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Homogeneous

Heat Equation: Assume a uniform rod of length L, so that the
diffusivity, specific heat, and density do not vary in x

The general heat equation satisfies the partial differential equation
(PDE):

∂u

∂t
= k

∂2u

∂x2
+
Q(x, t)

cρ
, t > 0, 0 < x < L,

with initial conditions (ICs):

u(x, 0) = f(x), 0 < x < L,

and Dirichlet boundary conditions (BCs):

u(0, t) = T1(t) and u(L, t) = T2(t), t > 0.

If Q(x, t) ≡ 0, then the PDE is homogeneous.

If T1(t) ≡ T2(t) ≡ 0, then the BCs are homogeneous.
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Linearity

Definition (Linearity)

An operator L is linear if and only if

L[c1u1 + c2u2] = c1L[u1] + c2L[u2]

for any two functions u1 and u2 and constants c1 and c2.

Define the Heat Operator

∂

∂t
− k ∂

2

∂x2
= L.
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Principle of Superposition

The following shows linearity of the Heat Operator:

L[c1u1 + c2u2] =

(
∂

∂t
− k ∂

2

∂x2

)
(c1u1 + c2u2)

= c1
∂u1
∂t

+ c2
∂u2
∂t
− kc1

∂2u1
∂x2

− kc2
∂2u2
∂x2

= c1L[u1] + c2L[u2]

Theorem (Principle of Superposition)

If u1 and u2 satisfy a linear homogeneous equation (L(u) = 0),
then any arbitrary linear combination, c1u1 + c2u2, also satisfies the
linear homogeneous equation.

Note: Concepts of linearity and homogeneity also apply to
boundary conditions.
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Homogeneous Heat Equation

The Heat Equation with Homogeneous Boundary Conditions:

∂u

∂t
= k

∂2u

∂x2
, t > 0, 0 < x < L,

with initial conditions (ICs) and Dirichlet boundary conditions
(BCs):

u(x, 0) = f(x), 0 < x < L, with u(0, t) = 0 and u(L, t) = 0.

Separation of Variables: Developed by Daniel Bernoulli in the
1700’s, we separate the temperature u(x, t) into a product of a
function of x and a function of t

u(x, t) = φ(x)G(t)
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Separation of Variables

Separation of Variables: With u(x, t) = φ(x)G(t), we use the heat
equation and obtain:

φ(x)
dG

dt
= k

d2φ

dx2
G(t).

Separating the variables we have

1

G

dG

dt
=
k

φ

d2φ

dx2
or

1

kG

dG

dt
=

1

φ

d2φ

d2x

Since the left hand side depends only on the independent variable t
and the right hand side depends only on the independent variable x,
these must equal a constant

1

kG

dG

dt
=

1

φ

d2φ

d2x
= −λ
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Two ODEs

Thus, the Separation of Variablesresults in the two ODEs:

dG

dt
= −λkG and

d2φ

dx2
= −λφ.

The boundary conditions with the separation assumption give:

u(0, t) = G(t)φ(0) = 0 or φ(0) = 0,

since we don’t want G(t) ≡ 0. Also,

u(L, t) = G(t)φ(L) = 0 or φ(L) = 0.

The Time-dependent ODE is readily solved:

dG

dt
= −λkG,

G(t) = c e−kλt.
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Sturm-Liouville Problems

The second ODE is a BVP and is in a class we’ll be calling
Sturm-Liouville problems:

d2φ

dx2
+ λφ = 0 with φ(0) = 0 and φ(L) = 0.

Note: The trivial solution φ(x) ≡ 0 always satisfies this BVP.

If we want to satisfy a nonzero initial condition, then we need to find
nontrivial solutions to this BVP.

From our experience in ODEs, we can readily see there are 4 cases:
1. λ = 0 2. λ < 0 3. λ > 0 4. λ is complex

We’ll ignore Case 4 and later prove that Sturm-Liouville problems
only have real λ
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Sturm-Liouville Problem Cases

Consider Case 1: λ = 0, so

d2φ

dx2
= 0 with φ(0) = 0 and φ(L) = 0.

The general solution to this BVP is

φ(x) = c1x+ c2.

We have φ(0) = c2 = 0, and φ(L) = c1L = 0 or c1 = 0.

It follows that when λ = 0, the unique solution to the BVP is the
trivial solution.
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Sturm-Liouville Problem Cases

Consider Case 2: λ = −α2 < 0 with α > 0, so

d2φ

dx2
− α2φ = 0 with φ(0) = 0 and φ(L) = 0.

The general solution to this BVP is

φ(x) = c1 cosh(αx) + c2 sinh(αx).

We have φ(0) = c1 = 0, and φ(L) = c2 sinh(αL) = 0 or c2 = 0,
since sinh(αL) > 0.

It follows that when λ < 0, the unique solution to the BVP is the
trivial solution.
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Sturm-Liouville Problem Cases

Consider Case 3: λ = α2 > 0 with α > 0, so

d2φ

dx2
+ α2φ = 0 with φ(0) = 0 and φ(L) = 0.

The general solution to this BVP is

φ(x) = c1 cos(αx) + c2 sin(αx).

We have φ(0) = c1 = 0, and φ(L) = c2 sin(αL) = 0.

It follows that either c2 = 0, leading to the trivial solution, or
sin(αL) = 0.

We are interested in nontrivial solutions, so we solve sin(αL) = 0,
which occurs when αL = nπ, n = 1, 2, ... or

α =
nπ

L
, or λ =

n2π2

L2
, n = 1, 2, ...
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Eigenfunctions

We saw that if λ = α2 > 0, then the BVP:

d2φ

dx2
+ α2φ = 0 with φ(0) = 0 and φ(L) = 0,

has the nontrivial solution,

φn(x) = sin
(nπx
L

)
, n = 1, 2, ...,

which are called eigenfunctions and their associated eigenvalues
are given by

λ =
n2π2

L2
, n = 1, 2, ...

Note: φn(x) has n− 1 zeroes in 0 < x < L, which later we’ll prove is
a general property
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Eigenfunctions

The Sturm-Liouville problem from the heat equation with
Dirichlet BCs generates a set of eigenfunctions, φn(x), n = 1, 2, ...

Below is a graph of the first 3 eigenfunctions.

x

u

0 L

φ1(x)

φ2(x)
φ3(x)
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Product Solution

From above, the Sturm-Liouville problem from the heat
equation gave the eigenfunctions:

φn(x) = sin
(nπx
L

)
, n = 1, 2, ...,

with associated eigenvalues

λ =
n2π2

L2
, n = 1, 2, ...

This can be inserted into the t-equation to give:

Gn(t) = Bne
− kn2π2t

L2 .

From our separation assumption, we obtain the product solution

un(x, t) = Gn(x, t)φn(x) = Bne
− kn2π2t

L2 sin
(nπx
L

)
, n = 1, 2, ...
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Example

Example: Consider the heat equation:

PDE:
∂u

∂t
= k

∂2u

∂x2
, BC: u(0, t) = 0,

u(10, t) = 0.
IC: u(x, 0) = 4 sin

(
3πx
10

)
,

From our separation of variables results, we obtain the product
solution

un(x, t) = Bne
− kn2π2t

100 sin
(nπx

10

)
, n = 1, 2, ...

which satisfies the BVP

By inspection, we solve the IC’s by taking n = 3 and Bn = 4. This
gives the solution to this example as:

u(x, t) = 4e−
9kπ2t
100 sin

(
3πx

10

)
.
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Example

Example 2: Vary the IC and consider the heat equation:

PDE:
∂u

∂t
= k

∂2u

∂x2
, BC: u(0, t) = 0,

u(5, t) = 0.
IC: u(x, 0) = 3 sin

(
3πx
5

)
+ 7 sin(πx),

With the Principle of Superposition, we can add our product
solutions, u3(x, t) + u5(x, t).

By inspection, we satisfy the IC’s by taking B3 = 3 and B5 = 7. This
gives the solution to this example as:

u(x, t) = 3e−
9kπ2t

25 sin

(
3πx

5

)
+ 7e−kπ

2t sin(πx).
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Extended Superposition Principle

Extended Superposition Principle: The superposition principle
can be extended to show that if u1, u2, ..., uM , are solutions of a
linear homogeneous problem, then any linear combination

c1u1 + c2u2 + ...+ cMuM ,

is also a solution.

It follows for the homogeneous heat problem

ut = kuxx, u(0, t) = 0 and u(L, t) = 0,

that we can write a solution of the form

u(x, t) =
M∑
n=1

Bne
− kn2π2t

L2 sin
(nπx
L

)
.
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Heat Problem with ICs

The complete homogeneous heat problem includes an IC.

Again the solution has the form:

u(x, t) =
M∑
n=1

Bne
− kn2π2t

L2 sin
(nπx
L

)
,

and will satisfy any IC, where

u(x, 0) =
M∑
n=1

Bn sin
(nπx
L

)
= f(x),

i.e., any IC that is a finite sum of sine functions.

What can we do about solving an arbitrary f(x)?

Separation of Variables — (19/32)



Homogeneous Heat Equation
Separation of Variables

Orthogonality and Computer Approximation

Two ODEs
Eigenfunctions
Superposition

Arbitrary ICs

What if f(x) is NOT a finite linear combination of appropriate sine
functions?

Soon we’ll learn about Fourier series

1 Any function with reasonable restrictions can be approximated
by a linear combination of sin

(
nπx
L

)
2 The approximation improves with M increasing

3 If we consider the limit as M →∞, then with some restrictions
the eigenfunctions, sin

(
nπx
L

)
in the right combination converges

to f(x)

4 It remains to find the constants, Bn, such that:

f(x) =
∞∑
n=1

Bn sin
(nπx
L

)
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Orthogonality of Sines

Assume m 6= n, integers and with some trig identities consider

∫ L

0
sin
(mπx

L

)
sin
(nπx
L

)
dx =

∫ L

0

cos
(

(n−m)πx
L

)
− cos

(
(n+m)πx

L

)
2

dx

=
1

2

 sin
(

(n−m)πx
L

)
(n−m)π/L

−
sin
(

(n+m)πx
L

)
(n+m)π/L

∣∣∣∣∣∣
L

0

= 0

When m = n, then∫ L

0
sin2

(nπx
L

)
dx =

∫ L

0

1 − cos
(
2nπx
L

)
2

dx

=

(
x

2
−

sin
(
2nπx
L

)
4nπ/L

)∣∣∣∣∣
L

0

=
L

2
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Orthogonality

Definition (Orthogonality - Function Inner Product)

Whenever ∫ L

0

A(x)B(x)dx = 0,

we say that the functions, A(x) and B(x) are orthogonal over the
interval [0, L].

Previous slide shows that the set of functions, sin
(
nπx
L

)
, n = 1, 2, ...,

are orthogonal to each other

This orthogonal set of functions arise from the eigenvalue BVP:

φ′′ + λφ = 0, φ(0) = 0 and φ(L) = 0.

Later generalize this property to any Sturm-Liouville Problem
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Finding Bn

Consider the expression

f(x) =
∞∑
n=1

Bn sin
(nπx
L

)

Use the orthogonality of these sine functions, so multiply both
sides by sin

(
mπx
L

)
and integrate x ∈ [0, L]∫ L

0

f(x) sin
(mπx

L

)
dx =

∫ L

0

( ∞∑
n=1

Bn sin
(nπx
L

))
sin
(mπx

L

)
dx

To use orthogonality requires some analysis to allow the interchange
of the integration and summation
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Finding Bn

Assuming we can interchange the integration and summation,∫ L

0

f(x) sin
(mπx

L

)
dx =

∞∑
n=1

Bn

∫ L

0

(
sin
(nπx
L

)
sin
(mπx

L

))
dx

= Bm

(
L

2

)
,

by the orthogonality of the sine functions

If follows that we can obtain the appropriate coefficients (Fourier) to
represent an arbitrary function f(x),

Bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.
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Heat Equation Example

Example: Consider the equation:

PDE: ut = kuxx, t > 0, 0 < x < L,

BC: u(0, t) = 0, u(L, t) = 0, t > 0,

IC: u(x, 0) = 100, 0 < x < L

From before, the solution satisfies:

u(x, t) =
∞∑
n=1

Bne
− kn2π2t

L2 sin
(nπx
L

)
.

The Fourier coefficients are given by

Bn =
2

L

∫ L

0

100 sin
(nπx
L

)
dx.
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Heat Equation Example

Expanding the Fourier coefficients:

Bn =
2

L

∫ L

0

100 sin
(nπx
L

)
dx =

200

L

(
− L

nπ
cos
(nπx
L

))∣∣∣∣L
0

=
200

nπ
(1− cos(nπ)) =

{
400
nπ , n odd,
0, n even.

Thus, the solution satisfies:

u(x, t) =
200

π

∞∑
n=1

(1− (−1)n)

n
e−

kn2π2t
L2 sin

(nπx
L

)
.

Because of the coefficient on the exponential decay term, this solution
rapidly approaches

u(x, t) ≈ 400

π
e−

kπ2t
L2 sin

(πx
L

)
.
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Heat Equation with Maple

Heat Equation with Maple: Show commands and plots.

> u := (x,t) -> (200/Pi)*sum(((1-(-1)^n)/n)*sin(n*Pi*x/10)

*exp(-(n*Pi/10)^2*t),n=1..20);

> plot3d(u(x,t),x=0..10,t=0..20);
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Heat Equation with Maple

Heat Equation with Maple: Increase the sum to 60 (30 nonzero
terms)
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Heat Equation with MatLab

MatLab Program for Heat equation solution u(x, t)

1 % Solutions to the heat flow equation
2 % on one-dimensional rod length L
3 format compact;
4 L = 10; % length of rod
5 Temp = 100; % Constant temperature of ...

rod, initially
6 tfin = 20; % final time
7 k = 1; % heat coef of the medium
8 x=linspace(0,L,151);
9 t=linspace(0,tfin,151);

10 [X,T]=meshgrid(x,t);
11

12 b=zeros(1,200);
13 U=zeros(NptsT,NptsX);
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Heat Equation with MatLab

14 for n=1:200
15 b(n)=(2*Temp/(n*pi))*(1-(-1)ˆn); % Fourier ...

coefficients
16 Un=b(n)*exp(-(n*pi*k/L)ˆ2*T).*sin(n*pi*X/L); ...

% Temperature(n)
17 U=U+Un;
18 end
19

20 set(gca,'FontSize',[14]);
21 surf(X,T,U);
22 shading interp
23 xlabel('$x$','Fontsize',14,'interpreter','latex');
24 ylabel('$t$','Fontsize',14,'interpreter','latex');
25 zlabel('$u(x,t)$','Fontsize',14,'interpreter','latex');
26 axis tight;
27 view([120 10]);
28 print -depsc heat surf.eps
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Heat Equation with MatLab

Graph of Heat Equation Solution using 200 terms with MatLab
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Heat Equation with MatLab

Changing the view to view([0 90]);, obtain a heat map
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