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Heat in Nonuniform Rod 1

Heat Flow in Nonuniform Rod: Suppose that the specific heat,
c(x), density, ρ(x), and thermal conductivity, K0(x), all depend
on the spatial variable x

Suppose that the heat source Q(x, t) = α(x)u(x, t) satisfies
Newton’s Law of Cooling, which is proportional to heat in the bar
(with environmental temperature being zero)

From before, this gives the Heat Equation:

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ αu,

which is homogeneous
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Heat in Nonuniform Rod 2

Heat Flow in Nonuniform Rod (cont): Apply separation of
variables, u(x, t) = φ(x)h(t), to the PDE and rearrange to

h′

h
=

1

cρφ

d

dx

(
K0

dφ

dx

)
+
α

cρ
= −λ.

The differential equation in x is

d

dx

(
K0

dφ

dx

)
+ αφ+ λcρφ = 0.

This is a Sturm-Liouville Problem, if there are homogeneous
BCs

Solution to this differential equation may be difficult to find.
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Circularly Symmetric Heat Flow 1

Circularly Symmetric Heat Flow: Consider a circularly
symmetric region with a uniform material, so k = K0

cρ , the Heat
Equation is

∂u

∂t
= k

1

r

∂

∂r

(
r
∂u

∂r

)
.

Apply separation of variables, u(r, t) = φ(r)h(t), to the PDE and
rearrange to

h′

kh
=

1

rφ

d

dr

(
r
dφ

dr

)
= −λ.

The differential equation in r is

d

dr

(
r
dφ

dr

)
+ λrφ = 0.
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Circularly Symmetric Heat Flow 2

The Sturm-Liouville Problem in r is

d

dr

(
r
dφ

dr

)
+ λrφ = 0,

if there are homogeneous BCs

For an annulus, the homogeneous BCs are

u(a, t) = 0 and u(b, t) = 0.

For a circular region, the homogeneous BCs are u(a, t) = 0 and a
singularity condition

|u(0, t)| < +∞.
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Sturm-Liouville Eigenvalue Problem

The general Sturm-Liouville differential equation:

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0,

where λ is an eigenvalue, a < x < b.

Examples to date are as follows:

1 If p(x) = σ(x) = 1 and q(x) = 0, then

φ′′ + λφ = 0.

2 Nonuniform heat flow: K0 = p(x), cρ = σ(x), and α = q(x),

d

dx

(
K0

dφ

dx

)
+ αφ+ λcρφ = 0.

3 Circular heat flow: p(r) = r, σ(r) = r, and q(r) = 0,

d

dr

(
r
dφ

dr

)
+ λrφ = 0.
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Sturm-Liouville Eigenvalue Problem

The Sturm-Liouville eigenvalue problem with eigenvalue λ is:

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0,

and requires homogeneous BCs

BCs Heat Eqn String Eqn Type
φ = 0 Ends zero Temp Ends fixed Dirichlet
φ′ = 0 Ends insulated Ends free Neumann

φ′ = ±hφ Newton’s cooling Elastic boundary Robin
φ(−L) = φ(L) Perfect thermal Periodic
φ′(−L) = φ′(L) contact
|φ(0)| <∞ Bounded Temp Singularity
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Regular Sturm-Liouville Eigenvalue Problem

Consider the second order differential equation:

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0, a < x < b.

The homogeneous BCs are:

β1φ(a) + β2φ
′(a) = 0,

β3φ(b) + β4φ
′(b) = 0,

which exclude periodic and singular BCs.

The following conditions hold:

βi are real (β2
1 + β2

2 6= 0 and β2
3 + β2

4 6= 0)

The functions p(x), q(x), and σ(x) are continuous and real for
x ∈ [a, b] (including the endpoints)

p(x) > 0 and σ(x) > 0 for x ∈ [a, b] (including the endpoints)
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Important Theorems

Important Theorems: State and later prove some.

1 All eigenvalues are real.

2 There exist infinitely many eigenvalues, λ1 < λ2 < ... < λn < ...

(a) There is a smallest eigenvalue, denoted λ1.
(b) There is not a largest eigenvalue, i.e., λn →∞ as n→∞.

3 Corresponding to each eigenvalue, λn, there is an eigenfunction, φn(x),
and φn(x) has exactly n− 1 zeros for x ∈ (a, b).

4 The eigenfunctions, φn(x), form a complete set, meaning that any
piecewise smooth function f(x) can be represented by a generalized
Fourier series:

f(x) ∼
∞∑

n=1

anφn(x)

Furthermore, the infinite series converges to [f(x+) + f(x−)]/2 for all
x ∈ (a, b) (with appropriate an)
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Important Theorems

Important Theorems: State and later prove some.

5 Eigenfunctions corresponding to different eigenvalues are
orthogonal relative to the weight function, σ(x),∫ b

a

φn(x)φm(x)σ(x)dx, if λn 6= λm.

.

6 Any eigenvalue can be related to its eigenfunction by the
Rayleigh quotient

λ =

−p(x)φ(x)φ′(x)

∣∣∣∣b
a

+

∫ b

a

[
p(x)

(
dφ

dx

)2

− q(x)φ2(x)

]
dx∫ b

a

φ2(x)σ(x)dx

,

where the BCs may simplify this expression.
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Example

Example: Consider the Sturm-Liouville eigenvalue problem:

φ′′ + λφ = 0, φ(0) and φ(L).

We previously found the eigenvalues, λn =
(
nπ
L

)2
, with

eigenfunctions, φn(x) = sin
(
nπx
L

)
for n = 1, 2, ...

1 Found real eigenvalues, must establish not complex.

2 Smallest eigenvalue is λ1 =
(
π
L

)2
, and clearly λn →∞ as n→∞.

3 Easily seen that φn(x) has n− 1 zeros for x ∈ (0, L).

4 Established Fourier series for this SL Problem, and showed
orthogonality of φn(x).

5 The Rayleigh quotient simplifies to

λ =

∫ L
0

(φ′(x))2dx∫ L
0

(φ(x))2dx
> 0.
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Nonuniform Rod 1

Nonuniform Rod: Assume c(x), ρ(x), and K0(x) nonconstant:

PDE: cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
, BC: u(0, t) = 0,

∂u
∂x (L, t) = 0.

IC: u(x, 0) = f(x),

Separation of Variables: u(x, t) = φ(x)h(t) gives:

h′

h
=

d
dx

(
K0

dφ
dx

)
cρφ

= −λ.

Time solution is h(t) = ce−λt.

Sturm-Liouville Problem is

d

dx

(
K0

dφ

dx

)
+ λcρφ = 0, φ(0) = 0 and φ′(L) = 0.
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Nonuniform Rod 2

Theorems give an infinite sequence of eigenvalues, λn, and
corresponding eigenfunctions, φn(x)

Finding φn might be difficult, but solutions exist

Superposition principle gives

u(x, t) =
∞∑
n=1

anφn(x)e−λnt,

which with IC gives

u(x, 0) = f(x) =
∞∑
n=1

anφn(x).
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Nonuniform Rod 3

If f(x) is piecewise smooth, the theorems imply:

an =

∫ L

0

f(x)φn(x)c(x)ρ(x)dx∫ L

0

φ2n(x)c(x)ρ(x)dx

,

using the orthogonality relation∫ L

0

φn(x)φm(x)c(x)ρ(x)dx.

For large time, the solution takes the shape of the of the first
eigenfunction,

u(x, t) ≈ a1φ1(x)e−λ1t.
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Nonuniform Rod 4

The Rayleigh quotient gives:

λ =

∫ L

0

K0(x) (φ′(x))
2
dx∫ L

0

φ2(x)c(x)ρ(x)dx

.

The BC φ(0) = 0 implies that a constant eigenfunction is not
possible.

Since (φ′(x))
2
> 0, so the Rayleigh quotient implies that λ > 0.

Since all eigenvalues are greater than zero, the solution decays to
zero.

This is what we expect for a physical problem with heat lost on the
left end.
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