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Introduction Derivation
String Equation

Introduction

An important application of PDEs is the investigation of vibrations
of perfectly elastic strings and membranes

Perturbed String

Equilibrium

(highly stretched)

@ Consider a particle at position « in a highly stretched string

@ Assume a small displacement as seen above
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Introduction Derivation
String Equation

Derivation

Simplify by assuming the displacement is only vertical, y = u(z,t)

T z+Ax

@ Apply Newton’s Law to an infinitesimally small segment of
string between x and = + Ax

@ Assume string has mass density po(z), so mass is po(x)Azx
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Introduction Derivation
String Equation

Derivation

Newton’s Law acting on string considers all forces

Forces include gravity, resistance,
and tension - “body” forces

Assume string is perfectly flexible,
so no bending resistance

This implies primary force is
tangent to the string at all points

v+ Az

Tension is the tangential force with

@_3u
de Oz
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Introduction Derivation
String Equation

Derivation

Newton’s Law gives F = ma, which is

po()Az—5 = T(x+ Ax,t)sin(f(x + Az, t))
—T(z,t)sin(f(x,t)) + po(z)AzQ(&, 1),

where € € [z,z + Ax] and Q(&,t) are any “body” accelerations, such
as gravity or air resistance.

Dividing by Az and taking the limit as Az — 0 gives

po(x)% = (,% (T(x,t) sin(@(m,t))) + po(2)Q(z,1).

For 6 “small,” let

Vibrating String — (6/14)



Introduction Derivation
String Equation

String Equation

From previous results, obtain String Equation

2U
i) 5 = - (TEO5E ) + Qo)

If the string is perfectly elastic, then T'(z,t) & Ty constant, which is
equivalent to almost uniform stretching along string

0%u 0%u

Po(ﬂ?)ﬁ =To 05,2 + po(2)Q(z,1).

If the body force is small and density is constant, then
Pu 2 0%u
a2 " 922

where ¢2 = Lo,
PO
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Physical Interpretation
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Vibrating String - Separation of Variables

The vibrating string satisfies the following:
0%u 0%u
PDE: — =c*—
o2~ 922
IC: u(z,0) = f(a),
u(,0) = g(x).
This vibrating string problem or wave equation has fixed ends at
z =0 and z = L and initial position, f(z), and initial velocity, g(x).

As before, we apply our separation of variables technique:
u(x,t) = ¢(x)h(t),

S0 h// ¢//

¢"h=c*¢h”  or
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Physical Interpretation
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Vibrating String - SL. Problem

The homogeneous BC's give:

#(0)=0 and o(L) = 0.

The Sturm-Liouville Problem becomes

"+ Xp=0 with #(0) = 0= ¢(L).

As before, we saw A < 0 results in the trivial solution.

If we take A = a2 > 0, then
o(x) = ¢ cos(ax) + co sin(ax),
where the BCs show ¢; =0 and o = 5+ for nontrivial solutions.

The eigenvalues and associated eigenfunctions are

TL27T2 ’I”L7T.’£)

>\7L = 7 with ¢n($) = s (T
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Interpretation

Vibrating String

Vibrating String - Superposition

The other second order DFE becomes:

2 2

h// L 2h_0

which has the solution

hn(t) = c1 cos ("”‘t) + cg sin (7”2“5) .

It follows that

Un(,t) = [Ay cos (%5<L) + By, sin (27<) ] sin (222)

The Superposition principle gives:
o0
u(z,t) = Z [A, cos (22<L) + By, sin (27<) ] sin (27£)
n=1
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Interpretation

Vibrating String

Vibrating String - ICs

The initial position gives:

u(z,0) = f(z) = Z Ap sin (212)
n=1

where
J— 2 L 4 nmTT d
/s f(x)sin (T) .
The velocity satisfies
(oo}
wr(,t) = 3 [~ Ausin (2) + By cos (232)] (252) sin (232)
n=1

The initial velocity gives:

ut(z,0) = g(z) = ZB" "”C)sm(”zz),
n=1
where
2 L
Bp = — g(x) sin (272) dz.

nmc Jo
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Physical Interpretation

Physical Interpretation: Model for vibrating string

o0

u(z,t) = Z [A, cos (22<L) + By, sin (27) ] sin (27£)
n=1
@ Musical instruments
@ Each value of n gives a normal mode of vibration

@ Intensity depends on the amplitude

A, cos(wt)+ B, sin(wt) = /A2 + B2 sin(wt+0), 6 = arctan (

B, )
@ Time dependence is simple harmonic with circular
frequency, "¢, which is the number of oscillations in 27 units
of time

@ The sound produced consists of superposition of the infinite
number of natural frequencies, n=1,2, ...
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Physical Interpretation

Physical Interpretation (cont):

@ The normal mode, n = 1, is called the first harmonic or
Sfundamental mode

@ This mode has circular frequency, 7*

@ Higher natural frequencies have higher pitch

@ Fundamental frequency varied by changing, ¢ = 4/ %

e Tune by changing tension, Tj

e Different pg for different strings (range of notes)

e Musician varies pitch by varying the length L (clamping
string)

@ Higher harmonics for stringed instruments are all integral
multiples (pleasing to the ear)
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Traveling Wave

Traveling Wave: Show that the solution to the vibrating string
decomposes into two waves traveling in opposite directions.
@ At each ¢, each mode looks like a simple oscillation in x, which is
a standing wave
@ The amplitude simply varies in time
@ The standing wave satisfies:

sin (272) sin (22<) = L cos (25 (z — ct)) — 4 cos (ZE(z + ct))

° %cos (”—L”(x - ct)) produces a traveling wave to the right

with velocity ¢

o 5 cos (%% (z + ct)) produces a traveling wave to the left
with velocity —c

@ By superposition (later d’Alembert’s solution)

u(z,t) = R(x — ct) + S(z + ct)
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