Math 3100

Section 1.2: Row Reduction and Echelon Forms

We defined the following Elementary Row Operations

- i Interchange any two rows (row swap).
- ii Multiply a row by any nonzero constant (scaling).
- iii Replace a row with the sum of itself and a multiple of another row (**replacement**).

We said that if a sequence of these operations transforms a matrix, the result is called **Row Equivalent**.

Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems are equivalent.

Why is Row Equivalence Interesting?

The following matrices are row equivalent.

$$\begin{bmatrix} 1 & -1 & -1 & 7 \\ 1 & 2 & 2 & 1 \\ \frac{1}{2} & \frac{7}{2} & 1 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

イロト イヨト イヨト イヨト 二日

Echelon Forms

ref

(日)

Definition: A matrix is in **echelon form** (a.k.a. **row echelon form**) if the following properties hold

- i Any row of all zeros are at the bottom.
- ii The first nonzero number (called the *leading entry*) in a row is to the right of the first nonzero number in all rows above it.
- iii All entries below a leading entry are zeros.

Reduced Echelon Form

rref

< 日 > < 同 > < 回 > < 回 > < □ > <

Definition: A matrix is in **reduced echelon form** (a.k.a. **reduced row echelon form**) if it is in echelon form and the following additional properties hold

- iv The leading entry of each row is 1 (called a *leading* 1), and
- v each leading 1 is the only nonzero entry in its column.

Row Operations to Find ref's and rref's

We'll use the following notation for the three types of elementary row operations. We let R_i represent the *i*th row in a matrix.

Swap rows i and j:

$$R_i \leftrightarrow R_j$$

Scale row *i* by *k*:

$$kR_i \rightarrow R_i$$

Replace row j with the sum of itself and k times row i:

$$kR_i + R_j
ightarrow R_j$$

イロト イポト イヨト イヨト 一日

Example (finding ref's and rref's)

Find an echelon form for the following matrix using elementary row operations.

we'll work top down from left to $\begin{bmatrix} 2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2 \end{bmatrix}$ vell (Clear out the rolumn for the 1st Leading entry. Bet O where the Y is. Scretch work -2R,+R2 > R2 -4 -2 -6 4 3 6 [2 1 3] [0 1 0] [0 3 2] Move to row 2. We need 0 [] R. where the 3 is in R3.

 $-3R_2 + R_3 \rightarrow R_3$

 $\begin{bmatrix}
2 & | & 3 \\
0 & | & 0 \\
0 & 0 & 2
\end{bmatrix}$

Scratch work

- 0 -3 0 0 3 2

This is a ref for the matrix,

Find the reduced echelon form for the following matrix.

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2 \end{bmatrix}$$
 well start from the echelon form

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2 \end{bmatrix}$$
 well start from the echelon form

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 well worke right

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Need zeros above the right

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Need zeros above the right

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 nost leading 1

$$-3R_3 + R_1 \Rightarrow R_1$$

.

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Need zero above the middle leading 1
- $R_2 + R_1 \rightarrow R_1$

2 0 0 0 1 0 0 0 1) to be a 1

2R, -> R,

This is on rref

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ → ■ → のへの

Theorem: The reduced row echelon form of a matrix is unique.

This allows the following unambiguous definition:

Definition: A **pivot position** in a matrix *A* is a location that corresponds to a leading 1 in the reduced echelon form of *A*. A **pivot column** is a column of *A* that contains a pivot position.

Identify the pivot position and columns given...

A
 rref of A

$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

 The pivot positions are row 2 column2, and row 3 column 4.

 Pivot columns are columns 1, 2, and 4.

・ロト・日本・日本・日本・ 日・ うへの

Complete Row Reduction isn't needed to find Pivots Find the pivot positions and pivot columns of the matrix

This matrix has an ref and rref

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \text{ respectively.}$$

Row Reduction Algorithm

To obtain an echelon form, we work from left to right beginning with the top row working downward.

$$\begin{bmatrix} 0 & 3 & -6 & 4 & 6 \\ 3 & -7 & 8 & 8 & -5 \\ 3 & -9 & 12 & 6 & -9 \end{bmatrix} \xrightarrow{(R_1 \leftrightarrow R_3)} R_1 \leftrightarrow R_3$$

$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 3 & -7 & 8 & 8 & -5 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix} \xrightarrow{(R_1 + R_2 \rightarrow R_2)} R_2$$

Step 1: The left most column is a pivot column. The top position is a pivot position. Step 2: Get a nonzero entry in the top left position by row swapping if needed.

Row Reduction Algorithm

$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 3 & -7 & 8 & 8 & -5 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix} \xrightarrow{-R_1 + R_2 - 3R_2} \begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 0 & 2 & -4 & 2 & 4 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix}$$

$$\begin{array}{c} 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 4 & 6 \\ 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 3 & -6 & 4 & 6 \\ 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 3 & -6 & 4 & 6 \\ 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 3 & -6 & 4 & 6 \\ 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 3 & -6 & 4 & 6 \\ \end{bmatrix}$$
Step 3: Use row operations to get zeros in all entries below the pivot.

18/56

э

Row Reduction Algorithm

$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 0 & 2 & -4 & 2 & 4 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix}$$
 next time

Step 4: Ignore the row with a pivot, all rows above it, the pivot column, and all columns to its left, and repeat steps 1-3.