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Homogeneous Heat Equation Basic Definitions

Principle of Superposition

Homogeneous

Heat Equation: Assume a uniform rod of length L, so that the
diffusivity, specific heat, and density do not vary in x

The general heat equation satisfies the partial differential equation
(PDE):
@ = k@ + Q(l’,t),
ot ox? cp

with initial conditions (ICs):

t>0, 0<z<L,

u(z,0) = f(x), 0<z<lL,
and Dirichlet boundary conditions (BCs):
u(0,¢) =Ti(t) and wu(L,t)=Ts(t), t>0.

If Q(z,t) = 0, then the PDE is homogeneous.
If Ty (t) = T2(t) = 0, then the BCs are homogeneous.

Separation of Variables — (3/32)



Homogeneous Heat Equation Basic Definitions

Principle of Superposition

Linearity

Definition (Linearity)

An operator L is linear if and only if
E[clul + CQ’LLQ] = cl[,[ul] + CQE[UQ]

for any two functions u; and us and constants ¢; and cs.

Define the Heat Operator

0 02
a Yo
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Homogeneous Heat Equation Basic Definitions
Principle of Superposition

Principle of Superposition

The following shows linearity of the Heat Operator:

0 0?
Llcrug + coug] = 5% k@ (cruy + cous)
0w N Ouy . Pur QPuy
- a ot 2 ot “ 0z 2 0x?

clﬁ[ul] + CQE[UQ]

Theorem (Principle of Superposition)

If uy and usy satisfy a linear homogeneous equation (L(u)=10),
then any arbitrary linear combination, cyuy + cousg, also satisfies the
linear homogeneous equation.

Note: Concepts of linearity and homogeneity also apply to
boundary conditions.
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Separation of Variables

Homogeneous Heat Equation

The Heat Equation with Homogeneous Boundary Conditions:

ou o%u
e B
t_k 1 t>0, O<z<lL,

with initial conditions (ICs) and Dirichlet boundary conditions
(BCs):

u(z,0) = f(z), O0<axz< L, with w(0,¢)=0 and wu(L,t)=0.

Separation of Variables: Developed by Daniel Bernoulli in the
1700’s, we separate the temperature u(zx,t) into a product of a
function of x and a function of ¢

u(z,t) = o(x)G(t)
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Separation of Variables

Separation of Variables

Separation of Variables: With u(z,t) = ¢(z)G(t), we use the heat
equation and obtain:

2
G _, ¢

@ = Faztl)

¢(x)

Separating the variables we have
1dG kd%¢p o 1 dG 1d%¢
A _rrEY " - _ -2 Y
G dt ¢ dz? kG dt ¢ d2x
Since the left hand side depends only on the independent variable ¢
and the right hand side depends only on the independent variable x,
these must equal a constant
146 1d
kG dt ¢ d2x
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Two ODEs

Thus, the Separation of Variablesresults in the two ODEs:
dG d?¢ B

— = —\kG and

IV
dt dx? ¢

The boundary conditions with the separation assumption give:
u(0,t) = G(t)p(0) =0 or  ¢(0) =0,
since we don’t want G(t) = 0. Also,

w,t)=Gt)$(L)=0 or  ¢(L)=0.

The Time-dependent ODE is readily solved:

dG
Tk
dt ©
Gt) = ce ™
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Sturm-Liouville Problems

The second ODE is a BVP and is in a class we’ll be calling

Sturm-Liouville problems:

d2
chf +Xp=0 with ¢0)=0 and ¢(L)=0.
Note: The trivial solution ¢(z) = 0 always satisfies this BVP.

If we want to satisfy a nonzero initial condition, then we need to find
nontrivial solutions to this BVP.

From our experience in ODEs, we can readily see there are 4 cases:
1. A=0 2. A<0 3.A>0 4. )\ is complex

We'll ignore Case 4 and later prove that Sturm-Liouville problems
only have real A
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Sturm-Liouville Problem Cases

Consider Case 1: A =0, so

d2
d—;f:o with $(0) =0 and (L) = 0.

The general solution to this BVP is
o(z) = 1z + ca.

We have ¢(0) = ca =0, and ¢(L) =c1L=0 or ¢ =0.

It follows that when A = 0, the unique solution to the BVP is the
trivial solution.
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Sturm-Liouville Problem Cases

Consider Case 2: A = —a? < 0 with a > 0, so

d*¢ _

s ?p=0 with ¢(0)=0 and ¢(L)=0.

The general solution to this BVP is
@(x) = ¢1 cosh(ax) + cg sinh(ax).

We have ¢(0) = ¢; =0, and ¢(L) = casinh(al) =0 or ¢ =0,
since sinh(aL) > 0.

It follows that when A < 0, the unique solution to the BVP is the
trivial solution.
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Sturm-Liouville Problem Cases

Consider Case 3: A = a? > 0 with a > 0, so

yri a®’¢p=0 with ¢(0)=0 and ¢(L)=0.

The general solution to this BVP is

¢(x) = c1 cos(ax) + co sin(ax).
We have ¢(0) = ¢; =0, and ¢(L) = casin(al) = 0.
It follows that either co = 0, leading to the trivial solution, or
sin(aL) = 0.
We are interested in nontrivial solutions, so we solve sin(aL) = 0,
which occurs when oL = nm,n =1,2,... or

nm TL27T2

Oé:f, or )\:7, TL:].,Q,...
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Eigenfunctions

We saw that if A = o > 0, then the BVP:

a2

i o?p=0 with ¢(0)=0 and ¢(L)=0,

has the nontrivial solution,

nwx

on(z) = sin (L) , n=12..,
L

which are called eigenfunctions and their associated eigenvalues

are given by

n?n?

A=

n=12,..

Note: ¢, (x) has n — 1 zeroes in 0 < z < L, which later we’ll prove is
a general property
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Eigenfunctions

The Sturm-Liouville problem from the heat equation with
Dirichlet BCs generates a set of eigenfunctions, ¢,(z),n =1,2, ...

Below is a graph of the first 3 eigenfunctions.

o1(z)

¢() ba(x)

T
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Product Solution

From above, the Sturm-Liouville problem from the heat
equation gave the eigenfunctions:

¢n(x) = sin e , n=12,..,
L

with associated eigenvalues

n?n?

A= T2

n=12..

This can be inserted into the t-equation to give:

_ kn2n2t

Gn(t) = Bpe 2

From our separation assumption, we obtain the product solution

n2x2t
Up(2,t) = Gp(x,t)dn(x) = Bne U sin (?) , n=12..
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Example

Example: Consider the heat equation:
PDE: % = k@ BC: u(0,t) =0
ot 0x?’ P E =5
u(10,t) = 0.

IC: u(x,0) = 4sin (27£),

From our separation of variables results, we obtain the product
solution

Up(z,t) = Bpe™ 00 sin (%) , n=12,..

which satisfies the BVP

By inspection, we solve the IC’s by taking n = 3 and B,, = 4. This
gives the solution to this example as:

o2t 3
u(z,t) = de” 160" sin <1ﬂ§> .
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Example

Example 2: Vary the IC and consider the heat equation:

2
ppE: 24— 9 BC: u(0,t) = 0,

ot ox?’
u(5,t) = 0.
IC: u(x,0) = 3sin (32%) + Tsin(rz),
With the Principle of Superposition, we can add our product
solutions, uz(z,t) + us(x, t).
By inspection, we satisfy the IC’s by taking B3 = 3 and B; = 7. This

gives the solution to this example as:

9kn2t

3
u(z,t) = 3e~ 25 sin (?) 4 7k sin(mx).
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Extended Superposition Principle

Extended Superposition Principle: The superposition principle
can be extended to show that if uq, us, ..., ups, are solutions of a
linear homogeneous problem, then any linear combination

c1uy + caUg + ... + Ccprupg,

is also a solution.

It follows for the homogeneous heat problem
U = kg, u(0,t) =0 and wu(L,t) =0,

that we can write a solution of the form

kn?n2t nmx
B 5 g (712,
Z e L Sin I
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Heat Problem with 1Cs

The complete homogeneous heat problem includes an IC.

Again the solution has the form:

kn2n2t nmx
Bue 5 sin (7).
Z e L Sin I3

and will satisfy any IC, where

M
0) =" Busin (“T7) = f(@),
n=1

i.e., any IC that is a finite sum of sine functions.

What can we do about solving an arbitrary f(x)?
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Two ODEs
Separation of Variables Eigenfunctions
Superposition

Arbitrary ICs

What if f(x) is NOT a finite linear combination of appropriate sine
functions?

Soon we’ll learn about Fourier series

@ Any function with reasonable restrictions can be approximated

by a linear combination of sin (%)

© The approximation improves with M increasing

© If we consider the limit as M — oo, then with some restrictions

the eigenfunctions, sin (“7£) in the right combination converges

to f(z)
@ It remains to find the constants, B,,, such that:

flz) = i B, sin (?)
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Orthogonality S
H qt Example

Orthogonality and Computer Approximation Maple and MatLab

Orthogonality of Sines

Assume m # n, integers and with some trig identities consider
(nfz’b)‘/rz> _ cos ((n+2n)7rz)

[y - [ ’
sin ((n=minz) gy ((bmime ) |©

(n—m)r/L  (n+m)r/L

N | =

When m = n, then

/OL sin? (?) dx

/L 1 — cos (—Q"L’””) J
——= dx
0
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Orthogonality and Computer Approximation

Orthogonality

Whenever

we say that the functions, A(z) and B(x) are orthogonal over the
interval [0, L].

Previous slide shows that the set of functions, sin (T) ,n=12 ..,
are orthogonal to each other

This orthogonal set of functions arise from the eigenvalue BVP:
¢" + Ao =0, ¢(0)=0 and ¢(L)=

Later generalize this property to any Sturm-Liouville Problem
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Orthogonality of Sines
He quation Example
Orthogonality and Computer Approximation Maple and MatLab

Finding B,

Consider the expression
> nm
=3 Busin (77)
flx) 712::1 sin { —

Use the orthogonality of these sine functions, so multiply both

mmx

sides by sin (%) and integrate z € [0, L]

[ r@sn (") ar= [ (i B, sin ("zx)) an (755 da

To use orthogonality requires some analysis to allow the interchange
of the integration and summation
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Orthogonality of Sines
He quation Example
Orthogonality and Computer Approximation Maple and MatLab

Finding B,

Assuming we can interchange the integration and summation,

/ f(z sm ) dx nzx) sin (?)) dx

I
o)
S
S—
h
w0
£
|

by the orthogonality of the sine functions

If follows that we can obtain the appropriate coefficients (Fourier) to
represent an arbitrary function f(z),

= ZQL/OL f(z)sin (?) dx.

Separation of Variables — (24/32)



Orthogonality of Sines
Heat Equation ample
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation Example

Example: Consider the equation:
PDE: vy = kugg, t>0, 0<zxz<L,
BC: u(0,t) =0, u(L,t) =0, t>0,
IC: u(z,0) =100, O0<z<L

From before, the solution satisfies:

> _kn2x2:¢ | nmwx
u(x,t) = Z Bpe” * sin (T) .
n=1

The Fourier coefficients are given by

2 L
B, = f/o 100 sin (?) da.
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Orthogonality of Sines
Heat Equation Example

Orthogonality and Computer Approximation Maple and MatLab

Heat Equation Example

Expanding the Fourier coefficients:

2 [ . /nTx 200 L nwT L

Bn = z/o 100sin (77 ) de = - (‘m (L)) .
200 400 n odd,
B E(l—cos(nw)) o { 0, n even.

Thus, the solution satisfies:

200 o= (1 — (=1)" en?n?t
200~ (1= (=D") & sin(mm).

e L2 —

L

u(z,t)

n=1

Because of the coefficient on the exponential decay term, this solution

rapidly approaches

400 _ k<2t . /TX
u(x,t)  —e~ LT sin (f) .
T
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Orthogonality of Sines
Heat Equation Example
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation with Maple

Heat Equation with Maple: Show commands and plots.

>u := (x,t) -> (200/Pi)*sum(((1-(-1)"n)/n)*sin(n*Pi*x/10)
*xexp (- (n*Pi/10) "2*t) ,n=1..20);
> plot3d(u(x,t),x=0..10,t=0..20);
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Orthogonality and Computer Approximation

Heat Equation with Maple

terms)
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Orthogonality and Computer Approximation

Heat Equation with MatLab

MatLab Program for Heat equation solution u(z,t)

Solutions to the heat flow equation

% on one—-dimensional rod length L

L = 10;

Temp = 100;

rod, initially

6 tfin = 20; ¥ final time
7 k = 1; % heat coef of the medium
8
9

length of rod

1

2

3 format compact;
4

5 Constant temperature of

o° o

\o

x=linspace(0,L,151);
t=linspace(0,tfin, 151);
10 [X,T]=meshgrid(x,t);

12 b=zeros(1,200);
13 U=zeros (NptsT, NptsX) ;
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thogonality o
eat Equation Ex npl(
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation with MatLab

14 for n=1:200

15 b(n)=(2+xTemp/ (nxpi) ) * (1-(-1) "n); % Fourier
coefficients

16 Un=Db (n) *exp (- (nxpi*xk/L) "2%T) .*xsin (n*pi*X/L);
% Temperature (n)

17 U=U+Un;

18 end

19

20 set(gca, 'FontSize', [14]);

21 surf(X,T,U);

22 shading interp

23 xlabel ('$x$','Fontsize',14, "interpreter','latex');

24 ylabel ('$t$', 'Fontsize',14, 'interpreter', "latex');

25 zlabel ('Su(x,t)$', 'Fontsize',14, "interpreter', 'latex')
26 axis tight;

27 view ([120 10]);

28 print —-depsc heat_surf.eps
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Orthogonality of Sines
atlo Xample
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation with MatLab
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Orthogonality of Sines
atlo Xample
Orthogonality and Computer Approximation Maple and MatLab

Heat Equation with MatLab

T
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