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Heat Equation on Semi-Infinite Domains

Consider the PDE for the heat equation on a semi-infinite domain:

∂u

∂t
= k

∂2u

∂x2
, t > 0, x > 0,

with the BC and IC:

u(0, t) = 0 and u(x, 0) = f(x),

where we assume f(x)→ 0 as x→∞.

We employ the separation of variables, u(x, t) = h(t)φ(x), where
the Sturm-Liouville problem is

φ′′ + λφ = 0, φ(0) = 0 and lim
x→∞

|φ(x)| <∞.

The solution to the SL-Problem is:

φ(x) = c1 sin(ωx), where ω =
√
λ.
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Heat Equation on Semi-Infinite Domains

The ODE in t is h ′ = −kω2h, which has the solution

h(t) = c e−kω
2t.

Thus, the product solution becomes

uω(x, t) = A(ω) sin(ωx)e−kω
2t, ω > 0.

The superposition principle gives the solution:

u(x, t) =

∫ ∞
0

A(ω) sin(ωx)e−kω
2t dω,

where

f(x) =

∫ ∞
0

A(ω) sin(ωx) dω,

and

A(ω) =
2

π

∫ ∞
0

f(x) sin(ωx)dx.
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Fourier Sine Transform

From the Fourier transforms with complex exponentials, we have the Fourier
pair:

f(x) =
1

γ

∫ ∞
−∞

F (ω)e−iωx dω,

F (ω) =
γ

2π

∫ ∞
−∞

f(x)eiωx dx, for any γ.

If f(x) is odd (choose an odd extension),

F (ω) =
γ

2π

∫ ∞
−∞

f(x) (cos(ωx) + i sin(ωx)) dx,

=
2iγ

2π

∫ ∞
0

f(x) sin(ωx) dx.

Note F (ω) is an odd function of ω, so

f(x) =
1

γ

∫ ∞
−∞

F (ω) (cos(ωx) − i sin(ωx)) dω,

= −
2i

γ

∫ ∞
0

F (ω) sin(ωx) dω,
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Fourier Sine and Cosine Transforms

For convenience, take − 2i
γ = 1, so for f(x) odd we obtain the Fourier

sine transform pair:

f(x) =

∫ ∞
0

F (ω) sin(ωx) dω ≡ S−1[F (ω)],

F (ω) =
2

π

∫ ∞
0

f(x) sin(ωx) dx ≡ S[f(x)].

Note that some like to have symmetry and have a coefficient in front
of the integrals as

√
2/π.

If f(x) is even, then we obtain the Fourier cosine transform pair:

f(x) =

∫ ∞
0

F (ω) cos(ωx) dω ≡ C−1[F (ω)],

F (ω) =
2

π

∫ ∞
0

f(x) cos(ωx) dx ≡ C[f(x)].
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Differentiation Rules for Sine and Cosine Transforms

Assume that both f(x) and df
dx

(x) are continuous and both are vanishing for large

x, i.e., limx→∞ f(x) = 0 and limx→∞
df
dx

(x) = 0.

Use integration by parts to find the transforms of the first derivatives:

C
[
df
dx

]
=

2

π

∫ ∞
0

df
dx

cos(ωx) dx =
2

π
f(x) cos(ωx)

∣∣∣∣∞
0

+
2ω

π

∫ ∞
0

f(x) sin(ωx) dx,

and

S
[
df
dx

]
=

2

π

∫ ∞
0

df
dx

sin(ωx) dx =
2

π
f(x) sin(ωx)

∣∣∣∣∞
0

−
2ω

π

∫ ∞
0

f(x) cos(ωx) dx.

It follows that

C
[
df
dx

]
= −

2

π
f(0) + ωS[f ]

and
S
[
df
dx

]
= −ωC[f ].

Note that these formulas imply that if the PDE has any first partial w.r.t. the
potential transformed variable, then Fourier sine or Fourier cosine transforms
won’t work.
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Differentiation Rules for Sine and Cosine Transforms

From the pair,

C
[
df
dx

]
= − 2

π
f(0) + ωS[f ]

and
S
[
df
dx

]
= −ωC[f ],

we can readily obtain the transforms of the second derivatives:

C
[
d2f
dx2

]
= − 2

π
df
dx (0) + ωS

[
df
dx

]
= − 2

π
df
dx (0)− ω2C[f ]

and

S
[
d2f
dx2

]
= −ωC

[
df
dx

]
=

2

π
ωf(0)− ω2S[f ].

Note: When solving a PDE (with second partials), then either
f(0) must be known and Fourier sine transforms are used
or df

dx (0) must be known and Fourier cosine transforms are used.
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Heat Equation on Semi-Infinite Domain

Consider the PDE for the heat equation on a semi-infinite domain:

∂u

∂t
= k

∂2u

∂x2
, t > 0, x > 0,

with the BC and IC:

u(0, t) = g(t) and u(x, 0) = f(x).

Since the BC is nonhomogeneous, the technique of separation of
variables does NOT apply.

Since we know u at x = 0, we want to apply the Fourier sine
transform to the PDE.
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Heat Equation on Semi-Infinite Domain

For the nonhomogeneous equation

∂u

∂t
= k

∂2u

∂x2
, t > 0, x > 0,

we apply the Fourier sine transform:

U(ω, t) =
2

π

∫ ∞
0

u(x, t) sin(ωx) dx,

which gives the ODE in U

∂U

∂t
= k

(
2

π
ωg(t)− ω2U

)
.

The Fourier sine transform of the initial condition is:

U(ω, 0) =
2

π

∫ ∞
0

f(x) sin(ωx) dx.
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Heat Equation on Semi-Infinite Domain

The ODE is linear and can be written:

∂U

∂t
+ kω2U =

2kω

π
g(t),

which is readily solved to give:

U(ω, t) = U(ω, 0)e−kω
2t +

2kω

π

∫ t

0

e−kω
2(t−s)g(s) ds.

This problem is readily solved with programs similar to the ones
shown earlier.

With specific ICs, f(x), and BCs, g(t), the integrals can be formed,
then numerically computed.
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Heat Equation on Semi-Infinite Domain

As a specific example, we choose to numerically show the solution
with

u(x, 0) = f(x) = 0, and u(0, t) = g(t) = e−at.

The Fourier sine transform satisfies:

U(ω, t) = U(ω, 0)e−kω
2t +

2kω

π

∫ t

0

e−kω
2(t−s)g(s) ds,

U(ω, t) =
2kω

π

(
e−kω

2t − e−at
)

a− kω2
.

It follows that

u(x, t) =

∫ ∞
0

U(ω, t) sin(ωx) dω.
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Heat Equation on Semi-Infinite Domain

Enter the Maple commands for the graph of u(x, t)

u := (x,t) -> (2/Pi)*(int(w*(exp(-w^2*t)-exp(-0.1*t))*sin(w*x)/

(0.1-w^2), w = 0..50));

plot3d(u(x,t), x = 0..10, t = 0..20);

The IC is

f(x) = 0.

The BC is

g(t) = e−0.1t.

This graph shows the
diffusion of the
heat with time.
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Heat Equation on Semi-Infinite Domain

In both Maple and MatLab, the integral over ω is truncated at 50.
The figure below shows that this creates some oscillations.

1 % Solution Heat Equation with FT
2 % f(x) = 0, u(0,t) = eˆ(-t)
3 N1 = 201; N2 = 201;
4 tv = linspace(0,20,N1);
5 xv = linspace(0,10,N2);
6 [t1,x1] = ndgrid(tv,xv);
7 f = @(w,c) (2*w/pi).*(exp(-c(1)*w.ˆ2)-...
8 exp(-0.1*c(1)))./(0.1-w.ˆ2);
9 for i = 1:N1

10 for j = 1:N2
11 c = [t1(i,j),x1(i,j)];
12 U(i,j) = ...

integral(@(w)f(w,c).*sin(w*c(2)),0,50);
13 end
14 end
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Heat Equation on Semi-Infinite Domain

16 set(gca,'FontSize',[12]);
17 surf(t1,x1,U);
18 shading interp
19 colormap(jet)
20 view([100 15])
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Wave Equation

Consider the wave equation on an infinite domain:

∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x <∞, t > 0,

with the ICs:

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = 0,

where the latter IC is to simplify the problem.

The Fourier transform pair satisfies:

U(ω, t) =
1

2π

∫ ∞
−∞

u(x, t)eiωx dx,

u(x, t) =

∫ ∞
−∞

U(ω, t)eiωx dω.
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Wave Equation

From the differentiation rules, we have

∂2U

∂t2
= −c2ω2U,

where the ICs give

U(ω, 0) =
1

2π

∫ ∞
−∞

f(x)eiωx dx,

∂U(ω, 0)

∂t
= 0.

The general solution becomes:

U(ω, t) = A(ω) cos(cωt) +B(ω) sin(cωt).

The IC with the velocity being zero gives B(ω) = 0.
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Wave Equation

The initial position gives:

A(ω) = U(ω, 0) =
1

2π

∫ ∞
−∞

f(x)eiωx dx.

The inverse Fourier transform satisfies:

u(x, t) =

∫ ∞
−∞

U(ω, 0) cos(cωt)e−iωx dω.

Euler’s formula gives cos(cωt) = eicωt+e−icωt

2 , so

u(x, t) =

∫ ∞
−∞

U(ω, 0)

[
e−iω(x−ct) + e−iω(x+ct)

2

]
dω.
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Wave Equation

Since

f(x) =

∫ ∞
−∞

U(ω, 0)e−iωx dω,

we have

u(x, t) =

∫ ∞
−∞

U(ω, 0)

[
e−iω(x−ct) + e−iω(x+ct)

2

]
dω,

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] .

It follows that the initial position breaks into 2 traveling waves
with velocity c in opposite directions.

This solution is also obtained using D’Alembert’s method.
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Laplace’s Equation on a Semi-Infinite Strip

Consider Laplace’s equation on a semi-infinite strip:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < L, y > 0.

with BCs:

u(0, y) = g1(y), u(L, y) = g2(y), u(x, 0) = f(x).

Divide the problem into

∇2u1 = 0,

with homogeneous BC
on the bottom.

Second problem is

∇2u2 = 0,

with homogeneous BCs on the sides.
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Laplace’s Equation on a Semi-Infinite Strip

Consider Laplace’s equation

∇2u2 = 0, 0 < x < L, y > 0,

with BCs:

u2(0, y) = 0, u2(L, y) = 0, and u2(x, 0) = f(x).

Separation of variables with u(x, y) = φ(x)h(y) gives

φ′′

φ
= −h

′′

h
= −λ, φ(0) = 0 and φ(L) = 0.

The Sturm-Liouville problem is

φ′′ + λφ = 0, φ(0) = 0 and φ(L) = 0,

so the eigenvalues and eigenfunctions are

λn =
n2π2

L2
and φn(x) = sin

(
nπx
L

)
.
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Laplace’s Equation on a Semi-Infinite Strip

The other ODE is h′′ − λnh = 0, which has the solution:

hn(y) = c1e
−nπyL + c2e

nπy
L .

For the hn(y) to be bounded as y →∞, then c2 = 0.

The superposition principle gives

u2(x, y) =
∞∑
n=1

an sin
(
nπx
L

)
e−

nπy
L .

The lower BC, u(x, 0) = f(x) gives

f(x) =
∞∑
n=1

an sin
(
nπx
L

)
,

where

an =
2

L

∫ L

0

f(x) sin
(
nπx
L

)
dx.

PDEs - Fourier Transforms B — (22/37)



Fourier Sine and Cosine Transforms
Applications

Heat Equation on Semi-Infinite Domain
Wave Equation
Laplace’s Equation on Semi-Infinite Strip

Laplace’s Equation on a Semi-Infinite Strip

The second Laplace’s problem is:

∇2u1 = 0, 0 < x < L, y > 0,

with BCs:

u1(0, y) = g1(y), u1(L, y) = g2(y), and u1(x, 0) = 0.

Separation of variables for this case gives

h(y) = c1 cos(ωy) + c2 sin(ωy), for ω ≥ 0.

The homogeneous BC at y = 0 gives c1 = 0, suggesting that we use
the Fourier sine transform.
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Laplace’s Equation on a Semi-Infinite Strip

The Fourier sine transform pair is:

u1(x, y) =

∫ ∞
0

U1(x, ω) sin(ωy) dω,

U1(x, ω) =
2

π

∫ ∞
0

u1(x, y) sin(ωy) dy.

Recall

S

[
∂2u1
∂y2

]
=

2

π
ωu1(x, 0)− ω2S[u1].

Laplace’s equation becomes:

∂2U1

∂x2
− ω2U1 = 0,

which is easily solved.
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Laplace’s Equation on a Semi-Infinite Strip

It is convenient to take the solution of the form:

U1(x, ω) = a(ω) sinh(ωx) + b(ω) sinh(ω(L− x)).

The BCs give:

U1(0, ω) = b(ω) sinh(ωL) =
2

π

∫ ∞
0

g1(y) sin(ωy) dy,

U1(L, ω) = a(ω) sinh(ωL) =
2

π

∫ ∞
0

g2(y) sin(ωy) dy,

so we can readily find a(ω) and b(ω),

a(ω) =
2

π sinh(ωL)

∫ ∞
0

g2(y) sin(ωy) dy and b(ω) =
2

π sinh(ωL)

∫ ∞
0

g1(y) sin(ωy) dy.
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Laplace’s Equation on a Semi-Infinite Strip

Example: Consider the specific case:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < 2, y > 0.

with BCs:

u(0, y) = e−y sin(y), u(2, y) =

{
2, y < 5,
0, y > 5,

u(x, 0) = x.

This problem is broken into the 2 problems with either a
homogeneous end condition or homogeneous side conditions, then the
2 solutions are added together.

We provide the details to produce a temperature profile for this
problem, using the previous work.
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Laplace’s Equation on a Semi-Infinite Strip

When the two sides are homogeneous,

∇2u2 = 0, 0 < x < 2, y > 0,

with BCs:

u2(0, y) = 0, u2(2, y) = 0, and u2(x, 0) = x.

From before, the solution is:

u2(x, y) =
∞∑
n=1

an sin
(
nπx
2

)
e−

nπy
2 ,

where using Maple, we find:

an =

∫ 2

0

x sin
(
nπx
2

)
dx =

4(−1)n+1

nπ
.
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Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for u2(x, y)
using 100 terms in the series is shown below.
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Laplace’s Equation on a Semi-Infinite Strip

1 % Solution Laplace's equation - semi-infinite strip
2 N1 = 201; N2 = 201; M = 100;
3 xv = linspace(0,2,N1);
4 yv = linspace(0,10,N2);
5 [x1,y1] = ndgrid(xv,yv);
6 for i = 1:N1
7 for j = 1:N2
8 c = [x1(i,j),y1(i,j)];
9 U2(i,j) = 0;

10 for k = 1:M
11 U2(i,j) = U2(i,j) + ...

(4*(-1)ˆ(k+1)/(k*pi))...
12 *sin(k*pi*c(1)/2)*exp(-k*pi*c(2)/2);
13 end
14 end
15 end
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Laplace’s Equation on a Semi-Infinite Strip

Laplace’s problem for u1(x, y) is:

∇2u1 = 0, 0 < x < 2, y > 0,

with BCs:

u1(0, y) = e−y sin(y), u1(2, y) =

{
2, y < 5,
0, y > 5,

u1(x, 0) = 0.

From before, the Fourier transform solution satisfies:

u1(x, y) =

∫ ∞
0

U1(x, ω) sin(ωy) dω,

where
U1(x, ω) = a(ω) sinh(ωx) + b(ω) sinh(ω(2− x)).
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Laplace’s Equation on a Semi-Infinite Strip

Once again Maple is used to find the coefficients a(ω) and b(ω):

a(ω) =
2

π sinh(2ω)

∫ 5

0

2 sin(ωy) dy,

=
4(1− cos(5ω))

ω2 sinh(2ω)
,

and

b(ω) =
2

π sinh(2ω)

∫ ∞
0

e−y sin(y) sin(ωy) dy,

=
4ω

π(ω2 − 2ω + 2)(ω2 + 2ω + 2) sinh(2ω)
.
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Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for u1a(x, y)
integrating on ω ∈ [0, 100], where this only accounts for the BC at
x = 2 (b(ω) = 0), is shown below.
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the first part of u1(x, y)

32 wmax = 100;
33 f = @(w,c) ...

4*(1-cos(5*w)).*sinh(c(1)*w).*sin(c(2)*w)...
34 ./(pi*w.*sinh(2*w));
35 for i = 1:N1
36 for j = 1:N2
37 c = [x1(i,j),y1(i,j)];
38 U1a(i,j) = integral(@(w)f(w,c),0,wmax);
39 end
40 end
41 surf(x1,y1,U1a);
42 shading interp
43 colormap(jet)
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Laplace’s Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for u1b(x, y)
integrating on ω ∈ [0, 100], where this only accounts for the BC at
x = 0 (a(ω) = 0), is shown below.
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the second part of u1(x, y)

55 wmax = 100;
56 f = @(w,c) 4*w.*sinh((2-c(1))*w).*sin(c(2)*w)...
57 ./(pi*(w.ˆ2-2*w+2).*(w.ˆ2+2*w+2).*sinh(2*w));
58 for i = 1:N1
59 for j = 1:N2
60 c = [x1(i,j),y1(i,j)];
61 U1b(i,j) = integral(@(w)f(w,c),0,wmax);
62 end
63 end
64 surf(x1,y1,U1b);
65 shading interp
66 colormap(jet)
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Laplace’s Equation on a Semi-Infinite Strip

Combining all the results above, the steady-state temperature
temperature profile for u(x, y) with the limits on number of terms in
the series and the wave numbers ω in the integral is shown below.
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Laplace’s Equation on a Semi-Infinite Strip

Below is the MatLab for the complete steady-state temperature
profile u(x, y)

78 for i = 1:N1
79 for j = 1:N2
80 U(i,j) = U2(i,j)+U1a(i,j)+U1b(i,j);
81 end
82 end
83 surf(x1,y1,U);
84 shading interp
85 colormap(jet)
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