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Introduction

An important application of PDEs is the investigation of vibrations
of perfectly elastic strings and membranes

Perturbed String

Equilibrium

(highly stretched)

v

u

(x, y)

α

Consider a particle at position α in a highly stretched string

Assume a small displacement as seen above
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Derivation 1

Simplify by assuming the displacement is only vertical, y = u(x, t)

x x+∆x

θ(x, t)

θ(x+∆x, t)

T (x+∆x, t)

T (x, t)

Apply Newton’s Law to an infinitesimally small segment of
string between x and x+ ∆x

Assume string has mass density ρ0(x), so mass is ρ0(x)∆x
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Derivation 2

Newton’s Law acting on string considers all forces

x x+∆x

θ(x, t)

θ(x+∆x, t)

T (x+∆x, t)

T (x, t)

Forces include gravity, resistance,
and tension - “body” forces

Assume string is perfectly flexible,
so no bending resistance

This implies primary force is
tangent to the string at all points

Tension is the tangential force with

dy

dx
=
∂u

∂x
= tan(θ(x, t))
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Derivation 3

Newton’s Law gives F̃ = mã, which is

ρ0(x)∆x
∂2u

∂t2
= T (x+ ∆x, t) sin(θ(x+ ∆x, t))

−T (x, t) sin(θ(x, t)) + ρ0(x)∆xQ(ξ, t),

where ξ ∈ [x, x+ ∆x] and Q(ξ, t) are any “body” accelerations, such
as gravity or air resistance.

Dividing by ∆x and taking the limit as ∆x→ 0 gives

ρ0(x)
∂2u

∂t2
=

∂

∂x

(
T (x, t) sin(θ(x, t))

)
+ ρ0(x)Q(x, t).

For θ “small,” let

∂u

∂x
= tan(θ) =

sin(θ)

cos(θ)
≈ sin(θ)
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String Equation

From previous results, obtain String Equation

ρ0(x)
∂2u

∂t2
=

∂

∂x

(
T (x, t)

∂u

∂x

)
+ ρ0(x)Q(x, t).

If the string is perfectly elastic, then T (x, t) ≈ T0 constant, which is
equivalent to almost uniform stretching along string

ρ0(x)
∂2u

∂t2
= T0

∂2u

∂x2
+ ρ0(x)Q(x, t).

If the body force is small and density is constant, then

∂2u

∂t2
= c2

∂2u

∂x2
,

where c2 = T0

ρ0
.

Vibrating String — (7/14)



Introduction
Vibrating String

Physical Interpretation
Traveling Wave

Vibrating String - Separation of Variables

The vibrating string satisfies the following:

PDE:
∂2u

∂t2
= c2

∂2u

∂x2
, BC: u(0, t) = 0,

u(L, t) = 0.
IC: u(x, 0) = f(x),

ut(x, 0) = g(x).

This vibrating string problem or wave equation has fixed ends at
x = 0 and x = L and initial position, f(x), and initial velocity, g(x).

As before, we apply our separation of variables technique:

u(x, t) = φ(x)h(t),

so

φ′′h = c2φh′′ or
h′′

c2h
=
φ′′

φ
= −λ.
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Vibrating String - SL Problem

The homogeneous BCs give:

φ(0) = 0 and φ(L) = 0.

The Sturm-Liouville Problem becomes

φ′′ + λφ = 0 with φ(0) = 0 = φ(L).

As before, we saw λ ≤ 0 results in the trivial solution.

If we take λ = α2 > 0, then

φ(x) = c1 cos(αx) + c2 sin(αx),

where the BCs show c1 = 0 and α = nπ
L for nontrivial solutions.

The eigenvalues and associated eigenfunctions are

λn =
n2π2

L2
with φn(x) = sin

(nπx
L

)
.
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Vibrating String - Superposition

The other second order DE becomes:

h′′ +
n2π2

L2
c2h = 0,

which has the solution

hn(t) = c1 cos
(
nπct
L

)
+ c2 sin

(
nπct
L

)
.

It follows that

un(x, t) =
[
An cos

(
nπct
L

)
+Bn sin

(
nπct
L

)]
sin
(
nπx
L

)
The Superposition principle gives:

u(x, t) =
∞∑
n=1

[
An cos

(
nπct
L

)
+Bn sin

(
nπct
L

)]
sin
(
nπx
L

)
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Vibrating String - ICs

The initial position gives:

u(x, 0) = f(x) =
∞∑
n=1

An sin
(
nπx
L

)
,

where

An =
2

L

∫ L

0
f(x) sin

(
nπx
L

)
dx.

The velocity satisfies

ut(x, t) =
∞∑
n=1

[
−An sin

(
nπct
L

)
+Bn cos

(
nπct
L

)] (
nπc
L

)
sin
(
nπx
L

)
.

The initial velocity gives:

ut(x, 0) = g(x) =
∞∑
n=1

Bn
(
nπc
L

)
sin
(
nπx
L

)
,

where

Bn =
2

nπc

∫ L

0
g(x) sin

(
nπx
L

)
dx.
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Physical Interpretation

Physical Interpretation: Model for vibrating string

u(x, t) =
∞∑
n=1

[
An cos

(
nπct
L

)
+Bn sin

(
nπct
L

)]
sin
(
nπx
L

)
Musical instruments

Each value of n gives a normal mode of vibration

Intensity depends on the amplitude

An cos(ωt)+Bn sin(ωt) =
√
A2
n +B2

n sin(ωt+θ), θ = arctan
(
An

Bn

)
Time dependence is simple harmonic with circular
frequency, nπc

L , which is the number of oscillations in 2π units
of time

The sound produced consists of superposition of the infinite
number of natural frequencies, n = 1, 2, ...
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Physical Interpretation

Physical Interpretation (cont):

The normal mode, n = 1, is called the first harmonic or
fundamental mode

This mode has circular frequency, πc
L

Higher natural frequencies have higher pitch

Fundamental frequency varied by changing, c =
√

T0

ρ0

Tune by changing tension, T0
Different ρ0 for different strings (range of notes)
Musician varies pitch by varying the length L (clamping
string)

Higher harmonics for stringed instruments are all integral
multiples (pleasing to the ear)
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Traveling Wave

Traveling Wave: Show that the solution to the vibrating string
decomposes into two waves traveling in opposite directions.

At each t, each mode looks like a simple oscillation in x, which is
a standing wave

The amplitude simply varies in time

The standing wave satisfies:

sin
(
nπx
L

)
sin
(
nπct
L

)
= 1

2 cos
(
nπ
L (x− ct)

)
− 1

2 cos
(
nπ
L (x+ ct)

)
1
2 cos

(
nπ
L (x− ct)

)
produces a traveling wave to the right

with velocity c
1
2 cos

(
nπ
L (x+ ct)

)
produces a traveling wave to the left

with velocity −c
By superposition (later d’Alembert’s solution)

u(x, t) = R(x− ct) + S(x+ ct)
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