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CONTINUA AND THE CO-ELEMENTARY
HIERARCHY OF MAPS

PAUL BANKSTON

Abstract. The co-elementary hierarchy is a nested ordinal-
indexed sequence of classes of mappings between compacta,
with each successor level being defined inductively from the
previous one using the topological ultracopower construction.
The lowest level is the class of continuous surjections; and
the next level up, the co-existential maps, is already a much
more restricted class. Co-existential maps are weakly conflu-
ent, and monotone when their images are locally connected.
These maps also preserve important topological properties,
such as: being infinite, being of covering dimension ≤ n, and
being a (hereditarily decomposable, indecomposable, heredi-
tarily indecomposable) continuum.

1. Introduction.

In this paper, a compactum is a compact Hausdorff space,
and a continuum is a connected (not necessarily metrizable) com-
pactum. By a subcompactum (resp., subcontinuum) we simply
mean a subspace that is itself a compactum (resp., continuum).

The co-elementary hierarchy of maps between compacta (as
introduced in [6]) is a nested ordinal-indexed sequence of mapping
classes, defined in (dual) analogy with the elementary hierarchy
of embeddings in model theory (i.e., embeddings classified by the
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quantifier complexity of the first-order formulas they preserve). The
lowest level, the class LEV≥0, is defined to be the continuous surjec-
tions; each succeeding level is built inductively from its predecessor,
using the topological ultracopower construction. What makes this
hierarchy so interesting for us is that it strongly involves topological
notions, especially connectedness, without mention of anything in
its definition other than ultracopowers and continuous maps. We
give a brief description here, the reader is referred to [1]–[6] for
details.

Given a compactum X and an ultrafilter D on an index set I (i.e.,
D is a maximal filter in the Boolean algebra of all subsets of I), the
ultracopower of X via D is denoted XI\D. The most “topolog-
ical” way to describe this construction is to regard I as a discrete
space, letting p : X×I → X and q : X×I → I be the usual projec-
tion maps. Applying the Stone-Čech compactification functor β( ),
we view D as a member of β(I) and define the ultracopower to be
the preimage of D under qβ. The restriction pX,D of pβ to XI\D is
the codiagonal map, and is a continuous mapping onto X. An-
other way to describe the ultracopower (and, more generally, the
ultracoproduct) is to start with the compactum X, let F (X) be its
bounded lattice of closed subsets, take the usual (model-theoretic)
ultrapower F (X)I/D, and apply the maximal-spectrum functor to
obtain XI\D. The map pX,D is then the image under the maximal-
spectrum functor of the standard embedding from F (X) into the
ultrapower. (This map is strongly related to the standard part map
from nonstandard analysis/topology.)

With LEV≥0 already defined to be the continuous surjections,
we can now construct the co-elementary hierarchy inductively. For
each ordinal α, declare that a continuous surjection f : X → Y
between compacta belongs to the class LEV≥α+1 if there is an ul-
tracopower Y I\D and a mapping g in class LEV≥α from Y I\D to
X such that f ◦ g = pY,D. If α is a limit ordinal, then LEV≥α :=⋂

β<α LEV≥β.
Of particular interest to us is the next-to-the-lowest class, LEV≥1,

the class of co-existential maps. Co-existential maps (as well as
the other classes in the co-elementary hierarchy) are introduced
in [6] as topological analogues (in a category dual sense) of ex-
istential embeddings in model theory. They also arise naturally
from existential embeddings, giving us more than just an analogue:
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Suppose X and Y are compacta with lattice bases BX and BY , re-
spectively. (This means they are closed-set bases that are bounded
lattices under union and intersection; equivalently, that they are
meet-dense sublattices of the respective closed-set lattices F (X)
and F (Y ).) If f : BY → BX is an existential embedding, and
if f∗ : X → Y is the natural continuous surjection induced by f ,
then f∗ is co-existential. (In algebra, one group (resp., field) is pure
(resp., algebraically closed) in another if the inclusion embedding
is existential.)

2. Central Theorems.

The theory of the co-elementary hierarchy of maps between com-
pacta emanates from a few central results, which have proven them-
selves to be fundamental to the further study. The first deals with
compositions, and appears as 2.5 and 2.7 in [6].

Theorem 2.1. (Composition). Each class LEV≥α of maps is
closed under composition. Moreover, if f ◦ g ∈ LEV≥α+1 and g ∈
LEV≥α, then f ∈ LEV≥α+1.

We recall from [1] that a map f : X → Y between compacta is
said to be co-elementary if there is a homeomorphism of ultra-
copowers h : XI\D → Y J\E such that f ◦ pX,D = pY,E ◦ h. Denote
by COE the class of co-elementary maps. Clearly every codiagonal
map is co-elementary, and from this it is easy to show, using in-
duction, that COE ⊆ ⋂

α LEV≥α. This leads to the second central
theorem, which appears as 2.10 in [6].

Theorem 2.2. (Hierarchy).
⋂

α LEV≥α = LEV≥ω = COE.

The next theorem along these lines deals with consequences of
the collapsing of levels in the co-elementary hierarchy. For each
class K of compacta and each ordinal α, let LEV≥α(K) consist of
those maps of level ≥ α between members of K. The following
first appears as 4.1 in [6], and is analogous to “Robinson’s Test” in
model theory (see [11]).
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Theorem 2.3. (Collapsing). Suppose that K is a class of com-
pacta closed under ultracopowers, and that, for some n < ω,
LEV≥n(K) = LEV≥n+1(K). Then LEV≥n(K) = LEV≥ω(K).

The fourth central theorem also has its model-theoretic counter-
part, the Elementary Chains Theorem (and its generalization to
chains of embeddings of fixed level in the elementary hierarchy),
due to A. Tarski and R. Vaught (see [11]). It appears as 3.4 in [6].

Theorem 2.4. (Limit). Let α be a fixed ordinal, and let 〈Xm
fm←

Xm+1 : m < ω〉 be an inverse system of compacta, with each fm

in LEV≥α. If X∞ is the inverse limit of this sequence, and if,
for each m < ω, gm : X∞ → Xm is the natural limit map (so
fm ◦ gm+1 = gm), then each gm is also in LEV≥α.

The next theorem deals with complements of classes of compacta,
and follows easily from the definition of the co-elementary hierarchy.

Theorem 2.5. (Complements). Let K ⊆ M be classes of com-
pacta, both closed under ultracopowers. If K is closed under images
of maps of level ≥ α and M is closed under images of maps of level
≥ α+1, then the relative complement M\K is closed under images
of maps of level ≥ α + 1.

The last two central theorems deal with co-existential maps. If
K is a class of compacta, we call K co-inductive if it is closed
under inverse limits of directed systems, comprising members of
K and continuous surjections. K is called co-elementary if it is
closed under ultracoproducts (see any of [1]–[6] for a definition)
and co-elementary images. If K is any class of compacta, we call
X ∈ K co-existentially closed in K if whenever Y ∈ K and
f : Y → X is a continuous surjection, then f is co-existential.
(This notion is analogous to that of “existentially closed in a class”
in model theory. Being existentially closed in the class of Boolean
algebras means being atomless; being existentially closed in the
class of abelian groups means being divisible and having infinitely
many elements of each prime order.) The following appears as 6.1
in [5].
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Theorem 2.6. (CC-Existence). Let K be a class of compacta
that is both co-elementary and co-inductive. Then every infinite
X ∈ K is a continuous image of a member of K that is co-
existentially closed in K and of the same weight as X.

Theorem 2.7. (CC-Preservation). Let K be a class of compacta
that is closed under ultracopowers. If Y ∈ K is a co-existential
image of some X that is co-existentially closed in K, then Y is also
co-existentially closed in K.

Proof: Let f : X → Y be a co-existential map, where Y ∈ K and
X is co-existentially closed in K. Let g : Z → Y , be a continuous
surjection, where Z ∈ K. We wish to show g is co-existential. To
witness the co-existentiality of f , we have an ultracopower Y I\D
and a continuous surjection h : Y I\D → X such that f ◦ h =
pY,D. Take the corresponding ultracopower of Z. Ultracopowers
are functorial; so there is an ultracopower map gI\D, a continuous
surjection, such that pY,D ◦ (gI\D) = g ◦ pZ,D. Both ultracopowers
are in K by hypothesis; so h◦(gI\D) is co-existential. By 2.1, then,
f ◦ h ◦ (gI\D) is also co-existential. But this map is g ◦ pZ,D. Thus
g is co-existential, again, by 2.1. ¤

Finally we have a souped-up version of 2.4 and 2.6 in [5]. (Also
note a much earlier, and weaker, version appearing as 2.8 in [3].

Theorem 2.8. (Mapping Structure). Let f : X → Y be a
co-existential map between compacta. Then there is a function
f∗ : F (Y ) → F (X) (between the closed set lattices) that satisfies
the following conditions:

(i) f∗ is a bounded-∪-semilattice embedding that takes atoms
to atoms and preserves disjointness.

(ii) For any K ∈ F (Y ), f |f∗(K) is a co-existential map from
f∗(K) onto K.

(iii) For any K ∈ F (Y ), f−1[int(K)] ⊆ f∗(K) (int( ) is the
topological interior operator).

(iv) Suppose 〈K1, . . . , Kn〉 is an n-tuple of members of F (Y )
such that

⋂n
i=1 Ki = ∅, and suppose that there exist A1, . . . , An

in F (X) such that f∗(Ki) ⊆ Ai, 1 ≤ i ≤ n,
⋂n

i=1 Ai = ∅,
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and
⋃n

i=1 Ai = X. Then there exist F1, . . . , Fn in F (Y ) such
that Ki ⊆ Fi, 1 ≤ i ≤ n,

⋂n
i=1 Fi = ∅, and

⋃n
i=1 Fi = Y .

(v) If K is any class of compacta that is closed under ultra-
copowers and continuous images, and if K ∈ F (Y ), as a
compactum, is in K, then f∗(K) is also in K.

Remark 2.9. (i) 2.8(i,ii,iii,v) is used to prove (see 2.5 in [5]) that
co-existential maps preserve being infinite, being disconnected, be-
ing totally disconnected, being an indecomposable continuum, and
being a hereditarily indecomposable continuum.
(ii) 2.8(iv) is used to prove (see 2.6 in [5]) that co-existential maps
cannot raise dimension, and is an assertion that would follow easily
if f∗ were an existential embedding of lattices. We do not know
whether this is true in general; although in the case that X is an ul-
tracopower of Y and f is the codiagonal map, f∗ may be taken to be
elementary from F (Y ) into the canonical lattice base of closed set
ultraproducts. (This lattice base is a far cry from F (X), though.)

3. Co-existentially Closed Compacta.

A compactum (resp., continuum) is a co-existentially closed
compactum (resp., co-existentially closed continuum) if it is
co-existentially closed in the class of compacta (resp., continua). It
should not be inferred that a co-existentially closed continuum is a
co-existentially closed compactum that happens to be a continuum,
any more than it should be inferred that a free abelian group is a
free group that happens to be abelian (or that a jumbo shrimp is
a jumbo-sized thing that happens to be a shrimp). In fact, as we
see below, there is no such thing as a connected, co-existentially
closed compactum; while there are plenty of co-existentially closed
continua.

The following appears as 6.2 in [5]; we give a slightly different
proof here.

Theorem 3.1. The co-existentially closed compacta are precisely
the Boolean spaces (i.e., the totally disconnected compacta) without
isolated points.

Proof: Suppose X is a co-existentially closed compactum, and
let I be discrete, of the same cardinality as X. Let W be any
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Boolean space with no isolated points. Then there is an obvious
continuous surjection f : β(I) × W → X, which, by hypothesis,
is co-existential. Now co-existential maps cannot raise dimension;
hence X must be Boolean. Also, by 2.8(iii,v), they must preserve
the property of having no isolated points.

Conversely, suppose X is Boolean, with no isolated points. By
2.6, there is a co-existentially closed compactum Y and a contin-
uous f : Y → X. Now, by the previous paragraph, Y is also
Boolean, with no isolated points; hence the induced homomorphism
fB : B(X) → B(Y ) of clopen algebras is an embedding between
atomless Boolean algebras. By classic model theory (see [11]), the
class of atomless Boolean algebras is model complete; hence ev-
ery embedding in that class is elementary. This tells us that f is
co-elementary (hence co-existential); and, by 2.7, that X is a co-
existentially closed compactum. ¤

4. Co-existentially Closed Continua.

The class of continua satisfies the conditions of 2.6; hence every
infinite (equivalently, nondegenerate) continuum is a continuous im-
age of a co-existentially closed continuum of the same weight. By
4.5 in [6], every co-existentially closed continuum is indecompos-
able and of covering dimension one. We can say a little more here,
but we still have nothing like a characterization of the kind that
3.1 affords.

Theorem 4.1. Every co-existentially closed continuum is inde-
composable and of covering dimension one; every metrizable co-
existentially closed continuum is hereditarily indecomposable. There
exist at least two topologically distinct metrizable co-existentially
closed continua; hence there is a metrizable co-existentially closed
continuum that is not arc-like.

Proof: Only the part after the first clause is new; so suppose
X is a metrizable co-existentially closed continuum. By a result of
D. Bellamy [9], every metrizable continuum is a continuous image
of a hereditarily indecomposable metrizable continuum. Let f :
Y → X witness this fact. Then f is co-existential. Now, by 2.5
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of [5] (see 2.9(i) above), co-existential maps preserve (hereditary)
indecomposability; hence X is hereditarily indecomposable.

Suppose there were only one (up to homeomorphism) metrizable
co-existentially closed continuum X. By 2.6, then, every metrizable
continuum would be a continuous image of X. This contradicts an-
other result of D. Bellamy [7], however, that no metrizable contin-
uum continuously surjects onto every metrizable continuum. Now
only one metrizable hereditarily indecomposable continuum is arc-
like, and that is the celebrated pseudo-arc (see R. H. Bing’s early
work; e.g., [10]). Thus there must be a metrizable co-existentially
closed continuum that is not arc-like. ¤

Remark 4.2. (i) Re 4.1, we do not know whether the pseudo-arc
is indeed a co-existentially closed continuum, but we do know sev-
eral familiar examples that are not (e.g., solenoids, buckethandle
continua, lakes of Wada, etc.) because they are not hereditarily
indecomposable.
(ii) We do not know whether the Stone-Čech remainder of the half-
line (well known ([8]) to be a non-metrizable indecomposable con-
tinuum that is not hereditarily indecomposable, and that continu-
ously surjects onto every metrizable continuum) is a co-existentially
closed continuum. If so, then there are co-existentially closed con-
tinua that are not hereditarily indecomposable.
(iii) A significant step towards an understanding of how the pseudo-
arc relates to the co-elementary hierarchy would be deciding whether
the classes of hereditarily indecomposable continua and arc-like
continua are closed under ultracopowers and co-existential images.
(We use a non-metric definition of “arc-like” here: For each open
cover of X there is a continuous map from X to [0, 1] whose point-
preimages refine the open cover.) The only one of these questions
that we can answer is the preservation of hereditary indecompos-
ability by co-existential maps (2.9).
(iv) We note that the question of whether the class of arc-like con-
tinua is closed under confluent images is a problem first posed by
A. Lelek ([14]).
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5. A Characterization of Indecomposability.

As an application of the Limit Theorem (2.4 above), we can
characterize indecomposable continua in terms of the kinds of self-
maps they admit.

Recall that a map f : X → Y between continua is indecom-
posable if whenever A and B are subcontinua of X, whose union
is X, then either f [A] = Y or f [B] = Y . Every mapping with
indecomposable range is indecomposable, of course; but there are
lots of indecomposable maps between decomposable continua; e.g.,
the squaring, cubing, etc., maps on the unit circle in the complex
plane, the tent maps on the unit interval.

The following well known result appears as 2.7 in [16].

Theorem 5.1. Let 〈Xm
fm← Xm+1 : m < ω〉 be an inverse system of

compacta, where each connecting map fm is indecomposable. Then
the inverse limit space is an indecomposable continuum.

Our characterization theorem is now easy, given the results so far.

Theorem 5.2. Let X be a continuum. Then X is indecomposable
if and only if X admits a self-map that is both indecomposable and
co-existential.

Proof: Assume first that X is indecomposable. Then the iden-
tity map on X is both indecomposable and co-existential. For the
converse, let f : X → X be indecomposable and co-existential,
and let 〈Xm

fm← Xm+1 : m < ω〉 be the inverse system, where each
Xm is X and each fm is f . Then, by 5.1, the inverse limit space
X∞ is indecomposable. By the Limit Theorem (2.4), there is a
co-existential map g : X∞ → X. Now co-existential maps preserve
indecomposability, as mentioned in the proof of 4.1; hence X is an
indecomposable continuum. ¤

6. Other Special Types of Maps.

By far the most familiar class of specal maps in the study of con-
tinua (and compacta in general) is the class of monotone maps,
those continuous surjections with connected point-preimages (the



54 PAUL BANKSTON

topological embodiment of the (order-)monotonic functions from
analysis). Because we are in the compact setting, this is equivalent
to saying that preimages of subcompacta are subcompacta. Hence
there are natural generalizations of monotonicity, namely: A map-
ping f : X → Y is called confluent (resp., weakly confluent)
(see, say, [16] for the provenance of these notions, as well as related
ones) if whenever K is a subcontinuum of Y , then every (resp.,
some) component of f−1[K] maps onto K via f . In this section
we are interested in relating the co-elementary hierarchy of maps
between continua to the classes of monotone, confluent, and weakly
confluent maps.

Remark 6.1. (i) Open maps between metric compacta are con-
fluent, by an old result of G. T. Whyburn (13.14 of [16]).
(ii) 13.27 in [16] makes the same statement for confluent maps as
the Composition Theorem (2.1) does for co-existential maps.
(iii) It is interesting to comtemplate what form the Mapping Struc-
ture Theorem (2.8) would take if “co-existential” were replaced by
“monotone surjective,” and the map f∗ were f−1. Clause (i) would
have to be reformulated to read, “f∗ is a bounded lattice (not just ∪-
semilattice) embedding.” Then preservation of disjointness would
be automatic, but atoms would no longer necessarily go to atoms.
Clauses (ii) and (iii) would go through intact, and Clause (v) would
certainly go through for K = {continua}; but Clause (iv) would
break down because monotone maps can raise dimension (see [15],
[17]).

Given a class M of maps between continua, there is a natu-
ral class of continua associated with M, which, to be consistent
with current usage in the continuum theory literature, we denote
by Class(M). This class consists of those continua X such that if
Y is any continuum and f : Y → X is any continuous surjection,
then f is in M. Clearly the class of co-existentially closed con-
tinua is precisely Class(M), where M is the class of co-existential
maps between continua. Let us now refer to this class as Class(1).
The general idea of studying Class(M) for various classes M is
not new, and probably goes back to A. Lelek’s topology seminar
at the University of Houston in the 1970s. Lelek’s Class(C) (resp.,
Class(W )) is just the metrizable members of Class(M), whereM is
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the class of confluent (resp., weakly confluent) maps between con-
tinua. To avoid confusion in the sequel, we indicate the metrizable
members of Class(M) with a subscript 0. In keeping with this, we
redenote Lelek’s classes as Class(C)0 and Class(W )0, respectively.
Now, both of these classes have been characterized (see [16], [12] for
details); what is most worthy of mention here is that Class(C)0 con-
sists precisely of the hereditarily indecomposable metrizable con-
tinua; hence, by 4.1, Class(1)0 ⊆ Class(C)0. It is easy to show
that every member of Class(C), metrizable or not, is hereditarily
indecomposable; however the converse appears strongly to rely on
metric considerations (see Exercise 13.72 in [16]). It would be nice
to have a “weightless” characterization of this interesting class of
continua.

Remark 6.2. (i) It is not always easy to show that Class(M) is
nonempty; indeed the class is often trivial (in some sense). For
example, let M be the class of monotone maps between continua.
Now clearly, if X is degenerate, then X ∈ Class(M). But if X is
nondegenerate, we can simply “spot-weld” two copies of X together;
i.e., form the quotient space Y := (X×{0, 1})/({x0}×{0, 1}), where
x0 is a fixed point of X. Then the natural projection f : Y → X
fails to be monotone. On a similar note, if we define Class(2) :=
Class(M), whereM is the class of level≥ 2 maps between continua,
then we can easily see that this class is empty. For if X ∈ Class(2),
then X is co-existentially closed; hence, by 4.1, it is of covering di-
mension one. Now, by taking products and using projection maps,
it is always possible to find a continuous surjection f : Y → X,
where Y is a continuum of dimension ≥ 2. The property of being
of covering dimension ≤ n, for any finite n, is closed under ultra-
copowers and co-existential images. Hence, by the Complements
Theorem (2.5), level ≥ 2 maps actually preserve covering dimen-
sion. So our f cannot be of level ≥ 2, a contradiction.
(ii) By the CC-Preservation Theorem (2.7), Class(1) is closed un-
der co-existential images. Similar questions concerning analogous
classes immediately suggest themselves; e.g, whether Class(C) (resp.,
Class(W )) is closed under confluent (resp., weakly confluent) maps.
In the case of Class(C)0, the answer is yes; for this class coincides
with the class of metrizable hereditarily indecomposable continua,
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a class closed under confluent images (see 7.2(ii) below). However,
Class(W ) is not closed under weakly confluent images. Indeed,
{arc-like continua} ⊆ Class(W ) ⊆ {unicoherent continua}, so the
unit interval is in Class(W ) and the unit circle is not. But the map
that wraps the first twice around the second is weakly confluent.
(iii) We do not know whether Class(1) is closed under ultracopow-
ers. If it is, then, by the Collapsing Theorem (2.3), every mapping
between co-existentially closed continua is co-elementary. This sit-
uation is analogous to the model-theoretic notion that a partic-
ular first-order theory has a model companion. Also if so, then
Class(1) ⊆ {hereditarily indecomposable continua}, and we have a
negative answer to the question in 4.2(ii). [Start with X ∈ Class(1).
Then (by a Löwenheim-Skolem-style argument) there is a metriz-
able continuum X0 and a co-elementary map f : X → X0. But
then, because Class(1) is closed under co-existential maps (see 2.7),
X0 is co-existentially closed, hence, hereditarily indecomposable
(see 4.1). Because, by assumption, Class(1) is closed under ultra-
copowers, we have X as a co-elementary image of an ultracopower
of X0.])

The following appears in [5]. The first assertion is an immediate
consequence of the Mapping Structure Theorem (2.8); the second,
a somewhat less immediate consequence of 2.8, appears as 2.7 in [5].

Theorem 6.3. Co-existential maps between compacta are always
weakly confluent; they are monotone whenever the range space is
locally connected.

Remark 6.4. (i) We do not know whether co-existential maps
between compacta are always confluent. If so, then Class(1) ⊆
Class(C) ⊆ {hereditarily indecomposable continua}, giving another
negative answer to the question in 4.2(ii).
(ii)Co-elementary (in particular, co-existential) maps need not be
monotone: Start with a co-existentially closed continuum X, fix
x0 ∈ X, and let Y be the quotient space (X×{0, 1})/({x0}×{0, 1}).
Let f : Y → X be induced by projection onto the first factor.
Then f is clearly not monotone, but it is co-existential. Let g :
XI\D → Y witness this; i.e., f ◦ g = pX,D. If K ⊆ Y is arbi-
trary, then f−1[K] = g[p−1

X,D[K]]. So if K is a subcontinuum of
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Y that witnesses the nonmonotonicity of f , then it witnesses the
nonmonotonicity of the co-elementary map pX,D as well.

To facilitate the discussion, we identify an important strength-
ening of weak confluence. Define a map f : X → Y between
continua to be affluent if whenever K is a subcontinuum of Y ,
then there is a subcontinuum C of X such that f [C] = K and
f−1[int(K)] ⊆ C. The Mapping Structure Theorem clearly shows
that co-existential maps are not just weakly confluent; they’re af-
fluent. Letting Class(A) denote the continua that are images of
affluent maps only, it is obvious that this class interpolates be-
tween Class(1) and Class(W ).

Theorem 6.5. Class(A) = Class(W )∩{indecomposable continua}.

Proof: Let X ∈ Class(A). We show X is indecomposable. If
not, then there is a proper subcontinuum K of X, whose interior
is nonempty. Let x0 ∈ X \K; and take Y to be the quotient space
(X × {0, 1})/({x0} × {0, 1}), with f : Y → X the map induced
by projection onto the first factor. Then f−1[K] consists of two
components, and f−1[U ] must intersect both of them whenever
U ⊆ K is nonempty and open in Y . Thus f is not affluent, a
contradiction.

Conversely, if X ∈ Class(W ) is indecomposable and f : Y → X
is a continuous surjection between compacta, then f is automati-
cally affluent because no proper subcontinuum of X has nonempty
interior. ¤

Remark 6.6. (i) The second clause of 6.3 easily generalizes to the
assertion that if f : X → Y is an affluent mapping between com-
pacta, and if y ∈ Y is a point at which Y is connected im kleinen
(i.e., there is a neighborhood base at y of connected, not necessar-
ily open, sets), then f−1[{y}] is a subcontinuum of X. The local
behavior of y does not always influence the topological nature of
f−1[{y}], however: Just start with a co-existentially closed contin-
uum Y , let Z be any compactum whatsoever, and let X be the
quotient space (Y ×Z)/({y0} ×Z), where y0 is a fixed point in Y .
Then X is a continuum, and the natural map f : X → Y induced
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by projection onto the first factor is co-existential. So if y ∈ Y is
different from y0 (chosen at random), then f−1[{y}] is homeomor-
phic to Z.
(ii) Monotone (even monotone-and-open) maps need not be co-
existential, because they can raise dimension (see [15], [17]) and
co-existential maps cannot (see 2.9 above).
(iii) Pursuant to the comments in 6.2(ii), we do not know whether
Class(A) is closed under affluent maps.

7. Preservation of Decomposability and its Variants.

An important part of any inquiry into special kinds of continuous
maps is their preservation of topological properties not preserved
by continuous maps in general. In this section we consider the four
properties, “(hereditarily) (in)decomposable.”

Theorem 7.1. Level ≥ 1 maps between continua preserve inde-
composability, hereditary indecomposability, and hereditary decom-
posability. They do not preserve decomposability, however. Level
≥ 2 maps between continua preserve all four properties.

Proof: The preservation of (hereditary) indecomposability is an
easy application of the Mapping Structure Theorem (2.8), and ap-
pears as part of 2.5 in [5]. (Indecomposability is preserved by afflu-
ent maps in general.) The preservation of hereditary decomposabil-
ity proceeds as follows: Co-existential maps are weakly confluent
(6.3); weakly confluent maps preserve hereditary decomposability
(not at all a trivial result, see Exercise 13.66 in [16]). Here is an
easy example that co-existential maps do not preserve decompos-
ability: Let X ∈ Class(1), with Y := X × [0, 1] and f : Y → X
the canonical projection. Then X is indecomposable (4.1), Y is
decomposable, and f is co-existential.

Finally, to prove that level ≥ 2 maps preserve decomposability,
we use the Complements Theorem (2.5), where K is the class of in-
decomposable continua, and M is the class of continua. K is closed
under level ≥ 1 images, as mentioned above, and is also closed un-
der ultracopowers, by a theorem of R. Gurevič ([13]). ¤
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Remark 7.2. (i) Monotone mappings preserve hereditary decom-
posability because weakly confluent mappings do. They preserve
indecomposability because they are affluent; they preserve hered-
itary indecomposability because restrictions of monotone maps to
preimages of subcompacta are monotone onto those subcompacta
(see also 6.1). They do not preserve decomposability, however, for
almost exactly the same reason as why co-existential maps do not.
(See the proof of 7.1 above.)
(ii) Confluent mappings preserve hereditary decomposability and
hereditary indecomposability, but neither of the other two vari-
ants. The following simple example and argument come courtesy
of Wayne Lewis (private communication): First, the n-adic solenoid
(n ≥ 2) is an inverse limit of circles, and the projection maps are
open, hence confluent. So confluent maps can take indecompos-
able continua to (hereditarily) decomposable ones. Next, suppose
f : X → Y is a confluent map between continua, and assume
Y is not hereditarily indecomposable. Then there are subcontinua
A,B ⊆ Y such that A∪B is a subcontinuum containing both A and
B properly. Let y ∈ A ∩ B, with y′ ∈ f−1[{y}]. Let A′ (resp., B′)
be the component of f−1[A] (resp., f−1[B]) containing y′. Then
A′ and B′ are overlapping subcontinua of X. Suppose A′ ⊆ B′.
Then A = f [A′] ⊆ f [B′] = B, contradicting our assumption about
A and B. Likewise, we cannot have B′ ⊆ A′; hence A′ ∪ B′ is a
decomposable subcontinuum of X.
(iii) Weakly confluent mappings preserve hereditary decomposabil-
ity only, among the four variants. Indeed, by 12.46 in [16], every
continuous mapping onto an arc-like continuum (in particular, an
arc) is weakly confluent. So if K ⊆ [0, 1]2 is hereditarily inde-
composable, then either projection map onto [0, 1] takes K onto a
nondegenerate subcontinuum of [0, 1]; i.e., onto an arc. So weakly
confluent images of hereditarily indecomposable continua can be
hereditarily decomposable.

8. Preservation of Decomposability Degree.

One way of measuring how “decomposable” a continuum is is to
count how many pairwise disjoint subcontinua-with-interior it can
contain. For conciseness, let us call a subcontinuum plump if it
has nonempty interior. The decomposability degree d(X) of a
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compactum X is the least cardinal δ such that there is no family
of pairwise disjoint plump proper subcontinua of X, of cardinality
δ. In this section we consider the preservation of decomposability
degree by the kinds of mappings under consideration.

Remark 8.1. (i) Note that d(X) ≥ 1, by definition; and that, for
a continuum, d(X) = 1 just in case that continuum is indecompos-
able. (d(X) = 1 also when X is a Boolean space without isolated
points.) If X is locally connected and infinite, then d(X) ≥ ℵ1. If
X is an indecomposable continuum and Y is a “spot weld” of two
copies of X, then d(Y ) = 2. By repeating this process any finite
number of times (being careful to use different points of X for the
welding), we obtain continua of any given finite decomposability
degree.
(ii) The notion of “decomposability degree δ” is a renaming of the
property of being of “width δ” in [5], [6]. We discovered that the
word “width” had been introduced earlier as a cardinal invariant.

Theorem 8.2. Level ≥ 1 maps between compacta cannot raise
decomposability degree; they can actually lower it by an arbitrary
amount. Level ≥ 2 maps preserve finite decomposability degree;
also any level ≥ 2 image of a compactum of infinite decomposabil-
ity degree must also have infinite decomposability degree.

Proof: Indeed, affluent maps cannot raise decomposability de-
gree. For if f : X → Y is an affluent map between compacta, and
〈Kα : α < κ〉 is a cardinal-indexed family of pairwise disjoint plump
proper subcontinua of Y , then, by affluence, there is a likewise-
indexed family 〈Cα : α < κ〉 of pairwise disjoint plump proper
subcontinua of X (where f [Cα] = Kα and f−1[int(Kα)] ⊆ Cα. for
each α < κ).

To see why co-existential maps can properly lower decomposabil-
ity degree, just review the proof of 7.1; i.e., the example showing
that co-existential images of decomposable continua can be inde-
composable. (In fact it is possible for f : X → Y to be a co-
existential map between continua, where d(Y ) = 1 and d(X) is as
large as we like.)

In order to prove that level ≥ 2 maps preserve finite decompos-
ability degree (as well as the infinitude of decomposability degree),
it suffices to show that this invariant is preserved by the taking
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of ultracopowers. Then we can invoke the Complements Theorem
(2.5, M being the class of continua). It is clear that the decom-
posability of an ultracopower of X is at least as high as that of
X because the co-diagonal map is co-existential. So start with a
collection of n pairwise disjoint plump proper subcontinua of the
ultracopower XI\D; and, for simplicity, consider the case n = 2
(easily seen to be an inessential loss of generality). The following
argument assumes a reasonable familiarity with the ultracoprod-
uct construction (see, e.g., [1]–[6] for details). Given the disjoint
plump subcontinua K and M , we first note that, since they have
nonempty interior, and the ultracoproducts of singletons in X form
a set dense in the ultracopower, we can find points

∑
D xi ∈ K and∑

D yi ∈ M . (Also, in the special case n = 1, we need a point in
the complement, witnessing that the subcontinuum is proper.)

Now we find disjoint ultracoproducts of closed subsets of X (such
sets form a closed-set base for XI\D),

∑
D Fi ⊇ K and

∑
D Hi ⊇

M . For each i ∈ I, let Ci be the component of xi in Fi. Let C
be the component of

∑
D xi in

∑
D Fi. Then clearly

∑
D Ci ⊆ C.

Suppose P ∈ ∑
D Fi \

∑
D Ci. Then there is a closed-set ultra-

product
∏
D Gi ∈ P such that J := {i ∈ I : Ci ∩ Gi = ∅} ∈ D.

Pick arbitrary i ∈ J . Since Ci is a component of Fi, and we are
working with compacta, there is a set Bi, clopen in Fi, such that
Ci ⊆ Bi and Bi ∩ Gi = ∅. Thus

∑
D Bi is clopen in

∑
D Fi, con-

tains
∑
D Ci, and does not contain P . This shows that P /∈ C;

hence that
∑
D Ci is the component of

∑
D xi in

∑
D Fi. Thus

K ⊆ ∑
D Ci. Moreover, since

∑
D xi is in the interior of

∑
D Ci,

{i ∈ I : xi is in the interior of Ci} ∈ D.
Repeat the immediately preceding argument for the components

Ei of yi in Hi, i ∈ I. Then {i ∈ I : {Ci, Ei} is a family of two
pairwise disjoint plump subcontinua of X} ∈ D. So if d(XI\D) is
finite, then it is no larger than d(X); furthermore, if d(XI\D) is
infinite, then one can find families of pairwise disjoint plump sub-
continua of X, of arbitrarily large finite cardinality. ¤

Remark 8.3. Of the mapping classes considered here, only the
level ≥ 2 maps actually preserve decomposability degree to any ex-
tent. As seen in the proof of 8.2 (the example in 7.1 being monotone
as well as co-existential), monotone maps may lower this invariant
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by an arbitrary amount; but affluent maps may not raise it. Conflu-
ent maps, on the other hand (see 7.2(ii)), may raise decomposability
degree by in infinite amount.
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