Math 3100

Section 1.3: Vector Equations
Definition: A matrix that consists of one columnis called a column
vector or simply a vector.
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The set of vectors of the form [ ? } with x; and xo any real numbers
2

is denoted by R? (read "R two”). It’s the set of all real ordered pairs.
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Geometry

Each vector [ X
X2

corresponds to a point in the Cartesian plane. We
can equate them with ordered pairs written in the traditional format

[ ? ] = (x1, X2). This is not to be confused with a row matrix.
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We can identify vectors with points or with directed line segments
emanating from the origin (little arrows).

2/27



Geometry
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Figure: Vectors characterized as points, and vectors characterized as

directed line segments.
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Algebraic Operations
Letu:[u1 ,v:[w],andcbeascalaﬂ.
uz V2

Scalar Multiplication: The scalar multiple of u

cu= | S |,

Ccuo

Vector Addition: The sum of vectors u and v

u V-
u+v:{ " 1}

Us + Vo

Vector Equivalence: Equality of vectors is defined by

u=v ifandonlyif uy=vi and u, = vo.

A scalar is an element of the set from which u; and u» come. For our purposes, a
scalar is a real number.
4/27



Examples

Evaluate

y 2w | x:?’]
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(b) —2u+dv: m{l Lm}- 25

37 3 {‘u‘.] N [;}
Is it true that w = —3u? ke 7.
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Geometry of Algebra with Vectors
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Figure: Left: }(—4,1) = (-2,1/2). Right: (—4,1) + (2,5) = (—2,6)

6/27



Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only

change direction by an angle of 0 (if ¢ > 0) or = (if ¢ < 0). We'll see
that Ou = (0, 0) for any vector u.

v
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Geometry of Algebra with Vectors

Vector Addition: The sum u + v of two vectors (each different from

(0,0)) is the the fourth vertex of a parallelogram whose other three
vertices are (uy, Us), (v1, v2), and (0, 0).
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Vectors in R"

A vector in R% is a 3 x 1 column matrix. These are ordered triples. For
example

1 X1
a=| 3 |, or x=| x |.= ("')X‘JX3)
—1 X3

A vector in R" for n > 2 is a n x 1 column matrix. These are ordered
n-tuples. For example
X1
X2 -
x— | ] (o,

Xa)

oS
Xn

The Zero Vector: is the vector whose entries are all zeros. It will be

denoted by 0 or 0 and is not to be confused with the scalar 0.
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Algebraic Properties on R”

For every u, v, and w in R” and scalars ¢ and d?

(i) u+v=v+u (v) c(u+v)=cu+cv
(i) (u+v)+w=u+(v+w) (v (c+du=cu+du
(i) u+0=0+u=u (vii) c(du) =d(cu) = (cd)u

(iv) u+(—u)=—-u+u=0 (vii) lu=u

2The term —u denotes (—1)u.
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Definition: Linear Combination

A linear combination of vectors vy,...vp in R" is a vector y of the form
Y =C{Vi+ -+ CpVp
where the scalars cy, . .., ¢, are often called weights.

For example, suppose we have two vectors vy and v,. Some linear
combinations include

’
3vi, —2vi+4vp, Vot Vv2vy, and 0= 0vy + Ovs.
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Example

1 3 -2

Letaj=| -2 |,aa=| 0 |,andb= | —2 |. Determine if b can
—1 2 -3

be written as a linear combination of a; and as.
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Some Convenient Notation

art a2 ayj
. a1 aoo . aoj
Letting a; = . , A0 = , and in general a; = , for
ami amp

j=1,...,n, we can denote the m x n matrix whose columns are these
vectors by

ayn a2 -+ Ain
ay ap -+ Azp

[ay a2 -+ ap = . . . .
am ame amn

Note that each vector a; is a vector in RM,
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Vector and Matrix Equations

The vector equation

Xja1 +Xoa2+ -+ xpap=Db

has the same solution set as the linear system whose augmented
matrix is

[ay a2 --- ap b]. (1)

In particular, b is a linear combination of the vectors a4, ..., a, if and

only if the linear system whose augmented matrix is given in (1) is
consistent.
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Definition of Span

Let S = {vy,...,Vvp} be a set of vectors in R". The set of all linear
combinations of vy, ..., Vp is denoted by

Span{vy,...,vp} = Span(S).

It is called the subset of R"” spanned by (a.k.a. generated by) the
set {vy,...,Vp}.

To say that a vector b is in Span{vy,...,v,} means that there exists a
set of scalars ¢y, ..., Cp such that b can be written as
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Span: Three Equivalent Things

1. Ifbisin Span{vy,...,Vp},thenb = cyvy + - - + CpVp.

2. From the previous result, we know this is equivalent to saying that
the vector equation

has a solution.

3. This is in turn the same thing as saying the linear system with
augmented matrix [vy --- v, b] is consistent.
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Examples

1 —1
Leta;=| 1 |,anday= | 4 |.
2 -2

4
(a) Determine if b = { 2 ] is in Span{ay,az}.
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