T) = ] ug(z)
l—z, z2>3. 08 i
Quadratic function: Sog ,
us(z) =z — 22 04 e 1

us(x)
Eigenfunction: 02 1
uz(r) = sin(mzx). % 02 04 06 08 1

We insert each of these functions into the Rayleigh quotient.
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Rayleigh Quotient Trial Functions

Proof

Trial functions

Example: The Rayleigh quotient with

satisfies:

1 2
du
—wdpls [ () @

A < RQlui]| = ,
' = flu%dx
1/2
B Jo dw""fl/de
fl/2x2dm+f1/2 (1 —x)? 2dy
- 1, 1 — :
21T 21
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Rayleigh Quotient Trial Functions
Proof

Trial functions

Example: The Rayleigh quotient with uy(z) = 2 — 22 satisfies:

1 2
- ug%ﬁ)%—/ ((fiu;) dx
A1 < RQ[“Q] = 1 (; >
Jo u3dx
f01(1—2x)2dx _1-243 10
Jolw=a?de 5= 3t3

The Rayleigh quotient with uz(z) = sin(7z) satisfies:

1 2
d
_ug%jﬁ/ <d“3> dz
x
M < RQus] = ™ ’
Jo u3dx
1 2 21
W2M7 = 2 = 72 ~ 9.8696.
[, sin®(rz)da 2
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Rayleigh Quotient Trial Functions

Proof

Rayleigh quotient

Proof: The proof of the Rayleigh quotient generally uses the
Calculus of Variations, which cannot be developed here.

Our proof is based on eigenfunction expansion.

We assume u is a continuous function satisfying homogeneous
BCs

Assuming homogeneous BC's gives the equivalent form for the
Rayleigh quotient:

b
- Lyt

)

where L is the Sturm-Liouville operator.

We take u expanded by the eigenfunctions
o0

u(z) = Zanqbn(x).
n=1



Rayleigh Quotient Trial Functions

Proof

Rayleigh quotient

Proof (cont): Since L is a linear operator, we expect

=D anL($n()) = =D anrno ()

where later we show the interchange of the summation and operator
when v is continuous and satisfies homogeneous BC's of the
etgenfunctions.

With different dummy summations, the Rayleigh quotient becomes

LS 5% amtn A n ) da
ST Y amandmno) da

We interchange the summation and integration and use
orthogonality to give

RQu] =

2
S L aZ\, f ¢rodx
s .
Zn:l a/’%L fa ¢,,2,L0'd$

RQu] =




Rayleigh Quotient Trial Functions

Proof

Rayleigh quotient

Proof: The previous equation gives the exact expression for the
Rayleigh quotient in terms of the generalized Fourier coefficients
an of u. If A1 is the lowest eigenwvalue, then we obtain:

LY nf ¢2odx

= A1.
> 1a2f d2odx

RQ[u] >

Note that equality holds only if a,, = 0 for n > 1, which gives the
minimization result that RQ[u] = A; for u = a1¢;.

The proof is easily extended to show that if a; = 0 for the
eigenfunction expansion of u, then RQ[u] = Ao when a,, = 0 for
n > 2 and u = asps.

Thus, the minimum value for all continuous functions u that are
orthogonal to the lowest eigenfunction and satisfy the
homogeneous BCs is the next-to-lowest eigenvalue.
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Eigenvalue Equation
Robin Boundary Conditions Ze nd Negative Eigenvalue
Summary

Robin Boundary Conditions

Heat Equation with BC of Third Kind: Consider the PDE

ou k@
ot 0x?’
with the BCs
ou
u(0,t) =0 and %(L,t) = —hu(L,t).

If h > 0, then this is a physical problem and the right endpoint
represents Newton’s law of cooling with an environmental
temperature of 0°.

Note: The problem solving below can be done equally well with the
String Equation, u; = c?ugs, where the right BC represents a
restoring force for A > 0 and is called an elastic BC.

If h < 0, either problem is not physical, as the heat equation would

be having heat constantly pumped into the rod, and the string
equation has a destabilizing force on the right end.

Sturm-Liouville Problems — (13/45)



Robin Boundary Conditions

Robin Boundary Conditions

Separation of Variables: Let

u(z,t) = G(t)o(x),

then as before, the time dependent ODEs are

Heat Flow: ﬁ = —)\kG,
dt
2
Vibrating String: CfiT? = -G

The Sturm-Liouville problem becomes:

d2¢ )
T3HA=0 9(0)=0 and ¢(L)+he(L) =0,

where h > 0 is physical and h < 0 is nonphysical.
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

Positive eigenvalues: Let A = o? > 0, then

o(x) = c¢1 cos(ax) + cosin(ax).

The BC, ¢(0) = 0, implies ¢; = 0.

The other BC, ¢'(L) + h¢(L) = 0, implies that
ca (acos(aL) + hsin(al)) =0 or
o alL
L = —— = ——
tan(al) = =3 = =37

This is a transcendental equation in «, which cannot be solved
exactly.
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Eigenvalue Equation
Robin Boundary Conditions Ze and Negative Eigenvalue
Summary

Robin Boundary Conditions

Eigenvalue equation is given by

tan(al) = —Z—é, h > 0.

This equation can only be
solved numerically, such as
Maple or MatLab

0 7= tan(aL)
This sketch is for the
physical case, h > 0. .
Visually, can see that —5
asymptotically:

1
ap L~ (n — 2) m, 1

0 /2 s 32 2n  5m/2

as n — 0o
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http://jmahaffy.sdsu.edu/courses/s17/math531/beamer/maple/robin_ev.pdf
http://jmahaffy.sdsu.edu/courses/s17/math531/beamer/maple/fourier_rob.m

Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

Again the eigenvalue equation is given by

L
tan(al) = —Z—L, —1<hL <O.

This sketch is for the
nonphysical case,
—1 < hL <0,

which is 1 of 3 cases.

There is a lowest
etgenvalue, A\ < 5.

Asymptotically:

1
ap L~ (n— 2) m,

as n — o0
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

There are two additional cases for the nonphysical problem, where

L
tan(al) = —Z—L, hL =-1 or hL < -—1.

In both cases, the first positive eigenvalue satisfies 7 < A < 37”

2= tan(al) 2= tan(al)

0 /2 m 3m/2 2m 5m/2 0 /2 m 3m/2  2m 512
h=-1 h< -1
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

The nonphysical problem with hL = —1 has its first positive
eigenvalue, ol ~ 4.49341 (\ = o?).

Zero E.V.: Consider A = 0, which gives the solution ¢(x) = c1z + ¢2
The BC ¢(0) = c2 = 0.
The other BC

¢'(L) + h¢(L) = ex(1+ hL) = 0,

so if hL = —1, then A\g = 0 is an etgenvalue with associated
etgenfunction,

do(x) = .
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

Negative E.V.: We don’t expect negative eigenvalues for physical
problems, as it produces an exponentially growing ¢-solution.

Suppose A = —a? < 0, so ¢"" — a? = 0, which has the general solution:

@(x) = c1 cosh(ax) + co sinh(ax).

The BC ¢(0) = ¢; = 0.
The remaining BC gives:

¢ (acosh(al) + hsinh(alL)) =0,

which is nontrivial if

L
tanh(aL) = f% = fZ—L,

which is another transcendental equation.
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions

There are 4 cases to consider solving

al
tanh(al) = ——.

Physical case (hL > 0) B
has a negative slope, so 12y Q ]
only intersects origin. 1} \)V »~ ]

by \)// = tanh(aL)
When —1 < hL < 0, only 7” x = )
intersects origin. w06l |
When hL = —1, line is 04l S 1
t t to origin \)L
angen gin. o A |
When hL < —1, there o .
is a unique positive NN @ |
eigen'val'll,e -0'20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem

Heat Equation: Consider the PDE

ou_ 0%
ot oz’
with the BCs
u(0,t) =0 and %(L,t) = —hu(L,t), h>0,
T
and ICs
u(z,0) = f(x).

The Sturm-Liouville problem had eigenvalues, \, = a2, where
apn, n=1,2,...solves

a,L
t L)=———F
an(a, L) WL
and corresponding eigenfunctions

¢dn = sin(a,x).
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Robin Boundary Conditions

Robin Boundary Conditions - Physical Problem

Heat Equation (cont): The time dependent solution is

Gp(t) = e Frnt = e kant

With the product solution, u,(z,t) = Gy (t)¢n(x), the superposition
principle gives:

ZA e~ sm(anx)

an L
hL

where «,, satisfies tan(a, L) = —

The generalized Fourier coefficients satisfy:

fo ) sin(a,x)dx

A, = L
Jo sm2 (apz)dz
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Eigenvalue Equa
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem

Heat Equation (cont): However, with sin(a, L) = —9= cos(a, L)

/L sin? (o, z)dr = 200, L — sin(20y, L) _ Lh+ cos2(anL).
0 4y, 2h

Thus, the generalized Fourier coefficients satisfy:

Qh/ f(z) sin(apz)dz
~ Lh+cos?(a,L)

and the temperature in the rod is given by

ZA e %n sm(anx)

Sturm-Liouville Problems — (24/45)



Eigenvalue
Robin Boundary Conditions Zero and Ne e Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem
Take L =10, k = 1, and h = 0.5 and suppose f(z) = 100 for
0 <z < 10. The Fourier coefficients are readily found:

~ 200Ah (1 — cos(a, L))
" a, (Lh + cos2(a, L))’

Solution with 100 terms.

u(z.1)
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Robin Boundary Conditions

Robin Boundary Conditions - Physical Problem

% Solutions to the heat flow equation
% on one-dimensional rod length L
% Right end with Robin Condition
format compact;
L = 10;
Temp = 100;
rod, initially
7 tfin = 20;
8 k = 1;
9 h = 0.5;
10 NptsX=151; number of x pts
11 NptsT=151; number of t pts
12 Nf=100; % number of Fourier terms
13 x=linspace (0, L,NptsX);
14 t=linspace(0,tfin, NptsT);
15 [X,T]=meshgrid(x,t);
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Eigenvalue Equation
Robin Boundary Conditions Zero and Ne ve Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem

17 figure (1)

18 clf

19 a = zeros(l,Nf);

20 b = zeros(1,Nf);

21 U = zeros (NptsT,NptsX) ;

22 z0 = 2.7;
23 for n=1:Nf

24 z0 = fsolve (Q(x) h*xL*sin(x)+x*cos (x),z0);

25 a(n) = z0/L;

26 b (n)=(2xTempxh/ (a (n) x (Lxh+ (cos (a(n)*L)) "2))) ...

27 * (1l-cos (a(n)*L)); % Fourier coefficients

28 Un=Db (n) *exp (=k* (a(n)) "2*xT) .*sin(a(n) *X) ; %
Temperature (n)

29 U=U+Un;

30 z0 = z0 + pi;

31 end
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Eigenvalue Equation
Robin Boundary Conditions Zero and N ve Eigenvalue
Summary

Robin Boundary Conditions - Physical Problem

32 set(gca, 'FontSize', [12]);

33 surf(X,T,U);

34 shading interp

35 colormap (jet)

36 xlabel ('S$xS$','Fontsize',12, "interpreter', 'latex');

37 ylabel ('S$ts$', 'Fontsize',12, "interpreter', 'latex');

38 zlabel('Su(x,t)S$', 'Fontsize',12, '"interpreter', 'latex')
39 axis tight

40 view([141 10])
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Eigenvalue Equation
Robin Boundary Conditions ero and ative Eigenvalue

Fourier Series - BC 3™ Kind

The solution of the Heat Equation with Robin BCs used the Fourier expansion
of f(x) = 100 with the eigenfunctions, ¢, = sin(anx). Below are graphs showing
the eigenfunction expansion.

150

100

50

fz)

-100
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Robin Boundary Conditions

Fourier Series - BC 3™ Kind

1 % Fourier series

2 format compact;

3 L = 10; % width of plate

4 Temp = 100; % Constant temperature of
rod, initially

5 h = 0.5; % Newton cooling constant

6 NptsX=500; % number of x pts

7 Nf=100; % number of Fourier terms

8 X=linspace (0, L,NptsX);

9 a = zeros(1l,Nf);

10 b = zeros(l,Nf);

11 U = zeros(l,NptsX);

12 Ul = zeros(l,NptsX);

13 U2 = zeros(l,NptsX);

14 U3 = zeros(l,NptsX);

15 z0 = 2.7;
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Eigenvalue Equation
Robin Boundary Conditions Zero and Ne ve Eigenvalue
Summary

Fourier Series - BC 3™ Kind

16 for n=1:Nf

17 z0 = fsolve (@ (x) h*xL*xsin(x)+x*cos (x),z0);

18 a(n) = z0/L;

19 b (n)=(2+xTempxh/ (a (n) * (Lxh+ (cos(a(n)*L)) "2))) ...
20 * (1l-cos (a (n)*L)), % Fourier coefficients
21 Un = b(n)*sin(a(n)*X); % Temperature (n)

22 U = U+Un;

23 if (n < 5)

24 Ul = Ul+Un;

25 end

26 if (n < 10)

27 U2 = U2+Un;

28 end

29 if (n < 20)

30 U3 = U3+Un;

31 end

32 z0 = z0 + pi;

33 end
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Eigenvalue Equation
Robin Boundary Conditions Zero and Ne ve Eigenvalue
Summary

Fourier Series - BC 3™ Kind

34 plot(X,Ul, 'm-', 'LineWidth',1.5);
35 hold on

36 plot(X,U2,'r-','LinewWidth',1.5);

37 plot(X,U3,'-','Color', [0 0.5 0], 'LineWidth',1.5);
38 plot(X,U, 'b-','LineWidth',1.5);

39 plot ([0 10],[100 100], 'k-", 'Linewidth',1.5);

40 grid;

41 legend('n = 5','n = 10','n = 20','n = 100", ...

42 '"location', 'southeast');

43 x1im ([0 1071);

44 ylim ([0 1207);

45 xlabel ('$x$', 'Fontsize',12, 'interpreter', 'latex');

46 ylabel ('S$Sf(x)$','Fontsize',12, "interpreter','latex');
47 set (gca, 'Fontsize', [12]);
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Eigenvalue Equation
Robin Boundary Conditions Zero and Negative Eigenvalue
Summary

Robin Boundary Conditions - Non-Physical Problem

Heat Equation with Non-Physical BCs satisfies:
PDE: u; = kugy,, BC: u(0,t) =0,

IC: u(z,0) = f(x), ug(L,t) = —hu(L,t) with h <0.

For —1 < h < 0, the Sturm-Liouville problem is the same as the
physical problem with eigenvalues, )\, = a2, where
ap, n=1,2, ... solves tan(a, L) = —O‘h"LL, and corresponding

etgenfunctions are

¢dn = sin(a,x).

The solution satisfies:

o0

u(z,t) = Z Apekent sin(a,x),

n=1

with the same generalized Fourier coefficients as for the physical
problem.
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Eigenvalue Equation
Robin Boundary Conditions Zero and Ne ve Eigenvalue
Summary

Robin Boundary Conditions - Non-Physical Problem

Heat Equation with Non-Physical BCs and h = —1 has A\g = 0 with the
eigenfunction ¢o(x) = z, so the solution becomes:

o0
u(z,t) = Aox + Z Anefko‘gbt sin(anx),

n=1
with A, as before for n =1,2,... and

3 /OL zf(x)dz.

A= 15

If h < =1 and B; solves tanh(81L) = f/B—hl, then there is the additional
eigenfunction ¢_1(z) = sinh(B1z), so the solution becomes:

oo
u(z,t) = A,lekﬁgt sinh(B1z) + Z Ane_’mirt sin(anz),
n=1

with A, as before for n = 1,2,... and

2B fOL f(z) sinh(B1x)dz
"~ cosh(B1L)sinh(B1L) — B1L°
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Eigenvalue E
Zero and Neg
Summary

Robin Boundary Conditions tive Eigenvalue

Robin Boundary Conditions - Physical Problem

Heat Equation with h = 0 (insulated right end) satisfies:
PDE: u; = kugs, BC: u(0,t) =0,

IC: u(x,0) = f(x), ug(L,t) = 0.

This problem is solved in the normal manner as before, and it is easy

_1)2,2
to see that the eigenvalues, )\, = %, with corresponding
eigenfunctions are

The solution satisfies:

u(z,t) = Z Ape FAntsin ((n ~3) 7m:> )
n=1

with similar Fourier coefficients to our original Heat problem.
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Approximation Broperties

Eigenvalue Asymptotic Behavior

Examine the Sturm-Liouville eigenvalue problem in the form

i [P0+ o) +atwls =0,

The eigenvalues generally must be computed numerically.

There is a number of people working on details of these problems, so
the scope of this problem is beyond this course. (See Mark Dunster)

Interpret this problem like a spring-mass problem for large A\, where
x is time and ¢ is position.

@ p(x) acts like the mass.
o For )\ large, —Ao(x)¢ acts like a restoring force

@ This solution rapidly oscillates
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprevdmation PropesiEs

Eigenvalue Asymptotic Behavior

With large A, the solution oscillates rapidly over a few periods, so can
approximate the coefficients as constants.

Thus, the DE is approximated near any point xg by
d2
p(xO)Txf + Ao(z9)d = 0,
which is like a standard spring-mass problem.

It follows that the frequency is approximated by
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprevdmation PropesiEs

Eigenvalue Asymptotic Behavior

The amplitude and frequency are slow varying, so

¢(x) = A(z) cos(¥ ().

or (op)~1/1

(X(“f/p)”2

With Taylor series, we write

d(z) = A(x) cos[t(zo) + ¢ (x0)(x — z0) + -],

so the local frequency is ' (xg), where

P (o) = A\V/? (a(xo)>1/2.

p(zo)
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Apprevdmation PropesiEs

Eigenvalue Asymptotic Behavior

Integrating 1’ (zo) gives the correct phase

v =72 [ (%)”2 o,

It can be shown (beyond this class) that the independent solutions are

approximated for large A\ by
= 1/2
iiA1/2/ (5) dx():| .
p

If (0) = 0, then the eigenfunction can be approximated by

o(z) = (Up)71/4 sin <)\1/2 /z (%)1/2 dx()) + ...

If the second BC is ¢(L) = 0, then

¢(x) ~ (op)~ '/ eap

L 1/2
AL/2 7 dxg ~ nmw or A S L —
o P 1/2
fO (p) J}o
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Approximation Broperties

Eigenvalue Asymptotic Behavior

Example: Consider the eigenvalue problem
i
dz?

with BCs ¢(0) =0 and ¢(1) = 0.

Our approximation gives:

+ M1+ )¢ =0,

A - { nm :|2 _ 'n27'|'2 _ n27T2
~ 1 1/2 - 172~ 4(93/2 _1)2°
Jo 1+ z0)'/2dzo [%(1 +x0)3/2|0] 5(2 1)

n Numerical Formula
1 6.5484 6.6424

2 26.4649 26.5697
3 59.6742 59.7819
4 106.1700 106.2789
5 165.9513 165.0607
6 239.0177 239.1275
7 325.3691 325.4790
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Approximation Properties

Approximation Properties

We claimed that any piecewise smooth function, f(x), can be
represented by the generalized Fourier series of eigenfunctions:

fz) ~ Z andn ()

By orthogonality with weight o(x) of the eigenfunctions

_ f; f(l’)d)n(x)a(x)dx
P 62 (2)o () dx

Qnp

Suppose we use a finite expansion,

M
F@) ~ Y anbu(a).
n=1

How do we choose «,, to obtain the best approximation?
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Eigenvalue Asymptotic Behavior
Approximation Properties

Other Properties - Sturm-Liouville

Approximation Properties

How do we define the “best approximation?”

Definition (Mean-Square Deviation)

The standard measure of Error is the mean-square deviation,
which is given by:

2

b M
E = / lf(:c)Zangbn(w)] o(z)dz.

This deviation uses the weighting function, o(z).

It penalizes heavily for a large deviation on a small interval.
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Approximation Properties

Approximation Properties

The best approximation solves the system:

oE
3041'

=0, i=1,2,..M.

or

b M
0= gi = _2/(1 [f(x) - ;an%(m)] ¢i(x)o(z)dz, i=1,2, ..., M.

This would be complicated, except that we have mutual
orthogonality of the ¢;(x)’s, so

/fsbz /¢2

Solving this system for «; gives the «; as the generalized Fourier
coefficients.
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Eigenvalue Asymptotic Behavior

Other Properties - Sturm-Liouville Appredhmation PropeHiEs

Approximation Properties

An alternate proof of this result shows that the minimum error is:

b M b
FE = / fPodx — Zai/ qfladx.
a n=1 a

This equation shows that as M increases, the error decreases.

Definition (Bessel’s Inequality)
Since E > 0,

b M b
/ fPodx > Z ai/ P2 odz.
a =il a

More importantly, any Sturm-Liouville eigenvalue problem has
an eigenfunction expansion of f(x), which converges in the mean

to f(x).
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Approximation Properties

The convergence in mean implies that

lim E =0,

M—o0

which gives the following:

Definition (Parseval’s Equality)

Since E > 0,

b o0 b
/ fPodr = Z ai/ P2odz.
a =il a

This inequality is a generalization of the Pythagorean theorem,
which important in showing completeness.

Sturm-Liouville Problems — (45/45)



	Rayleigh Quotient
	Trial Functions
	Proof

	Robin Boundary Conditions
	Eigenvalue Equation
	Zero and Negative Eigenvalue
	Summary

	Other Properties - Sturm-Liouville
	Eigenvalue Asymptotic Behavior
	Approximation Properties




