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Introduction Nonhomogeneous Problems

Introduction - Nonhomogeneous Problems

Introduction: Separation of Variables requires a linear PDE with
homogeneous BCs.

Consider the following nonhomogeneous problems:
ou_ 0
ot 0x2

with BCs: u(0,t) = A and w(L,t) = B, and IC: u(x,0) = f(x).

— h(u —Tp), t>0, 0<zxz<lL,

Begin by solving the steady state problem, ug(x),

kup — h(ug —T.) =0, ug(0)=A and wugr(L)=B.

Equivalently,

h h
uh — ~up = ——T.,

k k

which is easily seen to have a particular solution, ug,(z) = Te.
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Introduction Nonhomogeneous Problems

Introduction - Nonhomogeneous Problems

The general solution to the steady state problem,

h h . .
uy — gup = —¢ T, is given by

ug(x) = ¢1 cosh (\/Ex) + ¢ sinh (\/Ex) +T,.

The BCs give:
ug(0)=c+T. =4 or cg=A-T,,

and

up(L) = (A — T,) cosh (ﬂL) + ¢y sinh (ﬂL) +T.=B.

It follows that

B-T,

4 (T, — A)coth (\f L)
sinh <\/7 L>
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Introduction Nonhomogeneous Problems

Introduction - Nonhomogeneous Problems

Now let v(x,t) = u(z,t) —ug(x), sou=v+ug

ou v 0%v /)
g _ 2y - ~T,).
5% = o k8x2 + kulp —h(v+ug —Te)
However, kuf, — h(ug — T.) = 0, so the above PDE becomes the
homogeneous PDE for v(z,t)
o0 _ o
ot Ox?
with the homogeneous BCs: v(0,t) = 0 and v(L,t) = 0, and the
IC: v(z,0) = f(z) — ug(x).

— hw,

Our previous techniques of separation of variables applies to this
problem, so let v(z,t) = ¢(x)g(t), and

g +hg_ ¢ _
kg ®
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Introduction Nonhomogeneous Problems

Introduction - Nonhomogeneous Problems

The Sturm-Liouville problem is

¢+ Xp =0, with ¢(0)=0 and ¢(L) =

As we have often seen before, this has eigenvalues and
etgenfunctions:

n?m?

An = PR and () = sin (?) .

The solution to the t-equation is

g(t) = ce” (MR,

By the superposition principle, the solution becomes:

ZB e +Im 3 )tsin(nzx>.
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Introduction Nonhomogeneous Problems

Introduction - Nonhomogeneous Problems

We apply the IC, so

v(z,0) = f(x) —ug(x ZB sm(mm)

which has the Fourier coefficients:

2 nmwx

B, = 7 /OL(f(gc) —ug(zr))sin (T) dx.

The solution to the original nonhomogeneous problem is
u(z,t) =v(z,t) + up(x),

where ug(x) is the solution of the steady-state problem and v(z,t) is
the solution above to the homogeneous PDE.
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
Example

Time-dependent Nonhomogeneous Terms

Consider the time-dependent nonhomogeneous PDE:
ou_
ot 0x2
with time-dependent BC's:

u(0,t) = A(t) and u(L,t) = B(t),
and IC:  u(z,0) = f(z).

Create a related problem with homogeneous BCs.

+Q(x, 1),

Consider any reference temperature distribution, r(zx,t), where
stmpler is better, such that

r(0,t) = A(t) and  r(L,t) = B(t).

For example,
r(xz,t) = A(t) +
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Nonhomogeneous BCs

Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
Example

Time-dependent Nonhomogeneous Terms

Take v(x,t) = u(x,t) — r(x,t), then the PDE becomes:

Ov 9%v 621") 0%v

Ox?
with homogeneous BCs:
v(0,t) =0 and v(L,t) =0,

and IC:  wv(z,0) = f(z) —r(z,0).

Note: Our choice of r(z,t) being linear in z gives r, =0,
simplifying the PDE above and Q(x,t), in particular.
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
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Method of Eigenfunction Expansion

The use of a reference function readily converts nonhomogeneous
BCs to one with homogeneous BCs, so what about nonhomgeneities

in the PDE?
Consider the problem:
o _
ot Ox?
with homogeneous BCs:
v(0,t) =0 and v(L,t) =0,
and IC: wv(z,0) = g(z).
The related homogeneous problem is:
o _ o
ot 0z’

+ Q(x,1),

with homogeneous BC's:
u(0,t) =0 and  wu(L,t)=0.



Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
Example

Method of Eigenfunction Expansion

The problem, u; = kuy,, with w(0,t) = 0 and u(L,t) = 0, has been
shown to have eigenvalues and eigenfunctions:

n?n?

An=—75  and ¢ () = sin (222) .

To solve the nonhomogeneous problem in v(x,t), we attempt a
solution of the form:

’U(:E,t) = Z an(t)¢n(x)a

where ¢, (x) are any eigenfunctions of the related homogeneous
problem (often different BCs).
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
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Method of Eigenfunction Expansion

The IC is -
v(z,0) = g(z) = > an(0)dn (),
SO B
fo dm
an, (0 e
(0) = IR ¢2

This can be easily generalized to Sturm-Liouville problems with
different weighting functions.

If v and % are continuous and v(z,t) solves the same homogeneous
BCs as ¢, (), then term-by-term differentiation can be justified.

We showed this for the Fourier sine and cosine series, but general
Sturm-Liouville problems have the same properties and related
theorems.
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
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Method of Eigenfunction Expansion

With v(z,t) given by:
oo
= 2 an(t)én(a),

the term-by-term differentiation gives:

ov >\ dan(t)
ot ; @
and -
=3 o nEonts) Z an(DAndn (@),

This leaves us with the system of linear ODEs:

> [d“"( ) +Ankan<t>} bn(@) = Qla,1),

n=1 d

where our previous Fourier series for the ICs gave the values for a, (0).
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
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Method of Eigenfunction Expansion

The left hand side of the equation

> {dan(t) + Ankan(t)} bn (@) = Q,1),

—_ dt

gives the Fourier expansion of Q(x,t).

Assuming that
_ (e o]
Q@ t) =S Gn(t)on(a),
n=1
then the orthogonality of the eigenfunctions gives the system of ODEs:

dan( ) fo (z,t)pn (z)dx
f() (b% (x)dz

n=1,2

5 Sy e

+ Ankan(t) = gn(t) =

This system of ODEs is solved with the variation of parameters method, giving

t
an(t) = an(O)e_)‘"kt + e_A"kt/ qn(s)exnksds.
0

The nonhomogeneous solution becomes v(x,t) Z an(t)pn(x

n=1
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Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
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Example for Eigenfunction Expansion

Consider the nonhomogeneous PDE given by
ou  0%u

§:@+e*tsm(3x), O<z<m t>0.
Assume BCs given by u(0,t) = 0 and u(w,t) = 1 and IC given by
u(z,0) = f(z).

We create a problem with homogeneous BCs by using a simple
reference function, r(x) = x/7, so take
x

v(z,t) = u(z,t) — o
The new homogeneous problem for v(z,t) becomes:

ov 0% i .
a - @ +e Sln(3$L‘),
with BCs and IC:

0(0,¢) =0, w(mt)=0, and v(z,0) = f(z)— ;
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
Example

Example for Eigenfunction Expansion

The problem v; = vy, with BC v(0,t) = 0 = v(w, ) has eigenvalues,
A\n = n?, with associated eigenfunctions, ¢, (r) = sin(nx).

Thus, we use the eigenfunction expansion:

o'}
E SIH 7’L£L'

We insert this expansion into the nonhomogeneous problem:

sin(nz) = —n? g an(t)sin(nx) + e *sin(3z),

n=1
which can be written:

i (da" 2an(t)) sin(nz) = e " sin(3z).

n=1
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Nonhomogeneous BCs
Time-dependent Nonhomogeneous Terms Method of Eigenfunction Expansion
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Example for Eigenfunction Expansion

The Fourier coefficients are found by multiplying by sin(mz) and
integrating from x = 0 to x = 7, giving

da‘n 2 _ Oa Tl7é37
dt +nan_{et, n = 3.

The solution to these equations are

ool w0 nts,
= te '+ (as(0) — §) e, n=3.

)

where

an(0) = 2 /077 (f(gc) - E) sin(nz) dz.

s s

The solution satisfies:

u(z,t) = v(z,t) + ;
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Eigenfunction Expansion and Green’

s Formula
Consider the PDE:

with BCs and IC:

U(O,t) - A(t)’ U(Lat) = B(t)v f(x)

The related homogeneous BVP is

d*¢p
d¢ + Anon =0,

¢n(0) =0= ¢n(L)a

which has eigenvalues and corresponding eigenfunctions

72 and ¢ () =sin (272).
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Eigenfunction Expansion and Green’s Formula

Expand the u(z,t) in term of the eigenfunctions:

o0

U({E, t) ~ Z bn(t)¢n($)

n=1

@ This expansion fails at the boundaries, since ¢, (z) are
homogeneous, while u(z,t) is not.

© We can NOT differentiate w.r.t. x because of the different BCs
for ¢, and u.

© However, term-by-term differentiation by ¢ is valid.

We write

ou >, db,,
En = Z E@L(x)

n=1
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Eigenfunction Expansion and Green’s Formula

It follows that

— db, u
; 2 on(@) = ko + Q(a,1),

SO

b, i IS [kau—i-Q(x t)} bn(2) dz

dt Jo 83 (@) do

If Q(z,t) has a generalized Fourier expansion

> . Iy Q(a,t) b () da
= n(t)on(x), with qn(t) = ,
;qmm) Gn () T 2e) d

then
dt " fo 2 (z) dx
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Eigenfunction Expansion and Green’s Formula

Recall that when L is any Sturm-Liouville operator with

L= ()4 ) + alo)

we had Green’s formula

/OL[UL(U) —vL(w)dz = p @:‘Z - ﬁ;)

In our example, we have the operator

L

0

2

0 .
L= 902 with  p(z) = 1.

We can use partial derivatives in Green’s formula with ¢ fixed.
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Eigenfunction Expansion and Green’s Formula

Let ’U(LL‘) = ¢n(x) = sin (%)’ SO dv _ L[COS (%)

By Green’s formula,

Il
S—
&
I
h
~
&
Q
5
_|_
N
4
%‘Q?
<
I
&
~

L
/ On(z)L(u) dx
0

uQpy, dx — T [u(L,t) cos(nm) — u(0,t)],

Il
\
>~
3
c\h

—)\n/o ugndr — "7 [B(1)(~1)" — A1)

However, b, (t) are the generalized Fourier coefficients of u(zx,t),
S0

fOL UGy, dx
S
0 ¢n
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Eigenfunction Expansion and Green’s Formula

The information above is substituted into the DE for b, (¢) and

dbgt( L RAuba = au(0) + Lf?;;dx [B(£)(=1)" — A(t)].

The ICs give

s fo x)dw
x) = b, (0)p (), so b,(0 —.
) ;(W() (0) = Lfoci),%dx

The above 1% order differential equation in b, (t) with its IC has
a unique solution, solving the PDE in u(z,t).

If the PDE in u(z,t) has homogeneous BCs, then the eigenfunction
expansion solution converges much faster than if the BCs are
nonhomogeneous.
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Green’s Functions

Consider the Heat Equation:

ou 9%u

— =k— t>0, 0 L

ot 0x?’ =5 <z<i
with BCs and IC:

U(O,t) = 07 U(Lat) = Ov u(xv 0) = g(I)
The solution from before is

o0
ule,t) = Y apsin (1) e HO/D,
n=1

where the initial condition gives the Fourier coefficients

oo L
g(x) = Zan sin (Lzr) , SO ap = %/ g(z)sin (%) dx.
n=1 0
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Green’s Functions

We want to examine more closely the effect of the IC g(z).

Introduce a dummy variable xy and substitute in the Fourier
coeflicient:

oo L
u(z,t) = Z (%/0 g(zo) sin (2520 daco) sin (222) e—k(nm/L)%t

n=1

Interchange the summation and integration to obtain:

oo

L
u(e.t) = [ glawo) (Z ZSin(”’z“”O)sin("Z”)e_’“("”/L)%) o

n=1

The quantity in the parentheses is the influence function for the
initial condition.

It expresses the contribution of the temperature at « and ¢ due to the
initial temperature at xg. The solution u(x,t) is the integral over all
influences from all the positions of the IC.
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Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Green’s Functions

If we extend the previous analysis to the PDE:

ou 0%y

Fri ka 2+Q(33 t),

where the BCs are the same homogeneous ones and u(z,0) = g(x).

From our eigenfunction expansion technique, we write:
E an(t sm ) .

This is differentiated term-by-term because of the homogeneous BCs,

SO
da nm\ 2 2 L
Sk (M) an = an(t) = Z/o Q(a, t) sin (212) da,

where

)
— H nmwx
= E gn(t)sin (2F2) .
n=1
PDEs - Nonhomogeneous — (26/29)



Eigenfunction Expansion
Green’s Formula
Eigenfunction Expansion and Green’s Formula Green’s Functions

Green’s Functions

The ODE for a,(t) has the solution:
t
an(t) _ an(0)€7k<nﬂ-/L)2t _i_efk(nTr/L)Qt/ qn(to)ek(nﬂ/L)2t0 dto,
0

where u(z,0) = g(z), so

o] L
2:: Sm nmc) and an(o):%/o g(x)sm (T) dz.

The Fourier coefficients are eliminated to produce:

ww = S [(2 [ stworsin (o5

n=1

t 2 L
+ eik(""/[‘)gt/ (E/ Q(z0, to) sin (%) dxo) ek(""/L)QtO dto | sin ("—zm)
0 0

0) da:o) —(nm/L)%t
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Eigenfunction Expansion and Green’s Formula Green’s Functions

Green’s Functions

Interchanging the order of summation and integration gives:

oo

L
u(z,t) = / g(zo) <Z % sin ("WLIO ) sin (sz) e—k(””/L)2t> dzo
0

n=1

/ / Q(zo,t0) ( — sin (2520 ) sin (22) e_k(’"r/L)2(t_t“)> dto dzg.

Define the Green’s function, G(z,t; zo, to),

G(z,t; 2o, t0) = Z sin (2220 gin (222 g —k(nr/L)* (= t0)

The solution can be written:

L
u(z,t) = /g(xo)G(x,t;xo,O)dxo
0
L ot
+/ /Q(xo,to)G(%t;xo,to)dtodﬂ?o-
o Jo
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Eigenfunction Expansion and Green’s Formula Green’s Functions

Green’s Functions

@ The Green’s function, G(z,t; o, 0), expresses the influence of the initial
temperature at position x and time ¢

@ The Green’s function, G(z, t; xo, to), gives the influence on position z at
time ¢ of the forcing term, Q(zo,to)

@ The Green’s function depends only on the elapsed time, t — tg,
G(z,t; 20, t0) = G(z,t — to; x0,0).

@ The Heat equation is independent of time, so thermal properties are not
changing.

@ The most recent time events are most important.

@ The series converges more slowly for small ¢, while G(z, t; zo, to) more
accurately describes long time behavior.

@ The solution u(z,t) given with the Green’s function gives the influences
over all g and past time 0 < to < t.

@ This gives the causality principle where the temperature depends on the
thermal sources acting before the current time, .
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