Math 3100

Section 1.4: The Matrix Equation Ax = b.

Definition Let A be an m x n matrix whose columns are the vectors

a;, a», --- ,a, (each in R™), and let x be a vector in R". Then the
product of A and x, denoted by

AX

is the linear combination of the columns of A whose weights are the
corresponding entries in x. That is

AX = xj@1 + Xo@o + - - - + Xpan.

(Note that the result is a vector in R™!)
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Example

Find the product Ax. Simplify to the extent possible. NG b
.1
1 0 -3 21 =™
-2 -1 4 4 q
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Example
Find the product Ax. Simplify to the extent possible.

n
2 4
A= -1 1 x:[_z?’} M=
0 3 .
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Example
Write the linear system as a vector equation and then as a matrix

equation of the form Ax = b.

2y — 33X + x3 = 2
Xy + X0 + = —1
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Theorem

If Ais the m x n matrix whose columns are the vectors a4, ao, - - - ,ap,
and b is in R, then the matrix equation

Ax=Db
has the same solution set as the vector equation
Xia1 +Xoa2+ .-+ Xxpap=Db

which, in turn, has the same solution set as the linear system of
equations whose augmented matrix is

[ay a2 --- ap bl
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Corollary

The equation Ax = b has a solution if and only if b is a linear
combination of the columns of A.

In other words, the corresponding linear system is consistent if and
only if b is in Span{ay,az,...,an}.
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Example
Characterize the set of all vectors b = (by, bo, b3) such that Ax = b
has a solution where

1 3 4
A=| 4 2 -6 |.
-3 -2 -7
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Theorem (first in a string of equivalency theorems)

Let Abe an m x n matrix. Then the following are logically equivalent
(i.e. they are either all true or are all false).

(a) Foreach b in R™, the equation Ax = b has a solution.
(b) Each binR™ is a linear combination of the columns of A.
(c) The columns of A span R™.

(d) A has a pivot position in every row.

(Note that statement (d) is about the coefficient matrix A, not about an
augmented matrix [A b].)
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Computing Ax

We can use a row-vector dot product rule. The i entry is Ax is the

sum of products of corresponding entries from row i of A with those of
x. For example

{1 0 3}{2]: 2+0: 1 +63)-() 5
22+ U (1) -4
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22 + M)
_3} = \-\(-’n ¢ V(1)

o(-3) + 32
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|dentity Matrix

We’ll call an n x n matrix with 1’s on the diagonal and Q’s everywhere
else—i.e. one that looks like

1.0 - 0
01 - 0
00 - 1

the n x n identity matrix and denote it by /,. (We’ll drop the subscript if
it's obvious from the context.)

This matrix has the property that for each x in R"

X = X.
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Theorem: Properties of the Matrix Product

If Ais an m x n matrix, u and v are vectors in R”, and c is any scalar,
then
(a) A(u+v)=Au+ Av, and

(b) A(cu) = cAu.
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