Math 3100

Section 1.4: The Matrix Equation Ax = b.

Definition Let *A* be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ (each in \mathbb{R}^m), and let **x** be a vector in \mathbb{R}^n . Then the product of *A* and **x**, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in **x**. That is

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n.$$

(Note that the result is a vector in $\mathbb{R}^{m!}$)

イロト 不得 トイヨト イヨト

Find the product Ax. Simplify to the extent possible.

The product
$$A\mathbf{x}$$
. Simplify to the extent possible.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \qquad \overset{n \sim 2}{\overset{n \sim 2}{\underset{-1}{1}} \qquad \overset{n \sim 2}{\underset$$

Find the product *A***x**. Simplify to the extent possible.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \qquad \begin{array}{c} \mathbf{m} = 3 \\ \vec{x} \text{ in } \mathbb{R}^2 \\ \vec{x} \text{ in } \mathbb{R}^2 \\ A \vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 \\ = -3 \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\$$

▲□▶▲圖▶★厘▶★厘▶ 厘 のQC

0-2

Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of *A*.

In other words, the corresponding linear system is consistent if and only if **b** is in Span{ $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ }.

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \left[\begin{array}{rrrr} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{array} \right].$$

be can determine the b's by using equivalence to the system with augmented matrix [Ab]. Will use row reduction. Find the met of

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix}$$

$$4R_1 + R_2 \rightarrow R_2$$
$$3R_1 + R_3 \rightarrow R_3$$

(4日)(4日)(4日)(4日)(日)(900)

◆□▶ ◆圖▶ ◆目▶ ◆目▶ 目 - のへで

9/35

The system is consistent only if the 4th column is not a pivot column. The system is consisten if $2b_{3}+6b_{1}-(b_{2}+4b_{1})=0$ $3b_1 - b_2 + 2b_3 = 0$ The system is consistent provided the entries of I satisfy this condition. We can state $ab_{1} = b_{2} - 2b_{3}$ this as $b_1 = \frac{1}{2}b_2 - b_3$ where by and by an free

The vectors look like

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}b_2 & -b_3 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}b_2 \\ b_3 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} +$$

Theorem (first in a string of equivalency theorems)

Let *A* be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

(a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.

(b) Each **b** in \mathbb{R}^m is a linear combination of the columns of *A*.

(c) The columns of A span \mathbb{R}^m .

(d) A has a pivot position in every row.

(Note that statement (d) is about the *coefficient* matrix A, not about an augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$.)

Computing Ax

We can use a *row-vector* dot product rule. The i^{th} entry is $A\mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of \mathbf{x} . For example

$$\begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} : \begin{bmatrix} 1 \cdot 2 + 0 \cdot | + (\cdot 3) \cdot (-1) \\ -2 \cdot 2 + (-1) \cdot | + 4 \cdot (-1) \end{bmatrix} : \begin{bmatrix} 5 \\ -9 \end{bmatrix}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $\begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2(-3) + 4(2) \\ -1(-3) + 1(2) \\ 0(-3) + 3(2) \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ 3x 2 R²

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1x_1 + 0x_2 + 0x_3 \\ 0x_1 + 1x_2 + 0x_3 \\ 0x_1 + 0x_2 + 1x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $3 \times 3 \quad \mathbb{R}^3$

14/35

Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else—i.e. one that looks like

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

the $n \times n$ **identity** matrix and denote it by I_n . (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^n

$$l_n \mathbf{x} = \mathbf{x}.$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem: Properties of the Matrix Product

If *A* is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and *c* is any scalar, then

(a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, and

(b) $A(c\mathbf{u}) = cA\mathbf{u}$.