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Vibrating Circular Membrane Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane

Vibrating Circular Membrane: The PDE satisfies:

8%u 5 (10 ou 4 1 Bzu)
— =" -= (r— - ).
ot? r Or or r2 002

BC: Homogeneous
Dirichlet BC:

u(a,d,t) =0,

A A
Implicit BCs: 02 ‘
Periodic in 6 (2 BCs) ' ‘
and Bounded 0

IC: Specity initial position: 0.2 ~a

u(r,0,0) = a(r,0), 0.4 . v B v e

Specify initial velocity: L 10

ue(r,0,0) = B(r,0). 5~
Solve with Separation
of Variables.
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Vibrating Circular Membrane Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane - Separation

Consider the Vibrating Circular Membrane equation:
0%u 510 ou 1 0%u
— = - |r=)+=5==]-
ot2 ror \' or r2 002

Assume separation of variables with u(r,8,t) = h(t)¢(r)g(0), then
the PDE becomes:

hg d d 1
h'pg = 2 <g (Tc;?) + r2h¢g”> )

r dr

Extracting the t-dependent part of the equation gives:

o1 d [ do\ 1,
L -
cch  rodr (Tdr> + r2gg
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Vibrating Circular Membrane Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane - Separation

The time-dependent ODE is:

B+ A Ah = 0.

The spatial equation can be separated:

9”_ rd d¢ 2 _
g (bdr(rdr Are = —p.

The #-dependent part satisfies the implicit periodic BCs, so
9" +pg=0,  g(-m)=g(r) and g'(-7)=g'(7).

The r-dependent part has an boundedness BC at r = 0 and
satisfies:
do

d 2
T <rdr> + (Ar® =)o =0, ¢(a) = 0.



Vibrating Circular Membrane Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane - Sturm-Liouville

Two Sturm-Liouville problems for ¢(0) and ¢(r).

The 1% Sturm-Liouville problem in 8 is:
9" +png=0,  g(-m)=g(r) and g'(-m)=g (7).

This has been solved before and has eigenvalues:
um:mQ, m=20,1,2,...

with corresponding eigenfunctions:

go(0) = ao and gm(0) = a, cos(mb) + by, sin(mb).
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Vibrating Circular Membrane Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane - Sturm-Liouville

The 2% Sturm-Liouville problem in r is:
d do m?
% (’I”dr) + (AT—T>¢—O,

¢(a) =0 and |¢(0)] bounded.

with the BCs

This is a singular SL problem with p(r) =r, o(r) = r, and
alr) ==

@ The BC at » = 0 is not the correct form.

© p(r) and o(r) are zero at r = 0, hence not positive.

© ¢(r) = 0o as r — 0, so is not continuous at r =0
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Vibrating Circular Membrane Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane - Sturm-Liouville

The singular Sturm-Liouville problem:

a4 (T@) + (A,« _ "ﬁ) $=0, &) =0 and |4(0)| bounded.
dr r

still has the properties of the regular Sturm-Liouville problem.
Significantly,

© There are infinitely many eigenvalues, Ay, for m =0,1,2, ...
and n =1,2,... with A\, > 0.

© The eigenvalues are unbounded for each m as n — co.
© There are corresponding eigenfunctions, ¢, (r), for each Ayp,.

@ For each fixed m, the etgenfunctions are orthogonal with
respect to the weighting function o = r, so

/a ¢nm(r)¢km(T)T dr = O, n 7& k.
0
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Series Solution
Bessel’s Differential Equation Graphs of Jg(z) and Yp(z)
Properties of Bessel’s Functions

Bessel’s Differential Equation

We can rewrite the singular Sturm-Liouville problem as

d*¢ d¢o
2 2 2
rdrz—&—rdr—&—()\r m?)¢ = 0.

Make the change of variables z = v/Ar, then

d?¢ do
2 2 2y, _
deQJrzder(z —m*)¢ = 0.

This equation has a regular singular point at z = 0, so can be
solved by the Method of Frobenius, where we try solutions of the

form:
d)(z) = Z CLnZT+n’ d)l(z) _ Z(r+n)anzr+"_l,
n=0 n=0
¢"(z) = D (r+n)(r+n-—1an" "2
n=0
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Series Solution
Bessel’s Differential Equation Graphs of Jg(z) and Yp(z)
Properties of Bessel’s Functions

Bessel’s Differential Equation

When the power series, ¢(z) = >~ janz"t", is substituted into

2 2
— tz—+ " —-—m)p=0
we obtain:
Z(r +n)(r+n—Danz"t" + Z (r4+mn)apz""
n=0 n=0
_m2 Z anzr+n + Z anzr+n+2 - o
n=0 n=0

For n = 0, we find that
ap(r* —m?)z" =0,

which gives the indicial equation and shows that r = +m.
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Series Solution

Bessel’s Differential Equation Graphs of Jy(z

) and Yy (z)
Properties of Bessel’s

Functions

Bessel’s Differential Equation

Suppose m = 0, so r; o = 0. Shifting the index on the last term, we
find the series above becomes:

Z (n—1)anz" —i—Znanz +Zan 22"

n=0
o0 oo
E n2anz" + E Ap_22z" =0
n=0 n=2

From this we obtain that aq is arbitrary and a; = 0.
Also, we find the recurrence relation:
Ap—2

n2

Ay = —

It follows that

ago ao

ag = —— ay =
227 22947

(=1)*ag
22 (1)
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Series Solution

Bessel’s Differential Equation Graphs of Jy(z)
Properties of Bessel’s Functions

Bessel’s Differential Equation

With ap = 1, the series solution gives the Bessel function of the first kind of

order zero:
Yk 22k

oo
= Z z > 0.

By the Method of Frobenius, since the value of » = 0 is a repeated root, the
second solution has the form

Yo (z) = c¢Jo(2) In(z) + Z bnz™.

With some work, it can be shown that Bessel function of the second kind of
order zero is

e k+1H
Yo(z) = Jo(2) In(z) + Zikz,

— 22k k")2
where 1 1 "
H, == il
+ 2 + ...+ T
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Ser Solution
Bessel’s Differential Equation Graphs of Jp(z) and Yy (z)
Properties of Bessel’s Functions

Bessel’s Jy(z) and Yj(2)

Below shows a graph of the Zeroth order Bessel functions of the
first and second kind. Note the many zero crossings separated by

approximately 7.
1

0.8 Jo(2) i
0.6r 1

0.4 b
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Series Solution
Bessel’s Differential Equation Graphs of Jp(z) and Yy (z)
Properties of Bessel’s Functions

Bessel’s Jy(z) and Yj(2)

MatLab code to graph Bessel functions.

% Bessel functions J_0(z) and Y_0 (z)

z = linspace (0,20,500);

30 besselj (0, z);
y0 = bessely(0,2z);

plot(z,j0, "b-", "Linewidth',1.5);
hold on
10 plot(z,y0, 'r-', 'LineWidth',1.5);

© 0 N O Ok W N =

There is a hyperlink to Maple code for solving Bessel’s equation.
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http://jmahaffy.sdsu.edu/courses/s17/math531/beamer/maple/bessel.pdf

Seri Solution
Bessel’s Differential Equation Graphs of Jg(z) and Yp(z)
Properties of Bessel’s Functions

Bessel’s Equation - Asymptotic Properties

Bessel’s Equation of Order m is

which has the general solution:
d(2) = c1dm(2) + 2V (2).

Jm(2) is Bessel’s function of the first kind of order m.
Y (2) is Bessel’s function of the second kind of order m.

Asymptotically, as z — 0, J,,,(2) is bounded and Y,,(z) is unbounded.

1, m =0,
Im(2) ~

1 m
s m > 0,

2 In(z), m =0,
Y (z) ~ {

_20(m=Dl —m m> 0.

T )

and
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Seri Solution
Bessel’s Differential Equation Graphs of Jg(z) and Yp(z)
Properties of Bessel’s Functions

Bessel’s Equation - Identities

There are many useful identities, which have been found for Bessel
functions. Below is a small list of some important ones:

° d
T (z7HJu(x)) = =2 *Juga (2).
o
d  u "
@) = (o),
o

/ 2T, (2)x de = 2T, ().
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Fourier-Bess S S
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

EV Problem with Bessel’s Equation

Our singular Sturm Liouville problem was given by

do m? _
dr ( dr) + (AT_T>¢_O’

with boundary conditions

¢(a) =0 and |¢(0)] bounded.

The change of variables z = v/Ar converts this to Bessel’s equation:

2%+zj—¢+(z —m?)¢ = 0.

Thus, the solution to the Sturm-Liouville problem is
B(r) = c1m (VAT) + Yo (VAF).
The boundedness at » = 0 implies that c; = 0, so
B(r) = 1T (VAr).



Fourier-Bes Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

EV Problem with Bessel’s Equation

The boundary condition ¢(a) = 0 means that our eigenvalues satisfy
the equation:

Jm(VAa) = 0.

Since J,,(z) has infinitely many zeroes, Let z,,, designate the n**
zero of Jp, (%), then the eigenvalues are

on = (2]

with corresponding etgenfunctions

Omn (1) = I (Zmnr/a), m=20,1,2,... n=1,2 ...
Numerically, we find that:

201 ~ 2.40483, 202 &~ 5.52008, 23 ~ 8.65373,

which are approximately 7 apart.
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Fourier-Bes Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

EV Problem with Bessel’s Equation

Recall that the Sturm-Liouwville problem was

d [ do m?\ B
dr(rdr>+()\r—r>¢— 5 (;5((1)—0,

which has eigenvalues and eigenfunctions;

2
Ay = (Zmn) . Gmn(P) = Jn(zmnr/a),  m=0,1,2,... n=1,2, ..,
a

where 2y, is the n'" zero satisfying J,, (2mn) = 0.

Since this is a Sturm-Liouville problem, we have the following
orthogonality condition:

/Oa I (V AmpT)Im (V/ Amgr)rdr =0, p#q.
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Fourier-Bessel Series
Return to Vibrating Membrane

Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Fourier-Bessel Series

Fourier-Bessel Series: The eigenfunctions from Bessel’s
equation form a complete set.

Take any piecewise smooth function, «(r), then

a(r) ~ Z anIm (V AmnT),

which from the orthogonality gives the Fourier coefficients:

foa a(r) I (V Amnr)r dr
foa T2, (N Amnr)T dr

Ay —
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Return to Vibrating Membrane

Vibrating Circular Membrane: The PDE satisfies:
0%u 5 (10 ([ Ou 1 9%u
— = - | r= = — 0e(— 0
oz~ ¢ (rar (Tﬁr)—i—ﬂa&?)’ €(=mal, rel0d,
with BC: u(a,0,t) =0.
Implicit BCs are

ulr—m ) =u(rmt), 9w 0) = 2 h),

and |u(0, 6,t)| bounded.
IC: Specify initial position, and for simplicity let it start at rest:

du

u(r,0,0) = a(r,0) and 5

(r,0,0) =0.
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Return to Vibrating Membrane

Separating Variables: u(r,0,t) = h(t)¢(r)g(0), which gave the two
Sturm-Liouville problems:

1%t SL problem in 6:
9" +ng=0, with g(-m)=g(r) and g¢'(-7) =g (7).
This had eigenvalues and associated eigenfunctions:

o, = m2, go(0) = ao, gm(0) = an cos(mb) + by sin(mb), m=0,1,2,...

2nd SL, problem in r:

2
dr dr r

which has eigenvalues and eigenfunctions;

2
Amn = (Zmn> , Omn (1) = Jm(z2mnr/a), m=0,1,2,... n=1,2,...,
a

where zpyn is the nt? zero satisfying Im (zmn) = 0.
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Return to Vibrating Membrane

From before, A,,, > 0, so the solution of the t-equation:
B + 2 Apnh = 0,
satisfies:
h(t) = ¢mn cos (c )\mnt) + dyyn SID (c /\mnt> )
The simplifying assumption that u.(r,6,0) = 0, allows us to omit any

term with sin (c\/ )\mnt).

The superposition principle with our product solution gives:

oo
u(r,0,t) = Z AonJo(v/Aonr) cos (c )\Ont>
n7100 oo
+ Z Z mn €08(mB) + Bmn sin(m8)) Jp (v/ AmnT) cos <c )\mnt> .
m=1n=1
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Fourier-B
Return t
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Return to Vibrating Membrane

From the IC u(r,60,0) = a(r, ), we have

a(r,0)

>~ Aondo(v Aonr)

n=1

+ Z Z mn €0s(mB) + Bmn sin(m@)) Jpy (v/ AmnT)
m=1n=1

This produces a standard Fourier series in § and a Fourier-Bessel
series in r.

Orthogonality gives the coefficients:

A ffﬂ f(;l a(r,0)Jo(v/Aonr)r dr do
on = 2 [ J2 (v Xonr)rdr,

" ffﬂ foa a(r, 0) cos(mb) Jm (V Amnr)r dr df
mn 7Tf0a J2,(\V Amnr)r dr,

B f - Jo alr, 0) sin(mb) Jom (v Amnr)r dr df
mn Trfo J2, (N Amnr)r dr.
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Return to Vibrating Membrane

Easier notation:

0) = Z AA¢A(Ta 9)7
A

where

4 [z a(r,0)px(r,0)dA
N TR 0)dA

with dA = rdr df.
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Vibrating Membrane - Fundamental Modes

Vibrating Membrane - Fundamental Modes: m = 0

Jo(v/Aonr)

1 1 1

8 A A
05
0 0 o -
o v
N 10 5% 10 575 10
s 0 s 0
-10 -10
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Vibrating Membrane - Fundamental Modes

Vibrating Membrane - Fundamental Modes: m =1

J1(v/A1nr) cos(0)

0 0 L . . 0
- -
05 V 05 ' 05 s /
5 10 5 10 5 10
0% 0 03 0 3 0
-10 -10 10
n=1 n=2 n=3
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Vibrating Membrane - Fundamental Modes

Vibrating Membrane - Fundamental Modes: m = 2

Jo(v/Aant) cos(26)

04 04 04
02 ‘ ‘ 02 1 ‘ 02 1 ‘ ™
o < 0 - o ~ -
-02 -0.2 -02
-04 - - 0.4 »( 0.4 »" y
5 ' 10 5 ' 10 5 10
0 5 0 0 5 0 0 5 0
-10 10 -10
n=1 n =2 n=3
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Vibrating Membrane - Fundamental Modes

Vibrating Membrane - Fundamental Modes: m = 3

J3(v/Asnr) cos(36)

Y WY Sy W S | P

0 PN
-02 W _ - 02 “- 02
04 v v 04 ' l 04 ) "‘ b
5 10 55 10 5, 10
5 0 s 0 5 0
10 -10 10
n=1 n=2 n=3
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Circularly Symmetric Case

Consider the vibrating membrane, where the region is circularly
symmetric, u = u(r,t):

2 2
PDE: Ou_ 0 < 8"),

oz~ ror\or
BCs: u(a,t) =0, (and  |u(0,t)| < 00,)
ICs: u(r,0) = a(r), %(r, 0) = B(r).

Separation of Variables: Let u(r,t) = ¢(r)h(t), then
2h d [ do h" 1 d [ do
pr=2 (.22 —=——|r— ==X\
¢ r o dr <T dr > o ch  rodr (T dr )
Time-dependent equation: This gives:
K+ c*Ah = 0.
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Circularly Symmetric Case

Sturm-Liouville Problem: The spatial BVP is:

d [ do

dr(rdr)ﬂwzo, f(a) =0 and [9(0)] < .

This is Bessel’s equation of Order Zero, m = 0, so
o(r) = c1Jo (ﬁr) + Yo (ﬁr) ,

which by boundedness of the solution at r = 0 gives co = 0.

The eigenvalues satisfy \,, such that

Jo (Vna) =0,

with corresponding eigenfunctions:
6u(r) = Jo (VAur) = 0.



Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Circularly Symmetric Case

The solution of the tizme-dependent problem is:
hn(t) = ancos( cV/ t) + by, sm( \//\nt> )

The superposition principle gives:

u(r,t) = i (an cos (c\/gt) + by, sin (c@t)) Jo (\/Er) .

n=1

The initial position gives:

u(r, 0) ZanJO (\/7r>

where
Jo a(r)Jo (VAur) T dr.
foa JE (VAnr) rdr
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Fourier-Bessel Series
Return to Vibrating Membrane
Eigenvalue Problems with Bessel’s Equation Circularly Symmetric Case

Circularly Symmetric Case

The initial velocity gives:
ug(r,0) = Zb C\/iJO(\/77">

where

Jo B(r)Jo (VAur) rdr
" cﬁfo JE (VAnr) rdr’
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