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Vibrating Circular Membrane

Vibrating Circular Membrane: The PDE satisfies:

∂2u

∂t2
= c2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
.

BC: Homogeneous
Dirichlet BC:

u(a, θ, t) = 0,

Implicit BCs:
Periodic in θ (2 BCs)
and Bounded

IC: Specify initial position:

u(r, θ, 0) = α(r, θ),

Specify initial velocity:

ut(r, θ, 0) = β(r, θ).

Solve with Separation
of Variables.
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Vibrating Circular Membrane - Separation

Consider the Vibrating Circular Membrane equation:

∂2u

∂t2
= c2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
.

Assume separation of variables with u(r, θ, t) = h(t)φ(r)g(θ), then
the PDE becomes:

h′′φg = c2
(
hg

r

d

dr

(
r
dφ

dr

)
+

1

r2
hφg′′

)
.

Extracting the t-dependent part of the equation gives:

h′′

c2h
=

1

rφ

d

dr

(
r
dφ

dr

)
+

1

r2g
g′′ = −λ.
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Vibrating Circular Membrane - Separation

The time-dependent ODE is:

h′′ + c2λh = 0.

The spatial equation can be separated:

g′′

g
= − r

φ

d

dr

(
r
dφ

dr

)
− λr2 = −µ.

The θ-dependent part satisfies the implicit periodic BCs, so

g′′ + µg = 0, g(−π) = g(π) and g′(−π) = g′(π).

The r-dependent part has an boundedness BC at r = 0 and
satisfies:

r
d

dr

(
r
dφ

dr

)
+ (λr2 − µ)φ = 0, φ(a) = 0.
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Vibrating Circular Membrane - Sturm-Liouville

Two Sturm-Liouville problems for g(θ) and φ(r).

The 1st Sturm-Liouville problem in θ is:

g′′ + µg = 0, g(−π) = g(π) and g′(−π) = g′(π).

This has been solved before and has eigenvalues:

µm = m2, m = 0, 1, 2, ...

with corresponding eigenfunctions:

g0(θ) = a0 and gm(θ) = am cos(mθ) + bm sin(mθ).
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Vibrating Circular Membrane - Sturm-Liouville

The 2nd Sturm-Liouville problem in r is:

d

dr

(
r
dφ

dr

)
+

(
λr − m2

r

)
φ = 0,

with the BCs

φ(a) = 0 and |φ(0)| bounded.

This is a singular SL problem with p(r) = r, σ(r) = r, and

q(r) = m2

r .

1 The BC at r = 0 is not the correct form.

2 p(r) and σ(r) are zero at r = 0, hence not positive.

3 q(r)→∞ as r → 0, so is not continuous at r = 0

PDEs - Higher Dimensions — (7/33)



Vibrating Circular Membrane
Bessel’s Differential Equation

Eigenvalue Problems with Bessel’s Equation

Separation of Variables
Sturm-Liouville Problems

Vibrating Circular Membrane - Sturm-Liouville

The singular Sturm-Liouville problem:

d

dr

(
r
dφ

dr

)
+

(
λr −

m2

r

)
φ = 0, φ(a) = 0 and |φ(0)| bounded.

still has the properties of the regular Sturm-Liouville problem.

Significantly,

1 There are infinitely many eigenvalues, λnm, for m = 0, 1, 2, ...
and n = 1, 2, ... with λnm > 0.

2 The eigenvalues are unbounded for each m as n→∞.

3 There are corresponding eigenfunctions, φnm(r), for each λnm.

4 For each fixed m, the eigenfunctions are orthogonal with
respect to the weighting function σ = r, so∫ a

0

φnm(r)φkm(r)r dr = 0, n 6= k.
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Bessel’s Differential Equation

We can rewrite the singular Sturm-Liouville problem as

r2
d2φ

dr2
+ r

dφ

dr
+ (λr2 −m2)φ = 0.

Make the change of variables z =
√
λr, then

z2
d2φ

dz2
+ z

dφ

dz
+ (z2 −m2)φ = 0.

This equation has a regular singular point at z = 0, so can be
solved by the Method of Frobenius, where we try solutions of the
form:

φ(z) =
∞∑
n=0

anz
r+n, φ′(z) =

∞∑
n=0

(r + n)anz
r+n−1,

φ′′(z) =
∞∑
n=0

(r + n)(r + n− 1)anz
r+n−2.
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Bessel’s Differential Equation

When the power series, φ(z) =
∑∞
n=0 anz

r+n, is substituted into

z2
d2φ

dz2
+ z

dφ

dz
+ (z2 −m2)φ = 0,

we obtain:

∞∑
n=0

(r + n)(r + n− 1)anz
r+n +

∞∑
n=0

(r + n)anz
r+n

−m2
∞∑
n=0

anz
r+n +

∞∑
n=0

anz
r+n+2 = 0.

For n = 0, we find that

a0(r2 −m2)zr = 0,

which gives the indicial equation and shows that r = ±m.
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Bessel’s Differential Equation

Suppose m = 0, so r1,2 = 0. Shifting the index on the last term, we
find the series above becomes:

∞∑
n=0

n(n− 1)anz
n +

∞∑
n=0

nanz
n +

∞∑
n=2

an−2z
n = 0.

or
∞∑
n=0

n2anz
n +

∞∑
n=2

an−2z
n = 0.

From this we obtain that a0 is arbitrary and a1 = 0.

Also, we find the recurrence relation:

an = −an−2
n2

.

It follows that

a2 = −a0
22
, a4 =

a0
2224

, ..., a2k =
(−1)ka0
22k(k!)2

.
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Bessel’s Differential Equation

With a0 = 1, the series solution gives the Bessel function of the first kind of
order zero:

J0(z) = 1 +
∞∑
k=1

(−1)kz2k

22k(k!)2
, z > 0.

By the Method of Frobenius, since the value of r = 0 is a repeated root, the
second solution has the form

Y0(z) = cJ0(z) ln(z) +
∞∑
n=0

bnz
n.

With some work, it can be shown that Bessel function of the second kind of
order zero is

Y0(z) = J0(z) ln(z) +
∞∑
k=1

(−1)k+1Hkz
2k

22k(k!)2
,

where

Hk =
1

2
+

1

4
+ ...+

1

2k
.
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Bessel’s J0(z) and Y0(z)

Below shows a graph of the Zeroth order Bessel functions of the
first and second kind. Note the many zero crossings separated by
approximately π.
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Bessel’s J0(z) and Y0(z)

MatLab code to graph Bessel functions.

1 % Bessel functions J 0(z) and Y 0(z)
2

3 z = linspace(0,20,500);
4

5 j0 = besselj(0,z);
6 y0 = bessely(0,z);
7

8 plot(z,j0,'b-','LineWidth',1.5);
9 hold on

10 plot(z,y0,'r-','LineWidth',1.5);

There is a hyperlink to Maple code for solving Bessel’s equation.
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Bessel’s Equation - Asymptotic Properties

Bessel’s Equation of Order m is

z2
d2φ

dz2
+ z

dφ

dz
+ (z2 −m2)φ = 0,

which has the general solution:

φ(z) = c1Jm(z) + c2Ym(z).

Jm(z) is Bessel’s function of the first kind of order m.
Ym(z) is Bessel’s function of the second kind of order m.

Asymptotically, as z → 0, Jm(z) is bounded and Ym(z) is unbounded.

Jm(z) ∼

{
1, m = 0,

1
2mm!z

m, m > 0,

and

Ym(z) ∼

{ 2
π ln(z), m = 0,

− 2m(m−1)!
π z−m, m > 0.
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Bessel’s Equation - Identities

There are many useful identities, which have been found for Bessel
functions. Below is a small list of some important ones:

1

d

dx

(
x−µJµ(x)

)
= −x−µJµ+1(x).

2

d

dx
(xµJµ(x)) = xµJµ−1(x).

3 ∫
xµJµ(x)x dx = xµJµ−1(x).
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EV Problem with Bessel’s Equation

Our singular Sturm Liouville problem was given by

d

dr

(
r
dφ

dr

)
+

(
λr − m2

r

)
φ = 0,

with boundary conditions

φ(a) = 0 and |φ(0)| bounded.

The change of variables z =
√
λr converts this to Bessel’s equation:

z2
d2φ

dz2
+ z

dφ

dz
+ (z2 −m2)φ = 0.

Thus, the solution to the Sturm-Liouville problem is

φ(r) = c1Jm(
√
λr) + c2Ym(

√
λr).

The boundedness at r = 0 implies that c2 = 0, so

φ(r) = c1Jm(
√
λr).
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EV Problem with Bessel’s Equation

The boundary condition φ(a) = 0 means that our eigenvalues satisfy
the equation:

Jm(
√
λa) = 0.

Since Jm(z) has infinitely many zeroes, Let zmn designate the nth

zero of Jm(z), then the eigenvalues are

λmn =
(zmn

a

)2
.

with corresponding eigenfunctions

φmn(r) = Jm(zmnr/a), m = 0, 1, 2, ... n = 1, 2, ...

Numerically, we find that:

z01 ≈ 2.40483, z02 ≈ 5.52008, z03 ≈ 8.65373,

which are approximately π apart.
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EV Problem with Bessel’s Equation

Recall that the Sturm-Liouville problem was

d

dr

(
r
dφ

dr

)
+

(
λr − m2

r

)
φ = 0, φ(a) = 0,

which has eigenvalues and eigenfunctions;

λmn =
(zmn

a

)2
, φmn(r) = Jm(zmnr/a), m = 0, 1, 2, ... n = 1, 2, ...,

where zmn is the nth zero satisfying Jm(zmn) = 0.

Since this is a Sturm-Liouville problem, we have the following
orthogonality condition:∫ a

0

Jm(
√
λmpr)Jm(

√
λmqr)r dr = 0, p 6= q.
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Fourier-Bessel Series

Fourier-Bessel Series: The eigenfunctions from Bessel’s
equation form a complete set.

Take any piecewise smooth function, α(r), then

α(r) ∼
∞∑
n=1

anJm(
√
λmnr),

which from the orthogonality gives the Fourier coefficients:

an =

∫ a
0
α(r)Jm(

√
λmnr)r dr∫ a

0
J2
m(
√
λmnr)r dr

.
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Return to Vibrating Membrane

Vibrating Circular Membrane: The PDE satisfies:

∂2u

∂t2
= c2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
, θ ∈ (−π, π], r ∈ [0, a],

with BC: u(a, θ, t) = 0.
Implicit BCs are

u(r,−π, t) = u(r, π, t),
∂u

∂r
(r,−π, t) =

∂u

∂r
(r, π, t),

and |u(0, θ, t)| bounded.

IC: Specify initial position, and for simplicity let it start at rest:

u(r, θ, 0) = α(r, θ) and
∂u

∂t
(r, θ, 0) = 0.
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Return to Vibrating Membrane

Separating Variables: u(r, θ, t) = h(t)φ(r)g(θ), which gave the two
Sturm-Liouville problems:

1st SL problem in θ:

g′′ + µg = 0, with g(−π) = g(π) and g′(−π) = g′(π).

This had eigenvalues and associated eigenfunctions:

µm = m2, g0(θ) = a0, gm(θ) = an cos(mθ) + bn sin(mθ), m = 0, 1, 2, ...

2nd SL problem in r:

d

dr

(
r
dφ

dr

)
+

(
λr −

m2

r

)
φ = 0, φ(a) = 0, |φ(0)| <∞,

which has eigenvalues and eigenfunctions;

λmn =
( zmn

a

)2
, φmn(r) = Jm(zmnr/a), m = 0, 1, 2, ... n = 1, 2, ...,

where zmn is the nth zero satisfying Jm(zmn) = 0.

PDEs - Higher Dimensions — (22/33)



Vibrating Circular Membrane
Bessel’s Differential Equation

Eigenvalue Problems with Bessel’s Equation

Fourier-Bessel Series
Return to Vibrating Membrane
Circularly Symmetric Case

Return to Vibrating Membrane

From before, λmn > 0, so the solution of the t-equation:

h′′ + c2λmnh = 0,

satisfies:

h(t) = cmn cos
(
c
√
λmnt

)
+ dmn sin

(
c
√
λmnt

)
.

The simplifying assumption that ut(r, θ, 0) = 0, allows us to omit any
term with sin

(
c
√
λmnt

)
.

The superposition principle with our product solution gives:

u(r, θ, t) =
∞∑
n=1

A0nJ0(
√
λ0nr) cos

(
c
√
λ0nt

)
+
∞∑
m=1

∞∑
n=1

(Amn cos(mθ) +Bmn sin(mθ)) Jm(
√
λmnr) cos

(
c
√
λmnt

)
.
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Return to Vibrating Membrane

From the IC u(r, θ, 0) = α(r, θ), we have

α(r, θ) =
∞∑
n=1

A0nJ0(
√
λ0nr)

+
∞∑
m=1

∞∑
n=1

(Amn cos(mθ) +Bmn sin(mθ)) Jm(
√
λmnr).

This produces a standard Fourier series in θ and a Fourier-Bessel
series in r.

Orthogonality gives the coefficients:

A0n =

∫ π
−π
∫ a
0 α(r, θ)J0(

√
λ0nr)r dr dθ

2π
∫ a
0 J

2
0 (
√
λ0nr)r dr,

Amn =

∫ π
−π
∫ a
0 α(r, θ) cos(mθ)Jm(

√
λmnr)r dr dθ

π
∫ a
0 J

2
m(
√
λmnr)r dr,

Bmn =

∫ π
−π
∫ a
0 α(r, θ) sin(mθ)Jm(

√
λmnr)r dr dθ

π
∫ a
0 J

2
m(
√
λmnr)r dr.
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Return to Vibrating Membrane

Easier notation:
α(r, θ) =

∑
λ

Aλφλ(r, θ),

where

Aλ =

∫∫
R
α(r, θ)φλ(r, θ)dA∫∫
R
φ2λ(r, θ)dA

,

with dA = r dr dθ.
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Vibrating Membrane - Fundamental Modes: m = 0

J0(
√
λ0nr)

n = 1 n = 2 n = 3
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Vibrating Membrane - Fundamental Modes: m = 1

J1(
√
λ1nr) cos(θ)

n = 1 n = 2 n = 3
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Vibrating Membrane - Fundamental Modes: m = 2

J2(
√
λ2nr) cos(2θ)

n = 1 n = 2 n = 3
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Vibrating Membrane - Fundamental Modes: m = 3

J3(
√
λ3nr) cos(3θ)

n = 1 n = 2 n = 3
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Circularly Symmetric Case

Consider the vibrating membrane, where the region is circularly
symmetric, u = u(r, t):

PDE:
∂2u

∂t2
=
c2

r

∂

∂r

(
r
∂u

∂r

)
,

BCs: u(a, t) = 0, (and |u(0, t)| <∞,)

ICs: u(r, 0) = α(r),
∂u

∂t
(r, 0) = β(r).

Separation of Variables: Let u(r, t) = φ(r)h(t), then

φh′′ =
c2h

r

d

dr

(
r
dφ

dr

)
or

h′′

c2h
=

1

rφ

d

dr

(
r
dφ

dr

)
= −λ.

Time-dependent equation: This gives:

h′′ + c2λh = 0.
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Circularly Symmetric Case

Sturm-Liouville Problem: The spatial BVP is:

d

dr

(
r
dφ

dr

)
+ λrφ = 0, φ(a) = 0 and |φ(0)| <∞.

This is Bessel’s equation of Order Zero, m = 0, so

φ(r) = c1J0

(√
λr
)

+ c2Y0

(√
λr
)
,

which by boundedness of the solution at r = 0 gives c2 = 0.

The eigenvalues satisfy λn, such that

J0

(√
λna

)
= 0,

with corresponding eigenfunctions:

φn(r) = J0

(√
λnr

)
= 0.
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Circularly Symmetric Case

The solution of the time-dependent problem is:

hn(t) = an cos
(
c
√
λnt
)

+ bn sin
(
c
√
λnt
)
.

The superposition principle gives:

u(r, t) =
∞∑
n=1

(
an cos

(
c
√
λnt
)

+ bn sin
(
c
√
λnt
))

J0

(√
λnr

)
.

The initial position gives:

u(r, 0) = α(r) =
∞∑
n=1

anJ0

(√
λnr

)
,

where

an =

∫ a
0
α(r)J0

(√
λnr

)
r dr∫ a

0
J2
0

(√
λnr

)
r dr

.
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Circularly Symmetric Case

The initial velocity gives:

ut(r, 0) = β(r) =
∞∑
n=1

bnc
√
λnJ0

(√
λnr

)
,

where

bn =

∫ a
0
β(r)J0

(√
λnr

)
r dr

c
√
λn
∫ a
0
J2
0

(√
λnr

)
r dr

.
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