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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Heat Equation on Semi-Infinite Domains

Consider the PDE for the heat equation on a semi-infinite domain:

ou 0%u
a—k@, t>0, .’13>0,

with the BC and IC:
u(0,t) =0 and u(z,0) = f(z),
where we assume f(z) — 0 as z — oo.

We employ the separation of variables, u(x,t) = h(t)¢p(z), where
the Sturm-Liouwville problem is

¢+ Xp =0, #(0) =0 and Jim |p(x)| < .

The solution to the SL-Problem is:

é(x) = c; sin(wr), where  w = V.



Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Heat Equation on Semi-Infinite Domains

The ODE in t is b’ = —kw?h, which has the solution
h(t) = ce k't
Thus, the product solution becomes
Uy (z,t) = A(w) sin(wx)e*k‘”%, w > 0.
The superposition principle gives the solution:

u(z,t) = / A(w) sin(wx)e_szt dw,
0

where -
= A i d
f(@) / () sin(we) du,
and

2 o0
Alw) = ;/0 f(z) sin(wz)dz.



Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Fourier Sine Transform

From the Fourier transforms with complex exponentials, we have the Fourier
pair:

=
8

&
Il

1 [ ;
7/ F(w)e ™" dw,
Y J—0

i
£
I

na / f(w)ei“”” dx, for any ~.
27 J — o
If f(z) is odd (choose an odd extension),
Flw) = l/ f(x) (cos(wzx) + isin(wz)) dx,
27 J — o
2iy [° .
= —/ f(z) sin(wz) dz.
2 0

Note F(w) is an odd function of w, so

1 [ -
flx) = 5 /_OQ F(w) (cos(wz) — isin(wz)) dw,
- BT F(w) sin(wz) dw,
7 Jo
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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Fourier Sine and Cosine Transforms

For convenience, take —% =1, so for f(x) odd we obtain the Fourier
sine transform pair:

flx) = /000 F(w)sin(wz)dw = S™F(w)],
Flw) = i/ooof(m)sin(wz)dx = S[f(z)].

Note that some like to have symmetry and have a coefficient in front
of the integrals as 1/2/7.

If f(x) is even, then we obtain the Fourier cosine transform pair:

=
8

N~—
[

/ F(w) cos(wz)dw = CHF(w)],

3
£
I

/ f(z)cos(wz)dx = C[f(x)].



Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Differentiation Rules for Sine and Cosine Transforms

Assume that both f(z) and 3—f(:v) are continuous and both are vanishing for large
T

z, i.e., limg oo f(z) = 0 and limz— oo %(x) =0.

Use integration by parts to find the transforms of the first derivatives:

2 [ 2 >
C [%] = ;/0 4 — cos(wz) dor = ;f(x) cos(wz) .

+ 27&) /000 f(x) sin(wz) dz,

s[4) =2 [T Lonon) o= 2 j@sinton)| -

27“) /000 f(x) cos(wz) dz.

It follows that 9
C[4L] = =210 +wslf]
T ™

and

S [4] = -welf.

Note that these formulas imply that if the PDE has any first partial w.r.t. the
potential transformed variable, then Fourier sine or Fourier cosine transforms
won’t work.
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Fourier Sine and Cosine Transforms Definitions
Differentiation Rules

Differentiation Rules for Sine and Cosine Transforms

From the pair, )
C ] =250 +wsly]

and

s [4] = —wets),
we can readily obtain the transforms of the second derivatives:
0|24 =-240) +ws[L] = -2 L) - O]
and . {ﬁ} ol 2 ,
TE] = —wC [£] = Zwf(0) - 2SI
Note: When solving a PDE (with second partials), then either

£(0) must be known and Fourier sine transforms are used
or %(0) must be known and Fourier cosine transforms are used.
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Heat Equation on Semi-Infinite Domain

Applications iquation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

Consider the PDE for the heat equation on a semi-infinite domain:

ou 0%u
a—k@, t>0, .’E>O,

with the BC and IC:

u(0,t) = g(t) and u(z,0) = f(x).

Since the BC is nonhomogeneous, the technique of separation of
variables does NOT apply.

Since we know u at z = 0, we want to apply the Fourier sine
transform to the PDE.

PDESs - Fourier Transforms B — (9/37)



Heat Equation on Semi-Infinite Domain
Wa oq on

Applications 1ation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

For the nonhomogeneous equation

ou_ o
ot 0z’

we apply the Fourier sine transform:

t>0, x>0,

U(w,t) = 2 /000 u(x,t) sin(wz) dz,

™

which gives the ODE in U

ou (2 -
N =k (ng(t)—w U).

The Fourier sine transform of the initial condition is:
_ 9 [o°
U(w,0) = f/ f(z) sin(wz) dz.
T Jo
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Heat Equation on Semi-Infinite Domain

Applications iquation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

The ODE is linear and can be written:

oUu — 2kw
24 kWU = 22 a(t
at+wU 7Tg(),

which is readily solved to give:

_ _ 2kw [*
U(w,t) =U(w, O)efk“% + J/ efka(t*S)g(s) ds.
T Jo

This problem is readily solved with programs similar to the ones
shown earlier.

With specific ICs, f(z), and BCs, g(¢), the integrals can be formed,
then numerically computed.
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Heat Equa

tion on Semi-Infinite Domain
Applications “ 2 ¢

t

ation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

As a specific example, we choose to numerically show the solution
with

u(z,0) = f(z)

0, and u(0,t) = g(t) = e~

The Fourier sine transform satisfies:

_ _ 2kw [*
Ulwt) = Tlw,0)e 't 422 / e R = g(s) ds,
T Jo
—kw?t —at
2](5 e — €
Uw,t) = Jg
T a — kw?

It follows that

u(z,t) = /000 U(w, t) sin(wr) dw.
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Heat Equation on Semi-Infinite Domain
. . Wav i
Applications

quation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

Enter the Maple commands for the graph of u(z,t)

u := (x,t) -> (2/Pi)*(int (wk(exp(-w"2*t)-exp(-0.1%t))*sin(wxx)/
(0.1-w"2), w = 0..50));
plot3d(u(x,t), x = 0..10, t = 0..20);

The IC is
f(z) =0. 0
0.7
The BC is 0.6
0.5
g(t) = 670.1t. 0.4
0.3
This graph shows the N

diffusion of the
heat with time.

5 10 15 10 x

i
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Heat Equation on Semi-Infinite Domain
Wave ti

Applications Laplace iquation on Semi-Infinite Strip

Heat Equation on Semi-Infinite Domain

In both Maple and MatLab, the integral over w is truncated at 50.
The figure below shows that this creates some oscillations.

1 % Solution Heat Equation with FT
2 % f(x) =0, u(0,t) = e”(-t)
3 N1 = 201; N2 = 201;
4 tv = linspace(0,20,N1);
5 xv = linspace(0,10,N2);
6 [tl,x1] = ndgrid(tv,xv);
7 £ = Q(w,c) (2+xw/pi).*(exp(-c(l)*w."2)—...
8 exp(-0.1xc(1)))./(0.1-w."2);
9 for i = 1:N1
10 for j = 1:N2
1 c = [t1(i,9),x1(i,9)];
12 U(i,j) =
integral (@ (w) £f(w,c) .xsin(w*xc(2)),0,50);
13 end
14 end
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Heat Equation on Semi-Infinite Domain
ation
s Equation on Semi-Infinite Strip

Applications

Heat Equation on Semi-Infinite Domain

16 set (gca, 'FontSize', [12]);
17 surf(tl,x1,0);

18 shading interp

19 colormap (jet)

20 view ([100 15])
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Heat Equation on Semi-Infinite Domain

Applications nite Strip

Wave Equation

Consider the wave equation on an infinite domain:

Pu 0%

a2~ ¢ a2
with the ICs:

—oco<x <oo, t>0,

du

u(z,0) = f(z) and 5

(1'70) =0,

where the latter IC is to simplify the problem.

The Fourier transform pair satisfies:

_ 1 [ .
U(w,t) = o u(z,t)e'™" dx,
T — 00

0 J— .
u(z,t) = / U(w,t)e™?* dw.
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Heat Equation on Semi-Infinite Domain
‘Wav tion

Applications Laplace’s Equation on Semi-Infinite Stri

Wave Equation

From the differentiation rules, we have

02U -
W = cCw U,
where the ICs give
Uw0) = o [ f@e=a
w, o ) x)e x,
oU(w,0) 0
ot -

The general solution becomes:

U(w,t) = A(w) cos(cwt) + B(w) sin(cwt).

The IC with the velocity being zero gives B(w) = 0.



Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Le s Equation on Semi-Infi e Strip

Wave Equation

The #nitial position gives:
— 1 o0 )
Aw) = T(w,0) = — / F(2)e™® da.
27 J_ o

The tnverse Fourier transform satisfies:

u(z,t) :/ U(w,0) cos(cwt)e™ ™ dw.

—00

eicwt +e—icwt

Euler’s formula gives cos(cwt) = 5 , SO
oo —iw(z—ct) —iw(z+ct)
u(z,t) = / U(w, 0) {e ;e dw.
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Heat Equation on Semi-Infinite Domain
‘Wav tion

Applications Laplace’s Equation on Semi-Infinite Stri

Wave Equation

Since -
f@) = [ Tl 0)e = d
we have
w(zt) = /00 T(w.0) |:e—iw(m—ct) _;e_iw(f-‘rct) o,
u(z,t) = %[f(xfct)+f(9:+ct)].

It follows that the #nitial position breaks into 2 traveling waves
with velocity ¢ in opposite directions.

This solution is also obtained using D’Alembert’s method.
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< quation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Consider Laplace’s equation on a semi-infinite strip:

Pu | Ou _

V2U=%+ay2—0, O<x<L, y>0.

with BCs:
u(0,9) = q1(y),  w(lL,y) =g2(y),  w(x,0)= f(z).

Divide the problem into
Viu, =0,
S uy ) =) Uy o
with homogeneous BC
on the bottom.
Second problem is
0 f

VQUQ = O7

with homogeneous BC's on the sides.

PDESs - Fourier Transforms B — (20/37)



Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Consider Laplace’s equation
Vuy =0, O<xz<L, y>O0,
with BCs:
u(0,y) =0, wug(L,y) =0, and wug(x,0)= f(x).

Separation of variables with u(z,y) = ¢(x)h(y) gives

oW
10) h
The Sturm-Liouville problem is
¢"+Xp=0, ¢(0)=0 and ¢(L)=0,
so the eigenvalues and eigenfunctions are

n?n?

A=z  and ¢ () =sin (272).
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0] on on Semi-Infinite Domain
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Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The other ODE is A" — \,h = 0, which has the solution:

nwy

hn(y) = cle*% +coe L

For the h,(y) to be bounded as y — oo, then ¢y = 0.

The superposition principle gives

nmwy

us(z,y) = Z ap sin (272) e T
n=1
The lower BC, u(z,0) = f(z) gives
flx) = ansin (),
n=1

where

2

an = — f(z)sin (“12) dz.
L Jo



< quation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The second Laplace’s problem is:
Viu, =0, O<z<L, y>0,
with BCs:
u(0,y) = 91(y),  wi(L,y) =ga(y), and wi(z,0) =0.
Separation of variables for this case gives

h(y) = 1 cos(wy) + c2 sin(wy), for w>0.

The homogeneous BC at y = 0 gives ¢; = 0, suggesting that we use
the Fourier sine transform.
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cat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The Fourier sine transform pair is:

ur(x,y) = / Uy (7, w)sin(wy) dw,
0
— 2 0
Ui(z,w) = ;/ up(x, y) sin(wy) dy.
0
Recall 52
Ul 2
S {33}2} = ;wul(xﬂ) — w?S[uy].

Laplace’s equation becomes:

02U,

277, —
8x2 —w U1—O7

which is easily solved.
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

It is convenient to take the solution of the form:

Ui(z,w) = a(w) sinh(wz) + b(w) sinh(w(L — x)).

The BCs give:

U1(0,w) = b(w)sinh(wLl) = i/ooo 91(y) sin(wy) dy,
Ui(L,w) = a(w)sinh(wl) = 72T/000 92(y) sin(wy) dy,
so we can readily find a(w) and b(w),
a(w) = ﬁw / " ga(y)sin(wy)dy and bw) = ——— i wL) / y) sin(wy) dy.
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guation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Example: Consider the specific case:
Viu=——+— =0, 0<z<2 y>0.

with BCs:

2, y < 5,

u(0,y) = e Ysin(y), u(2,y) = { 0. y> 5, u(z,0) = x.

This problem is broken into the 2 problems with either a
homogeneous end condition or homogeneous side conditions, then the
2 solutions are added together.

We provide the details to produce a temperature profile for this
problem, using the previous work.
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cat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

When the two sides are homogeneous,
VZuy =0, 0<z<2 y>0,
with BCs:

uz(0,y) =0, wuz(2,y) =0, and wus(z,0)=x.

From before, the solution is:

nwy

o0
J— 3 nmTT — 5
us(z,y) = E apsin (23%) e 2,
n=1
where using Maple, we find:
2
an, :/ z sin (%) dx =
0

4(_1)n+1
nr



Heat Equation on Semi-Infinite Domain

Applications Wave Equation
pp Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for us(z,y)
using 100 terms in the series is shown below.

s (1, y)
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Hes on on Semi-Infinite Domain
Wave

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

1 % Solution Laplace's equation - semi-infinite strip
2 N1 = 201; N2 = 201; M = 100;
3 xv = linspace(0,2,N1);
4 yv = linspace(0,10,N2);
5 [x1,yl] = ndgrid(xv,yv);
6 for i = 1:N1
7 for 3 = 1:N2
8 c = [x1(i,3),y1(i,3)]1;
9 Uu2(i,j) = 0;
10 for k = 1:M
11 U2(i,3) = U2(1i,3) +
(4% (=1) " (k+1) / (k*pi)) ...
12 *sin(kxpixc (1) /2) exp (~k*xpixc(2)/2);
13 end
14 end
15 end
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guation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Laplace’s problem for uj(x,y) is:
Vu; =0, 0<z<2 y>0,
with BCs:

2, y < 5,

u1(0,y) = e Ysin(y), ui(2,y) = { 0 y>5 up(z,0) = 0.

From before, the Fourier transform solution satisfies:

ui(z,y) = /000 Uy (z,w) sin(wy) dw,

where

Ui(z,w) = a(w) sinh(wz) + b(w) sinh(w(2 — x)).
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Heat Equation on Semi-Infinite Domain
Wave Equation

Applications Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

Once again Maple is used to find the coefficients a(w) and b(w):

2 b
alw) = W/o 2 sin(wy) dy,

7 sinh
4(1 — cos(5w))
w? sinh(2w) ’

and

2

blw) = 7 snh(2) /0C>o e Y sin(y) sin(wy) dy,

4w
(w2 — 2w + 2)(w? + 2w + 2) sinh(2w)
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Wave Equation
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Applications

Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for ui,(x,y)
integrating on w € [0, 100], where this only accounts for the BC at
x =2 (b(w) = 0), is shown below.

w1a (2, )
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the first part of uq(z,y)

32 wmax = 100;
33 £ = @(w,c)
4x (1l-cos (5*w)) .*xsinh (c (1) *w) .*sin(c(2) *w) ...

34 ./ (pi*w.*sinh (2*w));

35 for i = 1:N1

36 for 3 = 1:N2

37 c = [x1(i,3),y1(i,3)1;

38 Ula(i, j) = integral(@(w)f (w,c),0,wmax);
39 end

40 end

41 surf(x1l,y1l,Ula);
42 shading interp
43 colormap (jet)
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Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for uiy(x,y)
integrating on w € [0, 100], where this only accounts for the BC at
x =0 (a(w) = 0), is shown below.

0 1o 8 6
y
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the second part of uy (z,y)

55 wmax = 100;

56 £ = Q@(w,c) 4*w.*sinh ((2-c(1l))*w) .*sin(c(2)*w) ...
57 L (plx (W, 2-2%w+2) . x (W. " 242%w+2) .xsinh (2xw) ) ;
58 for i = 1:N1

59 for j = 1:N2

60 c = [x1(i,3),y1(i,3)];

61 Ulb (i, j) = integral (@ (w)f(w,c),0,wmax);
62 end

63 end

64 surf(xl,yl,Ulb);

65 shading interp

66 colormap (Jjet)
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Laplace’s Equation on a Semi-Infinite Strip

Combining all the results above, the steady-state temperature
temperature profile for u(z,y) with the limits on number of terms in
the series and the wave numbers w in the integral is shown below.

u(, y)

10 8 6 4 2 0
y
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the complete steady-state temperature
profile u(z,y)

78 for i = 1:N1

79 for 3 = 1:N2

80 U(i,j) = U2(i,j)+Ula(i, j)+Ulb(i, J);
81 end

82 end

83 surf (x1l,y1,U);
84 shading interp
85 colormap (jet)
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