Math 3100

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column** vector or simply a vector.

In print, vectors are denoted by bold face characters. In hond writting vectors are denoted by an overbar or arrow e.g. is a vector called """ The set of vectors of the form $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with x_1 and x_2 any real numbers is denoted by \mathbb{P}^2 (see 1) \mathbb{P}^2 (see 1) \mathbb{P}^2 is denoted by \mathbb{R}^2 (read "R two"). It's the set of all real ordered pairs.

Geometry

Each vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (x_1, x_2)$. This is **not to be confused with a row matrix.**

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

(ロ)、(型)、(E)、(E)、(E)、(O)(C)

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

Algebraic Operations Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar¹. Scalar Multiplication: The scalar multiple of \mathbf{u}

$$c\mathbf{u} = \left[egin{array}{c} cu_1 \ cu_2 \end{array}
ight]$$

Vector Addition: The sum of vectors u and v

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

¹A **scalar** is an element of the set from which u_1 and u_2 come. For our purposes, a scalar is a *real* number.

Examples

$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$

Evaluate
(a) $-2\mathbf{u} = -\mathbf{z} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -2(4) \\ -2(-2) \end{bmatrix} = \begin{bmatrix} -9 \\ 4 \end{bmatrix}$
Note
 $3\sqrt{3} = 3 \begin{bmatrix} -1 \\ -7 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} =$

Figure: Left: $\frac{1}{2}(-4, 1) = (-2, 1/2)$. Right: (-4, 1) + (2, 5) = (-2, 6)

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} .

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (each different from (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).

Vectors in \mathbb{R}^n

A vector in \mathbb{R}^3 is a 3 \times 1 column matrix. These are ordered triples. For example

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} \cdot \mathbf{f} \left(\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_3 \right)$$

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered *n*-tuples. For example

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \cdot = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by **0** or $\vec{0}$ and is not to be confused with the scalar 0.

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^2

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (viii) $1\mathbf{u} = \mathbf{u}$

²The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3v_1, -2v_1 + 4v_2, \frac{1}{3}v_2 + \sqrt{2}v_1, \text{ and } 0 = 0v_1 + 0v_2.$$

<ロト <回ト < 三ト < 三ト = 三

Example

Let
$$\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_{2} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can
be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2} .
To thus exist scalars c_{1} and c_{2} such that
 $\vec{b} = c_{1}\vec{a}_{1} + c_{2}\vec{a}_{2}$? Set \mathbf{a}_{1} and equation
 $c_{1} \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} + c_{2} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} c_{1} \\ -2c_{1} \\ -c_{1} \end{bmatrix} + \begin{bmatrix} 3c_{2} \\ 0 \\ 2c_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$

$$\begin{cases} C_1 + 3 C_2 \\ -2C_1 + 0 \\ -C_1 + 2C_2 \end{cases} = \begin{bmatrix} -2 \\ -2 \\ -2 \\ -3 \end{bmatrix}$$
This holds if
$$C_1 + 3 C_2 = -2$$

$$C_1 + 3 C_2 = -2$$

$$C_1 + 2C_2 = -3$$
Diver system of equations

< □ > < @ > < E > < E > E のQ @ 13/27 Does the third equation hold? - $C_1 + 2C_2 = -(1) + 2(-1) = -3$

Yes. b is a linear combination of a. and as with weights $C_1 = 1 \quad md \quad C_2 = -1$ That is $1\ddot{a}_{1} + (-1)\ddot{a}_{2} = \vec{b}$

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for $j = 1, ..., n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_i is a vector in \mathbb{R}^m .

Vector and Matrix Equations

The vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}]. \tag{1}$$

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of Span

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by

 $\text{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\text{Span}(S).$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

To say that a vector **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } means that there exists a set of scalars c_1, \ldots, c_p such that **b** can be written as

 $c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p.$

Span: Three Equivalent Things

- 1. If **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }, then $\mathbf{b} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$.
- 2. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

has a solution.

3. This is in turn the same thing as saying the linear system with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$ is consistent.

Examples
Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1\\ 4\\ -2 \end{bmatrix}$.
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4\\ 2\\ 1 \end{bmatrix}$ is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.
Does the system with exponented moments
 $\begin{bmatrix} \overline{a}_1 & \overline{a}_2 & \overline{b} \end{bmatrix}$ have a solution,
 $\begin{bmatrix} \overline{a}_1 & \overline{a}_2 & \overline{b} \end{bmatrix}$ have a solution,
The matrix is
 $\begin{bmatrix} 1 & -1 & 4\\ 1 & 4 & 2\\ 2 & -2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$

The last column is a pivot column. The system is inconsistent. b is not in Spon (a, a, d.).