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Abstract. The languages of finitary and infinitary logic over the alphabet

of bounded lattices have proven to be of considerable use in the study of
compacta. Significant among the sentences of these languages are the ones
that are base free, those whose truth is unchanged when we move among the

lattice bases of a compactum. In this paper we define syntactically the ex-

pansive sentences, and show each of them to be base free. We also show that
many well-known properties of compacta may be expressed using expansive
sentences; and that any property so expressible is closed under inverse limits

and co-existential images. As a byproduct, we conclude that co-existential
images of pseudo-arcs are pseudo-arcs. This is of interest because the corre-
sponding statement for confluent maps is still open, and co-existential maps
are often—but not always—confluent.

1. introduction

This paper is concerned with applying the model theory of distributive lattices,
along the lines of [12], to the study of how topological properties of compacta—and
especially continua—are explicitly defined. (Here the word compactum refers to a
compact Hausdorff space; and a continuum is a compactum that is also connected.)

Many textbook definitions of topological properties are naturally formulated in
lattice-theoretic terms involving open sets and closed sets. It is our aim here to
show that when these formulations have a certain well-defined syntactic shape—
and there are numerous examples of these—the corresponding topological properties
enjoy some nice preservation features. In particular, they are closed under images
of co-existential mappings, as well as the taking of limits of inverse systems with
surjective bonding maps. (We abbreviate these two closure principles respectively
as “co-existential images” and “inverse limits” in the sequel.)

Because closed subsets of compacta are themselves compacta when regarded
as subspaces, and because any lattice-theoretic mention of both open sets and
closed sets is clearly equivalent to one involving closed sets alone, we let F (X) =
〈F (X);∪,∩, ∅,X〉 denote the bounded lattice of all closed subsets of a topological
space X and confine our attention to closed-set formulations of topological proper-
ties.

From a model-theoretic perspective, F (X) is an L-structure, where L = {⊔,⊓,⊥,⊤}
is the alphabet for bounded lattices. By a lattice base for X, we mean a sublattice
A of F (X) which is also a closed-set base for X.
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The reason the compact Hausdorff setting is so attractive from a model-theoretic
viewpoint is that one may characterize, using simple first-order sentences, those fea-
tures of an L-structure that make it isomorphic to a lattice base for a compactum.
This follows easily from the work of H. Wallman [1, 18], and amounts to the fol-
lowing representation theorem.

Theorem 1.1. An L-structure A is isomorphic to a lattice base for a compactum
if and only if the following three conditions hold:

(i) A satisfies the first-order axioms defining the distributive bounded lattices.
(All are universal ( ∀) sentences.)

(ii) A satisfies the disjunctive condition; i.e., given two distinct a, b ∈ A, there
is some c 6= ⊥ in A such that either c ≤ a and c ⊓ b = ⊥ or c ≤ b and
c⊓ a = ⊥. (This is expressible using a universal-existential ( ∀∃) sentence,
where a ≤ b abbreviates a ⊓ b = a.)

(iii) A satisfies the normality condition; i.e., given a, b ∈ A with a ⊓ b = ⊥,
there are a′, b′ ∈ A such that a ⊓ a′ = b ⊓ b′ = ⊥ and a′ ⊔ b′ = ⊤. (This is
also expressible using a ∀∃ sentence.)

An L-structure is a normal disjunctive lattice if it satisfies the first-order condi-
tions above. A lattice base for a compactum is then a normal disjunctive lattice;
conversely, if A is a normal disjunctive lattice, there are a canonically-defined com-
pactum X = S(A) and a lattice base A for X such that A and A are isomorphic
lattices. The points of X are the maximal filters of A; the elements of A are the
sets a♯ := {µ ∈ X : a ∈ µ}, for a ∈ A. The assignment a 7→ a♯ defines an isomor-
phism; the reader will recognize X is the classic maximal spectrum—also known as
the Wallman representation—for the lattice A.

In this paper we consider topological properties definable using sentences from
the infinitary language Lω1ω (see, e.g., [13]), where the only syntactic formation
rule beyond the usual first-order ones is infinitary disjunction

∨
Φ applied to a

countable set of formulas, the union of whose sets of free variables is finite. If ∆ is
a set of sentences in this language, then the property P∆ defined by ∆ is the class
of compacta whose closed-set lattices satisfy all sentences in ∆.

Two different lattice bases for a single compactum X may easily fail to satisfy
even the same finitary (i.e., first-order) sentences; indeed F (X) is always atomic,
but a lattice base for X may well be atomless. So we define an Lω1ω-formula
ϕ(x0, . . . , xn−1) (with distinct free variables among {x0, . . . , xn−1}) to be base free
if whenever X is a compactum, A is a lattice base for X and 〈A0, . . . , An−1〉 ∈ A

n,
we have A |= ϕ[A0, . . . , An−1] if and only if F (X) |= ϕ[A0, . . . , An−1]. (Here the
notation indicates the substitution of constant Ai for the variable xi, i < n, in the
standard way. We often let x abbreviate the variable string 〈x0, . . . , xn−1〉 when
we do not need to be specific about its length.) So when ∆ is a set of base-free
sentences, the class of normal disjunctive lattices A with S(A) ∈ P∆ is defined by
∆, plus the first-order conditions in Theorem 1.1.

Remark 1.2. It is easy to show that a Boolean combination—possibly infinitary—
of base-free formulas is base free; the problem is with the introduction of quantifi-
cation. As a simple example, consider the formula ϕ(x), defined to be
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[x 6= ⊥ ∧ ∀y(y ≤ x→ (y = ⊥ ∨ y = x))], that says of a lattice element that it is an
atom. This formula is base free, although its existential closure ∃xϕ(x) is not.

Recall that a ∀
∨
∃ formula of Lω1ω is a formula ϕ with the syntactic shape ∀x

∨
Ψ,

where each formula in Ψ is of the form ∃yψ, such that ψ is quantifier free. The
formulas ∃yψ are called the constituents of ϕ. We say ϕ is constituent base free if
each of its constituents is base free.

In the sequel we show that if a property P of compacta is definable by a set
∆ of ∀

∨
∃ sentences that are base free, then P is closed under inverse limits. If

the sentences in ∆ are constituent base free, then P is closed under co-existential
images. These preservation results are actually quite straightforward, but are im-
portant for setting up the next step; which is to describe syntactically the set of
∀

∨
∃ sentences of Lω1ω that are expansive, and to show that each expansive sen-

tence is both base free and constituent base free. Finally we give a list of important
compactum-theoretic properties that may (may not) be specified using expansive
sentences.

2. closure under inverse limits

The inverse limit construction is one of the most basic in topology, especially in
continuum theory (see, e.g., [17]). For simplicity, we choose the natural numbers
ω := {0, 1, . . . } for our directed index set, but this is not an essential restriction.

Recall that if X0

f0

← X1

f1

← . . . is a sequence of spaces and mappings, the inverse
limit is the subspace of the usual cartesian product

∏
n<ω Xn whose elements are

sequences 〈x0, x1, . . . 〉 such that xn = fn(xn+1), n < ω. Xn and fn are referred
to as the nth coordinate space and nth bonding map, respectively. We confine
our attention to inverse systems whose coordinate spaces are compacta and whose
bonding maps are surjective. Then the inverse limits are nonempty when the coor-
dinate spaces are; moreover, inverse limits of continua are continua.

Proposition 2.1. Let ∆ be a set of ∀
∨
∃ sentences that are base free. If X0

f0

←

X1

f1

← . . . is an inverse system and Xn ∈ P∆ for each n < ω, then the inverse limit
is in P∆ also.

Proof. For each n < ω, let fF
n : F (Xn) → F (Xn+1) be the lattice homomorphism

defined by taking full pre-images. Then, because each fn is surjective, we have
a direct system of normal disjunctive lattices and embeddings. Denote the direct
limit structure by A. We then use Theorem 1.1, together with (the easy direction
of ) the Chang- Loś-Suszko theorem, which applies to ∀

∨
∃ sentences just as well

as ∀∃ ones (see [8]), to infer that A is a normal disjunctive lattice that satisfies
the sentences in ∆. And since these sentences are base free, they are also true in
F (S(A)), which is easily shown to be isomorphic to the closed set lattice for the
inverse limit.

�
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3. closure under co-existential images

Co-existential maps are defined using topological ultracopowers in an exact mir-
roring of how one characterizes the existential embeddings of model theory using
ultrapowers. (See, e.g., [3] for a full explanation.) What is more, if f : A → B is
any existential embedding between normal disjunctive lattices, then the S-induced
mapping fS : S(B)→ S(A)—defined by taking fS(µ) to be the unique maximal fil-
ter in A that contains the pre-image f−1[µ] (itself a prime filter)—is automatically
a co-existential map between compacta.

The formal definition of when a mapping f : X → Y between compacta is co-
existential is that there is some ultracopower YD, with canonical projection map
pY,D : YD → Y , and a continuous surjection g : YD → X such that the following
diagram commutes:

YD
g ւ ↓ pY,D

X
f
−→ Y

To elaborate, ultracopowers are special cases of ultracoproducts when all the factor
spaces are the same. Assuming the reader familiar with the usual ultraproduct
construction, we know from Theorem 1.1, plus the Fundamental Theorem of Ul-
traproducts of J.  Loś (see [8]), that ultraproducts of normal disjunctive lattices are
normal disjunctive lattices. So if 〈Xi : i ∈ I〉 is an I-indexed family of compacta,
with D an ultrafilter on I, we may define the D-ultracoproduct

∑
D
Xi of this family

to be the Wallman representation S(
∏

D
F (Xi)). This construction is stable in the

following sense: Suppose Ai is a lattice base for Xi, i ∈ I, with fi : Ai → F (Xi) the
corresponding inclusion homomorphism. Let f :

∏
D
Ai →

∏
D
F (Xi) be the usual

ultraproduct homomorphism, with fS : S(
∏

D
F (Xi)) → S(

∏
D
Ai) its S-induced

mapping. Then fS is a homeomorphism [3].
When the spaces Xi are all the same space X, the ultracopower is abbreviated

XD. In this case there is a canonical projection map p = pX,D : XD → X, defined
by the condition p(µ) = x if and only if the D-ultrapower of the closure of every
open neighborhood of x is a member of µ. This completes the definition of what it
means for a mapping between compacta to be co-existential.

Co-existential mappings pair up with inverse limits using surjective bonding
maps on the topological side much as existential embeddings pair up with direct
limits of embeddings on the model-theoretic side. In fact, if P is a property of
compacta that is both closed under the ultracoproduct construction and the con-
dition that compactum X has property P whenever some ultracopower of X has
the property, then P is closed under co-existential images if and only if it is closed
under inverse limits. This is the Chang- Loś-Suszko theorem in a topological set-
ting [4]; in our situation, however, we travel outside the first-order perimeter to
consider properties—e.g., chainability—that are defined using essentially infinitary
language.
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Remark 3.1. Co-existential mappings are special, but not particularly rare. In-
deed, every mapping from a compactum onto a zero-dimensional compactum with-
out isolated points is co-existential. Moreover, every compactum (resp., continuum)
is a continuous image of a compactum (resp., continuum) that is itself only a co-
existential image of other compacta (resp., continua). (See [3] for details.) Finally
[7], a compactum is locally connected if and only if every co-existential mapping
onto it is monotone (i.e., pre-images of subcontinua are subcontinua).

Proposition 3.2. Let ∆ be a set of ∀
∨
∃ sentences that are constituent base free.

If X ∈ P∆ and f : X → Y is a co-existential map, then Y ∈ P∆ also.

Proof. Let g : YD → X be a continuous surjection witnessing the co-existentiality
of f : X → Y , with p = pY,D. As in the proof of Proposition 2.1, we apply the
contravariant functor F to this commutative triangle, obtaining a new commutative
triangle of closed-set lattices and lattice embeddings. The D-ultrapower F (Y )D of
F (Y ) is then the standard lattice base for the D-ultracopower YD. Let d : F (Y )→
F (Y )D be the ultrapower diagonal embedding, with e : F (Y )D → F (YD) the inclu-
sion homomorphism. Then pF = e◦d, and we have a commutative square of normal
disjunctive lattices, with the embedding pF forming a diagonal for the square.

F (Y )D
e
−→ F (YD)

d ↑ pF ր ↑ gF

F (Y )
fF

−→ F (X)

Let ∆ be as in the statement of the proposition, and suppose F (X) |= ∆. Pick
δ ∈ ∆; for simplicity, and without loss of generality, we may assume δ is of the
form ∀x∃yψ(x, y). We wish to prove F (Y ) |= δ, so let A ∈ F (Y ) be an arbitrary
closed subset of Y . Then, by hypothesis, there is some B ∈ F (X) such that
F (X) |= ψ[fF (A), B]. Since ψ(x, y) is quantifier free, we know that F (YD) |=
ψ[pF (A), gF (B)]; hence F (YD) |= ∃yψ[pF (A), y]. Now pF (A) = e(d(A)) and ∃yψ
is base free; so F (Y )D |= ∃yψ[d(A), y]. Since d is an elementary embedding, we
immediately have F (Y ) |= ∃yψ[A, y]. Thus F (Y ) |= δ, and we infer that Y ∈ P∆.

�

4. expansive sentences

Officially all atomic formulas of Lω1ω are equations of the form σ = τ , where σ and
τ are lattice-theoretic terms. A formula is called restricted if each of its atomic
subformulas is an equation with at least one side ⊥ or ⊤. As above, we often use
σ ≤ τ to abbreviate either of the two nonrestricted formulas σ⊓ τ = σ or σ⊔ τ = τ

(being equivalent to one another in any lattice). For convenience we partition our
set of variables into {x0, x1, . . . } and {y0, y1, . . . }. We call a formula η(x, y) weakly
linking if it is a positive Boolean combination (i.e., no negations) of formulas of the
following three types:
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(1) σ(x) ≤ τ(y)

(2) ¬[τ(y) ≤ σ(x)]

(3) quantifier-free restricted.

We define a weakly linking formula to be linking if the formulas allowed in (3)
above are confined to be of the form σ(x)⊓ τ(y) = ⊥. An Lω1ω-sentence ϕ is called
weakly expansive (resp., expansive) if it is of the form

∀x[α(x)→
∨

Ψ(x)]

where:

• α(x) is restricted and quantifier free; and

• each formula of Ψ(x) is of the form ∃y(η(x, y) ∧ ψ(y)), where η(x, y) is a
weakly linking (resp., linking) formula, and ψ(y) is restricted and quantifier
free.

Clearly a weakly expansive sentence may be written in ∀
∨
∃ format, and its con-

stituent formulas may be taken to be of the form

α(x)→ ∃y(η(x, y) ∧ ψ(y))

Our objective in this section is to show that expansive sentences are both base free
and constituent base free. To this end, let us make the following definition. For
two m-tuples 〈a0, . . . , am−1〉, 〈b0, . . . , bm−1〉 from a lattice A, we say the second is
an exact corefinement of the first if: (i) bj ≥ aj , j < m; and (ii) for each restricted
quantifier-free formula ρ(y0, . . . , ym−1) over L, we have A |= ρ[a0, . . . , am−1] if and
only if A |= ρ[b0, . . . , bm−1]. This sharpens the idea of a swelling, introduced in
the 1930s for studying covering dimension. The following lemma is a strengthened
version of Theorem 7.1.4 in [10], the principal result concerning swellings.

Lemma 4.1. Let X be a compactum, with B a lattice base for X. Then every
m-tuple of sets from F (X) has an exact corefinement consisting of sets from B.

Proof. We first observe that terms σ(y0, . . . , ym−1) over L are monotonic, in the
sense that if A is any lattice, with aj ≤ bj , j < m, then A |= (σ[a0, . . . , am−1] ≤
σ[b0, . . . , bm−1]). From this we conclude that if ρ(y0, . . . , ym−1) is a restricted atomic
formula, Aj ⊆ Bj ⊆ Cj , j < m, are sets from F (X), and
F (X) |= (ρ[A0, . . . , Am−1] ∧ ρ[C0, . . . , Cm−1])
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(resp., F (X) |= (¬ρ[A0, . . . , Am−1] ∧ ¬ρ[C0, . . . , Cm−1])), then
F (X) |= ρ[B0, . . . , Bm−1] (resp., F (X) |= ¬ρ[B0, . . . , Bm−1]).

We next observe that it suffices to establish the stated result for restricted formu-
las that are either atomic or negated atomic, as restricted quantifier-free formulas
are just positive Boolean combinations of these.

Let 〈A0, . . . , Am−1〉 be a fixed m-tuple from F (X). For each restricted atomic (or
negated atomic) formula ρ(y0, . . . , ym−1), we construct an m-tuple 〈Bρ

0 , . . . , B
ρ
m−1〉

from B in a straightforward way, à la the proof of Theorem 7.1.4 in [10]. In
particular, we have Aj ⊆ Bj , for j < m; and F (X) |= ρ[A0, . . . , Am−1] if and only
if F (X) |= ρ[B0, . . . , Bm−1]. The proof naturally splits into the cases where one side
of ρ is ⊥ or ⊤, and we repeatedly use the observation in the first paragraph. Finally,
we note that ρ may be taken to range over a finite set {ρ0, . . . , ρr−1} of formulas
in the variables y0, . . . , ym−1. With this in mind, we set Bj := B

ρ0

j ∩ · · · ∩ B
ρr−1

j ,

for each j < m. Then 〈B0, . . . , Bm−1〉 is an exact corefinement of (A0, . . . , Am−1),
consisting of sets from B.

�

The main result connecting syntax with semantics is now the following.

Theorem 4.2. Weakly expansive sentences are constituent base free; expansive
sentences are also base free.

Proof. Let ϕ be the weakly expansive sentence ∀x[α(x) →
∨

Ψ(x)]. To show ϕ is
constituent base free, let γ(x) be one of its constituent formulas α(x)→ ∃y(η(x, y)∧
ψ(y)), where x = 〈x0, . . . , xm−1〉 and y = 〈y0, . . . , yn−1〉. Let X be a compactum
with lattice base A. Given A = 〈A0, . . . , Am−1〉 ∈ A

m, it suffices to show that
A |= γ[A] if F (X) |= γ[A]. (The other implication is, of course, trivial.)

So suppose A |= α[A]. Then F (X) |= α[A]; hence there is some
B = 〈B0, . . . , Bn−1〉 ∈ F (X)n such that F (X) |= (η[A,B] ∧ ψ[B]). Using Lemma
4.1, we get an exact corefinement
〈A′

0, . . . , A
′

m−1, B
′

0, . . . , B
′

n−1〉 of 〈A0, . . . , Am−1, B0, . . . , Bn−1〉 consisting of sets
from A. It is easy to show that if Ai ⊆ A′′

i ⊆ A′

i, for i < m, and Bj ⊆ B′′

j ⊆ B′

j ,
for j < n, then 〈A′′

0 , . . . , A
′′

m−1, B
′′

0 , . . . , Bn−1〉 is also an exact corefinement of
〈A0, . . . , Am−1, B0, . . . , Bn−1〉. In particular, 〈A0, . . . , Am−1, B

′

0, . . . , B
′

n−1〉 is an

exact corefinement of 〈A0, . . . , Am−1, B0, . . . , Bn−1〉. Let B
′

= 〈B′

0, . . . , B
′

n−1〉.

Then it is also true that B
′

is an exact corefinement of B; and, since ψ(y) is re-

stricted and quantifier free, we know that F (X) |= ψ[B
′

]. Therefore A |= ψ[B
′

]; so

it remains to show that A |= η[A,B
′

].
Now since terms over L are monotonic (see the proof of Lemma 4.1), we know

that if η(x, y) is of either of the first two types given above and F (X) |= η[A,B],

then F (X) |= η[A,B
′

]; hence A |= η[A,B
′

]. If η(x, y) is of the third type, restricted
and quantifier free, we may directly apply the definition of exact corefinement.
Since η(x, y) in general is just a positive Boolean combination of formulas of these

three types, we may now infer that A |= η[A,B
′

], as desired. This is just what
we need to show A |= γ[A], and hence that the weakly expansive sentence ϕ is
constituent base free.
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To show ϕ is base free when it is expansive, there are two implications to estab-
lish. If F (X) |= ϕ and A ∈ Am, then F (X) |= γ[A] for some constituent formula
γ(x) of ϕ. By the argument above, we have A |= γ[A]; and so A |= ϕ. Now suppose
A |= ϕ. Assume A = 〈A0, . . . , Am−1〉 ∈ F (X)m is such that F (X) |= α[A]. Then,

using Lemma 4.1, there is an exact corefinement A
′

= 〈A′

0, . . . , A
′

m−1〉 ∈ A
m of A;

so we infer A |= α(A
′

). Hence there is some ∃y(η(x, y) ∧ ψ(y)) in Ψ(x) and some

B ∈ An such that A |= (η[A
′

, B] ∧ ψ[B]). Thus F (X) |= (η[A
′

, B] ∧ ψ[B]), and
it remains to show that F (X) |= η[A,B]. This follows as in the last paragraph,
with the one difference that we invoke monotonicity of terms also when η(x, y) is
of the form σ(x) ⊓ τ(y) = ⊥. (We may not simply invoke the fact that η(x, y)
is restricted and quantifier free because 〈A′

0, . . . , A
′

m−1, B0, . . . , Bn−1〉 may not be
an exact corefinement of 〈A0, . . . , Am−1, B0, . . . , Bn−1〉.) This completes the proof
that ϕ is base free.

�

Putting Propositions 2.1 and 3.2 together with Theorem 4.2 immediately yields the
following result.

Corollary 4.3. Let ∆ be a set of weakly expansive (resp., expansive) sentences.
Then P∆ is closed under co-existential images (resp., co-existential images and in-
verse limits).

5. some properties that are (are not) expansive

We begin with two well-known properties that are not expansive.

Examples 5.1. (1) (Decomposable) This is the property of a continuum that
says it is the union of two proper subcontinua. Any continuum that can
be easily visualized—such as an arc (i.e., a topological copy of a closed
bounded interval in the real line)–is decomposable, and while this property
should apply to any nondegenerate continuum, it actually does not. Indeed
it fails to be closed under either inverse limits [17] or co-existential images
[3]. Hence it is not an expansive property (or even a weakly expansive one).

(2) (Locally connected) This is the property that each point has a neighborhood
base of connected open sets, and is also one that applies to easily visualiz-
able continua. And while it is closed under co-existential images—indeed,
all topological quotients—it is not closed under inverse limits [17]. This
tells us that local connectedness is not an expansive property, but leaves
open the question of whether it is weakly expansive.

In the following group of examples, we consider how certain properties of com-
pacta may be formulated using finitary (weakly) expansive sentences ∀x[α(x) →
∃y(η(x, y) ∧ ψ(y)].

Examples 5.2. (1) (Connected) In this simple case, the y string is empty;
α(x0, x1) is (x0⊓x1 = ⊥)∧ (x0⊔x1 = ⊤) and η(x0, x1) is x0 = ⊤∨x1 = ⊤.
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[In all subsequent examples of properties of continua, we describe just the
sentences we need to add to the statement of connectedness.]

(2) (Indecomposable) Indecomposability is the negation of decomposability,
and says of a continuum X that if X is the union of two proper closed sub-
sets A and B, then at least one of the subsets must have a disconnection.
This is easily expressible as a weakly expansive finitary sentence, but we
can do better. To obtain an expansive formulation, we resort to a char-
acterization of indecomposability given in [4] (Theorem 4.5), namely that
whenever A and B are closed in X with A∪B = X and A 6= X 6= B, there
exist closed sets H and K of X such that: (i) A ⊆ H ∪K; (ii) H 6⊆ B and
K 6⊆ B; and (iii) A ∩ (H ∩K) = ∅.

(3) (Hereditarily indecomposable) A continuum X is hereditarily indecompos-
able if any two subcontinua are either disjoint or comparable. The most
famous hereditarily indecomposable continuum is the pseudo-arc (see, e.g.,
[17, 16]). This definition is certainly not readily expressible even as a weakly
expansive sentence; fortunately there is the following characterization, due
to Krasinkiewicz and Minc [14], which is easily formulable as a finitary ex-
pansive sentence: Whenever A, A′, B, B′ are closed subsets, with A disjoint
from B and A∩A′ = B ∩B′ = ∅, then there exist closed sets H, K and M
such that: (i) A ⊆ H and B ⊆M ; (ii) A′ ∩ (K ∩M) = ∅ = B′ ∩ (H ∩K);
and (iii) H ∩M = ∅ and H ∪K ∪M = X.

(4) (Unicoherent) A continuum X is unicoherent if whenever A and B are two
subcontinua such that X = A∪B, it follows that A∩B is connected. This
is a very general way of saying that there are no “holes” in the continuum.
Cells of dimension ≥ 1 and spheres of dimension ≥ 2 are unicoherent; circles
and lemniscates are not. In [5] it was proved using model theory that there
must be some ∀∃ base-free sentence that characterizes unicoherence, but
no such sentence is currently known. Here we partially rectify the situation
by providing a weakly expansive sentence expressing unicoherence. First
we state a simple lemma, whose proof is an easy exercise.

Lemma 5.3. Let D be a closed subset of a normal space X. Then D is
disconnected if and only if there are closed subsets R,S ⊆ X such that: (i)
R ∪ S = X; (ii) D ∩R 6= ∅ 6= D ∩ S; and (iii) D ∩ (R ∩ S) = ∅.

A finitary weakly expansive formulation of unicoherence in a continuum
X simply says that for all closed sets A,B,R, S; if A ∪ B = X = R ∪ S,
(A∩B)∩R 6= ∅ 6= (A∩B)∩S, and (A∩B)∩ (R∩S) = ∅, then (for C = A

or for C = B) there are closed sets H,K such that: (i) C ⊆ H ∪ K; (ii)
C ∩ (H ∩K) = ∅; and (iii) (the only condition that does not fit the criteria
for being expansive) H ∩ C 6= ∅ 6= K ∩ C.

The next several examples constitute what are commonly referred to as “covering
properties.” In the Lω1ω sentence ∀x[α(x) →

∨
Ψ(x)], α(x0, . . . , xk−1) says that
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“the sets x0, . . . , xk−1 form a closed co-cover,” i.e., that their complements, once
interpreted in some F (X), form an open cover. Thus α is just the restricted atomic
formula x0 ⊓ · · · ⊓ xk−1 = ⊥. Each linking formula η(x0, . . . , xk−1, y0, . . . , ym−1) is
the corefinement condition

∧
j<m

∨
i<k(xi ≤ yj) (each yj “contains” some xi); so it

remains to specify the formulas ψ(y).

Examples 5.4. (1) (Dimension ≤ n) The covering dimension of a compactum
is ≤ n, n < ω, if for each finite open cover there is a refining open cover,
no n + 2 of whose sets have a common intersection. So for each fixed
m = 1, 2, . . . , ψm(y0, . . . , ym−1) is the conjunction of the formulas

(y0 ⊓ · · · ⊓ ym−1 = ⊥) ∧ (⊔{yj : j ∈ s} = ⊤),

as s ranges over all subsets of {0, . . . ,m− 1}, of cardinality n+ 2.

(2) (Chainable) A compactum is chainable if for each finite open cover there
is a refining open cover that forms a “chain.” Chainable compacta are
automatically continua; the arc (resp., pseudo-arc) is the only metrizable
continuum that is both locally connected (resp., hereditarily indecompos-
able) and chainable [17, 16]. In this case ψ(y0, . . . , ym−1) is the conjunction
of the formulas

y0 ⊓ · · · ⊓ ym−1 = ⊥,

{yi ⊔ yj 6= ⊤ : i, j < m, |i− j| ≤ 1}, and

{yi ⊔ yj = ⊤ : i, j < m, |i− j| ≥ 2}.

(3) (Acyclic curve) A compactum is acyclic (see, e.g., [9]) if it is connected and
is such that every continuous map from it into a simple closed curve (i.e.,
a homeomorphic copy of the standard unit circle in the complex plane) is
nullhomotopic. If, in addition, it is of covering dimension 1, it is called an
acyclic curve. In [2] it is proved (Theorem 2.1) that a compactum is an
acyclic curve if and only if for each three-set open cover there is a refining
open cover that forms a chain in the sense used above. So this amounts to
just a simpler version of (2).

(4) (G-refinable) Let G be a family of topological graphs; i.e., each of its mem-
bers is a metrizable compactum that is decomposable into a finite union
of points and arcs, no two arcs of which intersect in a cut point of ei-
ther. We may assume that the members of G are pairwise nonhomeomor-
phic, and hence that G may be countably indexed as {Gr : r < ω}. A
compactum is G-refinable if for each finite open cover there is a refining
open cover whose nerve is an abstract graph that realizes topologically as a
compactum homeomorphic to some Gr. Thus chainability (resp., circular
chainability) is {G}-refinability, where G is an arc (resp., a simple closed
curve). Also, when G is the family of all topological trees—i.e., connected
topological graphs containing no simple closed curves—the property of be-
ing G-refinable is what many authors call being tree-like. Tree-like continua
are well known [9] to be acyclic curves. It is not hard to show, using an in-
ductive argument involving the number of arcs and points used to describe
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a topological graph, that G-refinability is an expansive covering property.

We end with some remarks and observations.

Remarks 5.5. (1) In [2] and [5] a property P is finitely expressible if there is
a finitary base-free sentence over L such that a compactum X is in P just
in case F (X) satisfies the sentence. Thus all the properties in Example 5.2
are finitely expressible. In addition, for each n < ω, the property of being of
covering dimension ≤ n is finitely expressible, thanks to a famous theorem
of E. Hemmingsen. However, chainability and the property of being an
acyclic curve are not. (See [2, 4] for details.)

(2) Referring to Example 5.4(3), we do not know whether co-existential maps
preserve acyclicity without the dimension restriction. In [15], A. Lelek
proved that acyclicity is preserved by maps that are confluent, i.e., ones for
which each component of the pre-image of a subcontinuum of the range is
sent by that map onto the subcontinuum. This significantly improves on a
1930s result of S. Eilenberg, who showed preservation in the case the map
is either monotone or open.

(3) Because both chainability and hereditary indecomposability are expansive
properties, together with the fact that the pseudo-arc is unique among
the chainable hereditarily indecomposable continua that are metrizable, we
know that a co-existential image of a pseudo-arc is also a pseudo-arc. It is
known [16] that confluent maps preserve being tree-like; however it is not
currently known whether they preserve chainability. In particular, it is not
known whether they preserve being a pseudo-arc. Co-existential mappings
are monotone when the image space is locally connected, and are weakly
confluent (i.e., some component of the pre-image of a subcontinuum maps
onto the subcontinuum) in general [3]. Recently [6, 11], examples have been
constructed to show that co-existential mappings need not be confluent. For
the converse, confluent mappings—even ones that are both monotone and
open—may raise dimension [19], unlike co-existential mappings [3].
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