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Heat Equation - Insulated BCs

The Heat Equation - Insulated BCs:

∂u

∂t
= k

∂2u

∂x2
, t > 0, 0 < x < L,

with initial conditions (ICs) and Neumann or Insulated
boundary conditions (BCs):

u(x, 0) = f(x), 0 < x < L, with ux(0, t) = 0 and ux(L, t) = 0.

Separation of Variables: Again we separate the temperature
u(x, t) into a product of a function of x and a function of t

u(x, t) = φ(x)G(t)

From the PDE we have

φG′ = kφ′′G or
G′

kG
=
φ′′

φ
= −λ
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Heat Equation - Insulated BCs

Two ODEs: The separation of variables leaves to ODEs. The
time-varying ODE is:

G′ = −kλG,
which has the solution

G(t) = Ae−kλt.

The associated Sturm-Liouville/BVP in space, x, is

φ′′ + λφ = 0 with φ′(0) = 0 and φ′(L) = 0.

We must consider 3 cases, depending on λ.

Case (i): Let λ = 0, then φ′′ = 0 or φ(x) = c2x+ c1.

The BCs give φ′(0) = φ′(L) = c2 = 0. However, c1 is arbitrary, so we
have an eigenvalue λ0 = 0 with associated eigenfunction:

φ0(x) = 1.
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Heat Equation - Insulated BCs

Case (ii): Let λ = −α2 < 0, then φ′′ − α2φ = 0, so

φ(x) = c1 cosh(αx) + c2 sinh(αx).

The BC at x = 0 gives φ′(0) = c2α = 0, so c2 = 0.

Similarly, φ′(L) = c1α sinh(αl) = 0, so c1 = 0.

Thus, if λ < 0, only the trivial solution, φ(x) ≡ 0, satisfies the BCs.

Case (iii): Let λ = α2 > 0, then φ′′ + α2φ = 0, so

φ(x) = c1 cos(αx) + c2 sin(αx).

The BC at x = 0 gives φ′(0) = c2α = 0, so c2 = 0.

The other BC gives φ′(L) = −c1α sin(αL) = 0.

Since we do NOT want the trivial solution, we need sin(αL) = 0 or
αL = nπ, n = 1, 2, ... or

αn =
nπ

L
or λn =

n2π2

L2
, n = 1, 2, ...

Separation of Variables — (5/37)



Heat Equation - Other Examples
Laplace’s Equation - Rectangle

Laplace’s Equation - Circular Disk
Properties of Laplace Equation

Heat Equation - Insulated BCs
Orthogonality of Cosines
Heat Conduction in a Ring

Heat Equation - Insulated BCs

Case (iii): (cont.) Since the arbitrary constant is associated with
the cosine function, the eigenfunction is:

φn(x) = cos
(nπx
L

)
.

The product solutions are:

u0(x, t) = 1 and un(x, t) = e−
kn2π2t
L2 cos

(nπx
L

)
.

The Superposition Principle gives the solution:

u(x, t) = A0 +
∞∑
n=1

Ane
− kn2π2t

L2 cos
(nπx
L

)
.
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Orthogonality of Cosines

Assume m 6= n, integers and with some trig identities consider∫ L

0
cos
(mπx

L

)
cos
(nπx
L

)
dx =

∫ L

0

cos
(

(n−m)πx
L

)
+ cos

(
(n+m)πx

L

)
2

dx

=
1

2

 sin
(

(n−m)πx
L

)
(n−m)π/L

+
sin
(

(n+m)πx
L

)
(n+m)π/L

∣∣∣∣∣∣
L

0

= 0

When m = n, then∫ L

0
cos2

(nπx
L

)
dx =

∫ L

0

1 + cos
(
2nπx
L

)
2

dx

=

(
x

2
+

sin
(
2nπx
L

)
4nπ/L

)∣∣∣∣∣
L

0

=
L

2
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Orthogonality of φ0(x) and φn(x)

Consider φ0(x) = 1 and φn(x), and integrate

∫ L

0
1 · cos

(nπx
L

)
dx =

L

nπ

(
sin
(nπx
L

))∣∣∣L
0

= 0.

Also, ∫ L

0
(1 · 1)dx = L.

The eigenfunctions, φi(x), i = 0, 1, 2, ..., are mutually
orthogonal, which allows finding Fourier coefficients for any
initial conditions, f(x), where

u(x, 0) = f(x) = A0 +
∞∑
n=1

An cos
(nπx
L

)
.
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Fourier Coefficients

For

f(x) = A0 +
∞∑
n=1

An cos
(nπx
L

)
,

we first multiply by φ0(x) = 1 and integrate x ∈ [0, L], which by
orthogonality with φn(x), n = 1, 2, ... gives∫ L

0

f(x)dx =

∫ L

0

A0dx = A0L, or A0 =
1

L

∫ L

0

f(x)dx.

Next we multiply by φm(x) and integrate x ∈ [0, L], so∫ L

0

f(x) cos
(mπx

L

)
dx =

∞∑
n=1

An

∫ L

0

(
cos
(mπx

L

)
cos
(nπx
L

))
dx,

= Am

(
L

2

)
from orthogonality.
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Fourier Coefficients

It follows that the Fourier coefficients are:

A0 =
1

L

∫ L

0

f(x)dx and An =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx.

Recall the solution of the heat equation with insulated
boundaries conditions is given by:

u(x, t) = A0 +

∞∑
n=1

Ane
− kn2π2t

L2 cos
(nπx
L

)
.

The steady-state solution examines t→∞,

lim
t→∞

u(x, t) = A0 =
1

L

∫ L

0

f(x)dx,

which is the average temperature distribution from the ICs.
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Heat Conduction in a Ring 1

Heat Conduction in a Ring: Here we consider a thin, insulated
wire that is deformed into a ring.

x = −L

x = L

x = 0

The model satisfies the
heat equation.

PDE: ut = kuxx,
t > 0, −L < x < L,

BC: Periodic (homogeneous):
u(−L, t) = u(L, t),
ux(−L, t) = ux(L, t),

IC: u(x, 0) = f(x), −L < x < L.
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Heat Conduction in a Ring 2

The PDE for the Heat Equation in a Ring separates as before, so
if u(x, t) = φ(x)G(t), then

φG′ = kφ′′G or
G′

kG
=
φ′′

φ
= −λ

Again the time-varying ODE is:

G′ = −kλG,

which has the solution
G(t) = Ae−kλt.
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Heat Conduction in a Ring 3

The associated Sturm-Liouville/BVP in space, x, is

φ′′ + λφ = 0 with φ(−L) = φ(L) and φ′(−L) = φ′(L).

Case (i): Let λ = 0, then φ′′ = 0 or φ(x) = c2x+ c1.

The BCs give φ(−L)− φ(L) = −2c2L = 0 or c2 = 0.

Also, φ′(−L)− φ′(L) = c2 − c2 = 0, which gives no new information.

Thus, c1 is arbitrary, so we have an eigenvalue λ0 = 0 with associated
eigenfunction:

φ0(x) = 1.
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Heat Conduction in a Ring 4

Case (ii): Let λ = −α2 < 0, then φ′′ − α2φ = 0, so

φ(x) = c1 cosh(αx) + c2 sinh(αx).

The first BC gives
c1 cosh(−αL) + c2 sinh(−αL) = c1 cosh(αL) + c2 sinh(αL), so
2c2 sinh(αL) = 0 (from cosh being even and sinh being odd). Hence,
c2 = 0.

The second BC gives
c1α sinh(−αL) + c2α cosh(−αL) = c1α sinh(αL) + c2α cosh(αL), so
2c1α sinh(αL) = 0 or c1 = 0.

Thus, if λ < 0, only the trivial solution, φ(x) ≡ 0, satisfies the BCs.
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Heat Conduction in a Ring 5

Case (iii): Let λ = α2 > 0, then φ′′ + α2φ = 0, so

φ(x) = c1 cos(αx) + c2 sin(αx).

The first BC gives
c1 cos(−αL) + c2 sin(−αL) = c1 cos(αL) + c2 sin(αL), so
2c2 sin(αL) = 0 (from cos being even and sin being odd), which has
nontrivial solutions, c2 6= 0, when αn = nπ/L, n = 1, 2, ...

The second BC gives
−c1α sin(−αL) + c2α cos(−αL) = −c1α sin(αL) + c2α cos(αL), so
2c1α sin(αL) = 0, which has nontrivial solutions, c1 6= 0, when
αn = nπ/L, n = 1, 2, ...

It follows that λn = α2
n = n2π2

L2 , n = 1, 2, ..., are eigenvalues with
corresponding independent eigenfunctions

φn(x) = An cos
(nπx
L

)
+Bn sin

(nπx
L

)
, n = 1, 2, ...

Separation of Variables — (15/37)



Heat Equation - Other Examples
Laplace’s Equation - Rectangle

Laplace’s Equation - Circular Disk
Properties of Laplace Equation

Heat Equation - Insulated BCs
Orthogonality of Cosines
Heat Conduction in a Ring

Heat Conduction in a Ring 6

The product solutions are:

u0(x, t) = A0

un(x, t) = e−
kn2π2t
L2

(
An cos

(nπx
L

)
+Bn sin

(nπx
L

))
.

The Superposition Principle gives the solution:

u(x, t) = A0 +
∞∑
n=1

e−
kn2π2t
L2

(
An cos

(nπx
L

)
+Bn sin

(nπx
L

))
.

The Initial Condition gives

u(x, 0) = f(x) = A0 +

∞∑
n=1

(
An cos

(nπx
L

)
+Bn sin

(nπx
L

))
.

Separation of Variables — (16/37)



Heat Equation - Other Examples
Laplace’s Equation - Rectangle

Laplace’s Equation - Circular Disk
Properties of Laplace Equation

Heat Equation - Insulated BCs
Orthogonality of Cosines
Heat Conduction in a Ring

Orthogonality

The orthogonality over x ∈ (−L,L) give∫ L

−L
cos
(mπx

L

)
cos
(nπx
L

)
dx =

 0 n 6= m,
L n = m 6= 0,
2L n = m = 0.∫ L

−L
sin
(mπx

L

)
sin
(nπx
L

)
dx =

{
0 n 6= m,
L n = m 6= 0.∫ L

−L
cos
(mπx

L

)
sin
(nπx
L

)
dx = 0 for all n > 0, m ≥ 0.

The Fourier coefficients are

A0 =
1

2L

∫ L

−L
f(x)dx,

An =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx,

Bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.
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Laplace’s Equation 1

Laplace’s Equation on a Rectangle: Consider a rectangular
region, 0 ≤ x ≤ L and 0 ≤ y ≤ H. We seek the steady-state
temperature distribution in this rectangle

u = f1(x)

u
=

g
1
(y
)

∇
2u = 0

u = f2(x)

u
=

g
2 (y

)

Laplace’s Equation
satisfies:

PDE: ∇2u = 0,
∂2u
∂x2 + ∂2u

∂y2 = 0.

BC’s: u(x, 0) = f1(x),
u(x,H) = f2(x),
u(0, y) = g1(y),
u(L, y) = g2(y)

This problem has 4 nonhomogeneous BC’s
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Laplace’s Equation 2

Laplace’s Equation on a Rectangle: It is easier to use the
superposition principle and divide the problem into 4 problems,
each with only one nonhomogeneous BC

u1 = f1(x)

u
1
=

0
∇

2u1 = 0

u1 = 0

u
1
=

0

Laplace’s Equation
satisfies:

PDE: ∇2u1 = 0,
∂2u1

∂x2 + ∂2u1

∂y2 = 0.

BC’s: u1(x, 0) = f1(x),
u1(x,H) = 0,
u1(0, y) = 0,
u1(L, y) = 0

This problem is readily solved with our Separation of Variables
technique. (Similarly, for the other 3 problems.)
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Laplace’s Equation 3

Laplace’s Equation on a Rectangle: Consider the problem:

∂2u1
∂x2

+
∂2u1
∂y2

= 0, 0 < x < L and 0 < y < H.

The BCs are

u1(x, 0) = f1(x), u1(x,H) = 0,
u1(0, y) = 0, u1(L, y) = 0.

Assume u(x, y) = φ(x)ψ(y), then the PDE becomes

φ′′ψ + φψ′′ = 0 or
φ′′(x)

φ(x)
= −ψ

′′(y)

ψ(y)
= −λ,

which is a constant because each side of the equation varies
independently in either x or y.
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Laplace’s Equation 4

From our separation assumption the homogeneous BCs imply that

ψ(H) = 0, φ(0) = 0, and φ(L) = 0.

We need to locate our Sturm-Liouville problem to obtain our
eigenvalues and eigenfunctions for this PDE.

Significantly, we find the pairwise homogeneous BC conditions, which
in this case are associated with φ(x), so examine

φ′′ + λφ = 0, with φ(0) = 0 and φ(L) = 0.

This eigenvalue problem is familiar from before with

Eigenvalues: λn =
n2π2

L2
, n = 1, 2, ...

Eigenfunctions: φn(x) = sin
(
nπx
L

)
, n = 1, 2, ...
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Laplace’s Equation 5

With the eigenvalues, λn = n2π2

L2 , we solve the second ODE:

ψ′′ − n2π2

L2
= 0, with ψ(H) = 0.

With the homogeneous boundary condition, it suggests selecting the
linearly independent solutions:

ψ(y) = c1 cosh

(
nπ(H − y)

L

)
+ c2 sinh

(
nπ(H − y)

L

)
.

The BC, ψ(H) = 0, gives ψ(H) = c1 = 0, so

ψn(y) = c2 sinh

(
nπ(H − y)

L

)
.

The results above are combined with un(x, y) = φn(x)ψn(x)

Separation of Variables — (22/37)
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Laplace’s Equation 6

The extended superposition principle gives the following solution:

u1(x, y) =
∞∑
n=1

Bn sin
(nπx
L

)
sinh

(
nπ(H − y)

L

)
.

It remains to examine the nonhomogeneous BC

u1(x, 0) = f1(x) =
∞∑
n=1

Bn sin
(nπx
L

)
sinh

(
nπH

L

)

We use the orthogonality of the sines to obtain the Fourier
coefficients

Bn sinh

(
nπH

L

)
=

2

L

∫ L

0

f1(x) sin
(nπx
L

)
dx
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Laplace’s Equation 7

This process could be repeated for each of the other Dirichlet BCs to
find the 3 other solutions with 3 homogeneous BCs

For example, if u2(0, y) = g1(y) (other BCs homogeneous), then the
same procedure above gives

u2(x, y) =
∞∑
n=1

Cn sinh

(
nπ(L− x)

H

)
sin
(nπy
H

)
,

where the Fourier coefficient satisfies

Cn =
2

H sinh
(
nπL
H

) ∫ H

0

g1(x) sin
(nπy
H

)
dy.

We solve all these problems, then the general Laplace’s equation
satisfies

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).

Separation of Variables — (24/37)
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Laplace’s Equation 1

Laplace’s Equation - Circular Disk: Consider a circular region,
0 ≤ r ≤ a and −π < θ ≤ π. Find the steady-state temperature
distribution.

a

f (θ)
Laplace’s Equation
satisfies:

PDE: ∇2u = 1
r
∂
∂r

(
r ∂u∂r

)
+ 1

r2
∂2u
∂θ2 = 0.

BC: u(a, θ) = f(θ),

This problem has periodic BCs
(homogeneous):

u(r,−π) = u(r, π) and uθ(r,−π) = uθ(r, π).

There is an implicit BC that solutions are bounded, so

|u(0, θ)| <∞.

Separation of Variables — (25/37)
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Laplace’s Equation 2

Separation of Variables: Let u(r, θ) = φ(θ)G(r)

1

r

d

dr

(
r
dG

dr

)
φ+

1

r2
Gφ′′ = 0.

This gives
r

G

d

dr

(
r
dG

dr

)
= −φ

′′

φ
= λ.

The Sturm-Liouville problem has the eigenvalue problem:

φ′′ + λφ = 0,

where the periodic BCs on u(r, θ) imply that

φ(−π) = φ(π) and φ′(−π) = φ′(π).

Separation of Variables — (26/37)
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Laplace’s Equation 4

Earlier we saw that the Sturm-Liouville problem:

φ′′ + λφ = 0, φ(−π) = φ(π) and φ′(−π) = φ′(π),

with periodic BCs satisfies the following:

1 If λ < 0, then only the trivial solution exists.

2 For λ0 = 0, there is the eigenfunction

φ0(x) = 1.

3 For λ = α2 > 0, we obtain eigenvalues and eigenfunctions:

λn = n2, φn(θ) = An cos(nθ) +Bn sin(nθ), n = 1, 2, ...

Separation of Variables — (27/37)
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Laplace’s Equation 5

From the separation of variables, the r equation becomes

r
d

dr

(
r
dG

dr

)
= n2G

or
r2G′′ + rG′ − n2G = 0.

When n = 0, the r equation satisfies:

d

dr

(
r
dG

dr

)
= 0,

which is integrated twice to give

r
dG

dr
= c1,

G(r) = c1 ln(r) + c2.
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Laplace’s Equation 6

Thus, for λ0 = 0, we have G0(r) = c1 ln(r) + c2.

The boundedness BC as r → 0 implies c1 = 0, so

G0(r) = c2

For n > 0, the differential equation in G(r) is Euler’s equation:

r2G′′ + rG− n2G = 0,

which is solved by using G(r) = crα, so G′(r) = cαrα−1 and
G′′(r) = cα(α− 1)rα−2 or

cα(α− 1)rα + cαrα − n2crα = 0,

crα(α2 − n2) = 0

Thus, the general solution to this Euler’s equation is:

Gn(r) = c1r
−n + c2r

n.
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Laplace’s Equation 7

The boundedness BC as r → 0 implies for Gn(r) = c1r
−n + c2r

n

that c1 = 0, so
Gn(r) = c2r

n.

Combining the results above with the Superposition Principle
gives:

u(r, θ) = A0 +
∞∑
n=1

Anr
n cos(nθ) +

∞∑
n=1

Bnr
n sin(nθ),

0 ≤ r < a, −π < θ ≤ π.
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Laplace’s Equation 8

Applying the BC at r = a gives:

u(a, θ) = f(θ) = A0+
∞∑
n=1

Ana
n cos(nθ)+

∞∑
n=1

Bna
n sin(nθ), −π < θ ≤ π.

From the orthogonality, the Fourier coefficients are

A0 =
1

2π

∫ π

−π
f(θ)dθ

An =
1

πan

∫ π

−π
f(θ) cos(nθ)dθ Bn =

1

πan

∫ π

−π
f(θ) sin(nθ)dθ

Note that in Steady-state the temperature at the center of the disk
is the average of the perimeter temperature
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Mean Value Theorem

Theorem (Mean Value Theorem)

The average solution of Laplace’s equation inside a circle gives the
temperature at the center (origin or r = 0),

u(0, θ) = A0 =
1

2π

∫ π

−π
f(θ)dθ.

The temperature at the center of a circle is the average of the
temperature around any circle of radius, r0, (inside R)

Separation of Variables — (32/37)



Heat Equation - Other Examples
Laplace’s Equation - Rectangle

Laplace’s Equation - Circular Disk
Properties of Laplace Equation

Maximum Principle
Well-posedness
Uniqueness
Solvability Condition

Maximum Principle

Theorem (Maximum Principle)

In steady state, the temperature cannot attain its maximum (or
minimum) in the interior unless the temperature is constant
everywhere (assuming no sources or sinks).

Sketch of Proof: Assume there is a maximum at a point P inside R.
Create a small circle about P completely inside R. If it is the
maximum point, then it can only be the average of the surrounding
circle if all points on the circle are also maximum points. Thus, all
points throughout the region have the same value.

It follows that the maximum and minimum temperatures occur on
the boundary of R.
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Well-posedness

A problem is well-posed if there exists a unique solution that
depends continuously on the nonhomogeneous data, i.e., small
variations in the data result in small changes in the solution

Consider

∇2u = 0 on R with u = f(x) on ∂R.

Consider a small variation on the boundary, ∂R, with g(x) ≈ f(x)

∇2v = 0 on R with v = g(x) on ∂R.

Let w = u− v. Clearly,

∇2w = 0 on R with w = f(x)− g(x) on ∂R.
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Well-posedness

Since

∇2w = 0 on R with w = f(x)− g(x) on ∂R,

the Maximum (and minimum) principle give the maximum and
minimum of the solution occur on the boundary, ∂R.

It follows that

min(f(x)− g(x)) ≤ w ≤ max(f(x)− g(x)) for all x ∈ R.

Thus, if f(x) is close to g(x), then w is small everywhere in R
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Uniqueness

Theorem (Uniqueness)

If u(x) is a solution of

∇2u = 0 for x ∈ R with u = f(x) on ∂R,

then u(x) is unique.

Proof: Suppose there is another v(x) with ∇2v = 0 and v = f(x) on
∂R. Let w = u− v, then

∇2w = 0 for x ∈ R with w = 0 on ∂R.

The Maximum principle implies w(x) ≡ 0. Thus, u(x) = v(x), so
u(x) is unique. Q.E.D.
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Solvability Condition

If the heat flow is specified, −K0∇u · ñ, on the boundary, ∂R and
suppose that

∇2u = 0 onR.

According to the Divergence Theorem, we have∫∫
R

∇2u dA =

∫∫
R

∇ · ∇u dA =

∮
∂R

∇u · ñ dS.

Thus, when u satisfies Laplace’s equation, then the net heat flow
through the boundary, ∂R, must be zero for the solvability
(compatibility) condition.
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