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The notions of elementary equivalence and elementary mapping in first order model theory
have category-theoretic reflections in many weli-known topological settings. We study the dualiz-
ed notions in the categories of compact Hausdorff spaces and compact abelian groups.

0. Introduction

This report is intended as a sequel to the author’s papers [4,6]; our main goals
being to answer certain of the questions raised (some raised implicitly), and general-
ly to tie up some loose ends left therein. Although we must claim full responsibility
for the somewhat ungainly terminology, the idea of co-glementary equivalence has
its historic roots in a paper by T. Ohkuma [14]. However, from a personal perspec-
tive, our inspiration can be traced directly to lively conversations we had with
B. Banaschewski, G. Bruns, and E. Nelson while we were visiting McMaster Univer-
sity early in 1974. Thus the entire topic is dear to this author’s heart, as well as
apropos of a mid-career retrospective given in honor of Professor Banaschewski.

We use the following theorem, a main result of [4], as a focus for the present

paper:

0.1 Theorem (Bankston [4]). Let X and Y be two Tichonov spaces (resp. normal
Hausdorff spaces) whose lattices Z(X) and Z (Y) (resp. F(X) and F(Y)) of zero sets
(resp. closed sets) are elementarily equivalent, in the sense of first order logic. Then
their unital rings C*(X) and C*(Y) of bounded continuous real-valued Junctions
satisfy the same positive-universal sentences.

Unfortunately, this theorem is not very sharp. In our bedazzlement with the
ultraproduct-ultracoproduct technique we discovered for the proof, we failed to

notice that the conclusion happens to be true under almost no hypotheses at all. (We
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12 P. Bankston

would like to thank R. Gurevit for piquing our suspicions in this direction.)
While the story has a happy ending, to be related in Section 2, let us begin by review-
ing briefly the five major steps of the proof.

Step 1. Assuming elementary equivalence, Z (X)=Z(Y), we employ the Keis-
ler-Shelah ultrapower theorem [7] to find isomorphic ultrapowers [lg Z(X)=
[Ig Z(Y).

Step 2. Extend (sic) the lattice isomorphism between [, Z(X) and [ Z (Y)to
a homeomorphism between the topological ultracopowers TgXand XY (4,
Lemma 3.2}, also [6, Proposition 1.10]).

Step 3. Use [4, Lemma 3.1] (also (6, Proposition 1.6]), which asserts that
an ultracoproduct ¥, X; is (naturally) homeomorphic to the ultracoproduct
Ly B(X;) of Stone-Cech compactifications, to establish a homeomorphism
Eg BX)=Lg4 B(Y).

Step 4. The topological ultracoproduct is constructed as an inverse limit of
coproducts in the category KH of compact Hausdorff spaces and continuous maps
[6]. This is precisely dual to the usual construction of ultraproducts in the category
of all relational structures (and atomic relation preserving maps) of a particular
similarity type (or in any full subcategory which happens to be an elementary pro-
ductive class). Thus, using the Gel’fand-Kolmogorov duality theorem, we conclude
that C*(X) and C*(¥) have isomorphic ultrapowers in the category C[KH] of rings
of continuous real-valued functions with compact Hausdorff domains (C*(X)=
C(B(X))). Writing H; C*HX)= Hg C*(Y), we show that these unital rings are ob-
tained from the usual ultrapowers by ‘‘throwing away the infinite elements and
dividing out the ideal of infinitesimals’’. (This is all spelled out in [4]. We should
also note that this construction is better known as the ‘“Banach ultrapower’’ [8,11].)

Step 5. Having established that Hg C*X) is a quotient of a subring of
[Ig C*(X), it is an easy model-theoretic argument to show that C*(X') and C*(Y}
satisfy the same positive-universal sentences.

The rest of this paper is a commentary on various aspects of the proof, and a pro-
spectus on analogous results in the setting of topological groups. In Section 1 we
consider ‘‘dualized model theory in KH’’, and answer some questions arising in [6];
in Section 2 we explore the weakness of the conclusion in Step 5, and replace it with
a much stronger one; and in Section 3 we examine some of the difficulties inherent
in transporting Theorem 0.1 to the setting of compact abelian groups.

To complete our introductory remarks, let us consider for a moment Step 4.
Define two compact Hausdorff spaces X and Y to be co-elementarily equivalent (in
symbols X=Y) if they have homeomorphic ultracopowers. We will go into more
detail in Section 1; as for now suffice it to say that this relation is an equivalence
relation between objects in KH [6, Proposition 3.2.1] which respects Lebesgue
covering dimension and connectedness [6, Theorem 3.2.4]. Letting X be Boolean,
that is dim(X) =0, we have that Y is Boolean whenever ¥Y=.X; and by Stone duality,
Boolean spaces X and Y are co-elementarily equivalent if and only if their Boolean
algebras B(X) and B(Y) of clopen sets are elementarily equivalent.
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The operations B(-), Z(-), F(-), C*(+), etc. are what we call *‘first order
representations’’ in [4-6, 18, 19]. The fact that C*(.) is a duality when restricted to
KH makes Step 4 work. Unfortunately, the class C[KH] of rings is badly behaved
from a model-theoretic point of view; what we would much rather have is a duality
R :KH - 2, where o is an elementary class of relational structures, closed under
arbitrary direct powers. Then ultrapowers in o would be the usual ones, and we
could conclude, ““Then R(X)=R(Y).”’, in Theorem 0.I.

In a seminar talk which we gave at McMaster University in the middle 1970’s, we
considered the existence of such a duality R as very unlikely; and conjectured in [3],
with partial supporting results, that indeed R could not exist because
ultracoproducts in KH would behave in a pathological way.

The conjecture was settled in the fall of 1983 by Banaschewski [1], and in-
dependently by J. Rosicky [15]. ([6, Theorem 3.1.1] summarizes the situation; also
there is further discussion in [5].) While both proofs are ingenious, and quite
dissimilar, neither makes use of any pathology in the ultracoproduct construction
in KH. In fact it is our growing belief, supported by the results of [5,6] and the pre-
sent paper (see Section 1), that no such pathology will ever be found. Thus, while
the result of Banaschewski and Rosicky is a negative one, it stands as a challenge
to us to try and discover why topological ultracoproducts behave so predictably.

1. Co-elementary equivalence and co-elementary maps in KH

There are several equivalent ways of representing the topological ultracoproduct
(sec [6,9,19]); the most informative is via the compactification of topological
ultraproducts.

Let (X;:ie 7} be any family of topological spaces, and let @ be an ultrafilter on
the index set /. The topological ultraproduct (see [2]) is the space [1g X, a
topological quotient of the box product, whose points are @-equivalence classes of
functions xe[l;.; X; (i.e., X]=[Xlg={yel;c; X;: {i: y;,=x;} €®@}), and whose
open (closed) sets are basically generated by ‘open (closed) ultraboxes’ g M;,
where M; is open (closed) in X;. It is easy to verify that if 2, is an open (closed)
basis for X, then ultraboxes g B;, B;€ &B;, generate the ultraproduct topology in
the appropriate sense.

Suppose X is Tichonov. Then Z(X) is a ‘normal’ basis in the sense of
Wallman-Frink [17]; if X is also normal, then F(X} is a normal basis as well. When
(X;:iel) is a family of Tichonov spaces, the lattice ultraproduct Mg Z(X;) is, via
the obvious identification [{Z;: i€ I)]g — [Ig Z;, a normal basis for the topological
ultraproduct. Hence [], X; is also Tichonov. (Il X; can fail to be normal, even if
the X;’s are compact Hausdorff [2].) We can thus form the Wallman-Frink com-
pactification w([l, Z(X;)): points are IIs Z{X;)-ultrafilters; closed sets are
basically generated by sets
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#
(H Z,-) = {pew( I1 Z(X,-)): I Z; contains a member of p}.
@ @ @

(Note that open sets are basically generated by sets ([[, C;}*, where C;C X; is a
cozero set.) The fundamental facts we need are:

(1) When (X;:iel) is a family of compact Hausdorff spaces, w([lg Z(X})) is
the KH-ultracoproduct ¥, X;.

(2) If the X;s are just Tichonov spaces, then w([]g Z(X;)) is naturally
homeomorphic to ¥4 B(X)).

(3) If the X;’s are also normal, then w(I[, Z(X,)} is naturally homeomorphic
to w([l, F(X))).

(4) Whenever F,CX; is a compact subspace, ([[4 F)# is naturally homeo-
morphic to ¥4 F;. (This is all proved in [6].)

One major goal in this section is to catalogue topological properties which are and
which are not preserved by co-elementary equivalence.

Let P be a topological property. P is ‘‘preserved and reflected by
ultracoproducts” if whenever (X;:iel) is a family of compact Hausdorff spaces
and @ is an ultrafilter on /, then ¥, X; has property P if and only if {i: X has
property P} e @. If P is such a property, it is a triviality to see that P is preserved
by co-elementary equivalence: If X has property P and Y=.X, then Y has property
P. The converse is false however: Let P be the property of being infinite. This pro-
perty is preserved by co-elementary equivalence because L, X; is infinite just in
case, for each n<w, {i: |X;|>n} €@ (| -| denotes cardinality}. (This is [6, Pro-
position 1.4].)

Several preservation results are proved in [6]. The most useful for our purposes
here are:

(1) Having Lebesgue covering dimension n, n<w, is preserved and reflected by
ultracoproducts. ({6, Theorem 2.2.2] states dim(X)=dim(F 4 X), but the proof
works for the stronger assertion.)

(2) B(L 4 X)) =llg B(X)) (16, Proposition 1.5]; also [4, Lemma 4.6]).

(3) As a consequence of (2), connectedness is preserved and reflected by ultra-
coproducts.

As motivation for our new results, note that since F(X)=F(Y) implies X=7,
there can be no more than ¢ (= continuousty many) =-classes in KH. Also, since
XY if and only if B(X)=B(Y) for dim(X)=dim(Y)=0, and since the theory of
Boolean algebras has only countably many complete extensions (the Tarski in-
variants theorem [7]), there are exactly R, =-classes of Boolean spaces. Let n<w,
and let KH,, c KH consist of all spaces of covering dimension 7. [6, Theorem 3.2.5]
states that there are exactly ¢ =-classes in KH, and the proof uses the preservation
and reflection of n-dimensionality to construct ¢ mutually non-co-elementarily
equivalent spaces of infinite dimension. Here we improve on that result by showing
that for each positive n<w, KH, has ¢ =-classes. First we need some preservation
results concerning continua.
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Recall that a continuum is a connected compact Hausdorff space. (T4 X; is a
continuum if and only if {/: X; is a continuum} e ®.) If X is a continuum and
n<aw, define an n-wheel on X to be a cover {K} U {L;: j<n} of X by subcontinua
in such a way that:

() K\ U, L;#0 (X is the ‘hub’);

(i) L,\K#0 for j<n (L;is a ‘spoke’); and

(iii) for j<k<n, L;NL,=M.

X is n-odic if X has an n-wheel, but no m-wheel for m> n. Note that circles are
1-odic, arcs are 2-odic, and X is 0-odic if and only if X is ‘indecomposable’ (i.e.,
X is not the union of two proper subcontinua).

In order to prove a result concerning preservation of n-odicity, we will need the
following lemma, due to R. Gurevit [9]:

1.1, Lemma. Lef {X;:iel) be compact Hausdorff spaces, let x,€ X;, and let C; be
the component of x; in X;. Then ([Ig C))* is the component of (], {x;}D* in
Eg; Xr‘-

Proof. By Fundamental Fact 4 above, we can write ([I; C))* and ([I {x;}}* as
Lp G and ¥4 x; respectively. Let C be the component of ¥, x; in ¥ X;. Since
Y s Ci is connected and intersects C, we know Y, C;CC. Suppose pg Y, C;.
Then we can find closed F;CX; with [[, Fiep and {i: FNC;=08}ec9. Thus
peYgFand ¥, FNY, C=Y 4 F,NC;=0. Since C; is maximally connected in
X; and all spaces under consideration are compact, there is a clopen set B;C X;
separating K; and C; whenever they are disjoint. Thus ¥4 B, is a clopen subset of
Y g X separating p from ¥, C;. This implies p¢ C, hence L, C;=C. [

1.2. Theorem. For each n<w, the property of being an n-odic continuum is
preserved and reflected by ultracoproducts.

Proof. Suppose J={i: X; is n-odic} € @. If for all ieJ, {K;} U{L,;:j<n} is an
n-wheel for X, then it is easy to see that {¥, K;} U{XLg4 L;,:j<n} is an n-wheel
for ¥4 X,.

Now suppose {K}U{L;:j<mj} is an m-wheel for L, X;. We need to show
m=n. Since K\ Uj<m L; is a nonempty open set, there is some Y, x,e K\
U;<m L, Similarly, for j<m, we can find ¥4 »; ;€ L;\ K.

Using a compactness argument, one can show easily that if F and G are disjoint
closed subsets of ¥, X; then one can find open sets U}, ¥; € X;, whose closures are
disjoint, such that FC Y4 U, and GC T, V. These larger closed sets will, of
course, be disjoint in ¥, X;. Hence, for each j<m, we can find a closed set
L F;; containing L; such that T, F,NY, F,,;=8, j<k<m, and ¥, x4
U< Lo Fj,i- Using Lemma 1.1, let T L;; be the component of ¥, F; ; contain-
ing ¥y ¥ J<m. Then L;, being connected, must be contained in %4 L;; for
J<m. Arguing similarly, but with less fuss, we can obtain an ultracoproduct sub-
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continuum ¥, K;2 K that contains no Ty ; ;. Thus {L g K} U{Lg L;:j<m} is
an m-wheel on ¥, X;. But then {i: {K;} U {L,;: j<m} is an m-wheel on X;} € &;
whence m=<n. Thus the property of being an n-odic continuum is preserved by
ultracoproducts. In order to show reflection, just argue as above, only in reverse
order. O

1.3. Corollary. The property of being an n-odic continuum, n<w, is preserved by
co-elementary equivalence.

1.4. Remark. In [6, Proposition 2.4.4] we proved the easy result that
ultracoproducts of decomposable continua are decomposable, and asked whether
decomposability is also reflected. Lemma 1.1 communicated to us by Gurevi¢ in the
fall of 1985, turned out to be the key ingredient for obtaining an affirmative answer.

We now use Theorem 1.2 to prove our advertised result concerning the number
of =-classes in KH,,.

1.5. Theorem. Let n<w. Then KH, contains exactly 8, =-classes if n=0 and ex-
actly ¢ =-classes if n>0.

Proof. The case n=0 is ancient history; let us prove the case for n=1. The case
n>1 involves minimal extra work. It suffices to construct a sequence {X,: a<c)
such that dim(X,)=1 and X, =2 X, for < <c. The proof is similar in structure
to the proof of Theorem 3.2.5 in [6].

For m=2,3,..., let H,, be m line segments emanating from a single point; i.e.,
H,=L,U---UL,, where L;={{x,y)eR*: 0<x=1, y=jx}, then each H,, is plain-
ly m-odic. Let S be the set of all sequences 5: {2,3,...} = {0,1}. For each se S, let
X, be the Alexandrov one-point compactification of the disjoint union
XZ,S(Z)L'JX3,S(3)L'J---, where for 2=m<w,

_ | a singleton if s(m) =0,
s O H if s(m) = 1.

Clearly each X, has dimension 1, and is in fact metrizable. It remains to show
X, # X, for s, ¢ distinct in S, Suppose s#1, say s{k)}=1 and t(k)=0. For convenience,
set Y=X,, Z=X,, Y, =X, som)» Zm=Xm,1(my- Assuming Y=2Z, we can find an
ultrafilter @ and a homeomorphism é: ¥ 5 Y-+ ¥ 5 Z. By Fundamental Fact 2, we
have an induced isomorphism " : [I5 B(Y)— I, B(Z). Now for any u€ S, B(X,)
is the finite-cofinite algebra on w, and its atoms are the clopen sets X, ;. Thus
the atoms of B(Y, X,) correspond to the ultracoproducts of the spaces X, um)-
Since J° takes atoms to atoms, we infer that J takes ¥, ¥; to an ultracoproduct of
the Z,’s. But Y, =H;, a k-odic continuum. Also no Z,, is k-odic, since Z; is a
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singleton and no other Z,, is H,. By Theorem 1.2, no ultracoproduct of the Z,_’s
can be k-odic. This is a contradiction, so we conclude Y#Z.

Now let #>1, and let [0,1]" be the n-cube. Let Y;=[0,1]" U X,, where X, is as
above, s€ 8. For particular s, € § where s(k)=1, #(k) =0, repeat the above argu-
ment. Here it is convenient to use the fact that covering dimension is preserved and
reflected by ultracoproducts. 0O

For any space X, let w(X) denote the ‘weight’ of X, the smallest cardinality of
a basis for X. It is well known that for infinite X e KH, |B{X)| =w(X). (The
analogous statement goes through for compact abelian groups and their discrete
character groups, by Pontryagin-van Kampen duality.) Moreover, it is proved in [5]
that if R: KH,— & is any duality onto an elementary productive class in which
equalizers are embeddings and co-equalizers are surjections, then |R(X)|=w(X)
for any infinite X. Thus, a case can be made that the weight for compact Hausdorff
spaces is the correct ‘dual’ to cardinality from the standpoint of model theory,

In [6] we asked the question (Question 3.2.7) whether every XeKH is co-
elementarily equivalent to a second countable (= metrizable) YeKH. This is a
‘Léwenheim-Skolem’ type of question, and in a letter, Gurevi¢ suggested that the
methods of his paper [10] could be used to give an affirmative answer.

While this can indeed be done, we prove instead a stronger result involving co-
elementary maps corresponding to the well-known Léwenheim-Skolem downward
theorem,

The idea of co-elementary map is dual to that of elementary map, If A and B are
two relational structures, a map €: A — B is elementary (in symbols ¢: A< B) if
whenever ¢(v,, ..., v,) is a first order formula with free variables among {v,,...,v,},
and ay,...,a,€ A, then the sentence ¢[ay,...,a,] (where g; is ‘plugged in’ for v;) is
true in A just in case the sentence ¢[g(a), ..., €(a,)] is true in B. This is equivalent
to saying that the expanded structures, with constants naming each element of A4,
are elementarily equivalent. Let A=A, 5:A4— ][5 A be the canonical diagonal
map. Then the ulirapower theorem gives us the following, also stated in [6]:

1.6. Proposition. ¢: A< B if and only if there is an ultrafilter @ and an isomor-
phism &: ]y A—Tly B such that 6eA=Aoce.

If X' and ¥ are compact Hausdorffand ¥ : X — Yis any function, continuous or not,
call y a co-elementary map (in symbols y : X > Y) if there is an ultrafilter @ and a
homeomorphism é: Y5 X > ¥, Ysuch that yoF =V od. (F=Vxg: L, X > Xis
the canonical co-diagonal map, always a continuous surjection (see [6]).)

The fundamental facts about co-elementary maps are:

{1) They are continuous surjections which preserve properties which are preserv-
ed by co-elementary equivalence,

(2} When restricted to KHj they correspond, under Stone duality, to elementary
maps between Boolean algebras.
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(3) Whenever y: X— Y and 4 : Y — Z are functions, the co-elementarity of doy
(resp. &) follows from the co-elementarity of y and J (resp. y and doy). (This is [6,
Theorem 3.3.2].)

The Léwenheim-Skolem downward theorem states that if & is a countable lex-
icon of relation and function symbols, 4 is an #-structure, and SC A is any subset,
then there is an elementary substructure B of A which contains S and whose car-
dinality is =|S|- (. An equivalent version, more suitable to dualization, is that
if #:C—> A is an embedding of #-structures, then there is an #-structure B and
maps 8:C— B, ¢: B— A such that £ is an embedding, £ is an elementary map,
n=e¢of, and |B|=<|C|- Ry. The dualized version of this in KH is the following:

1.7. Theorem. Let X and Z be compact Hausdorff spaces, with n: X —Z a con-
tinuous surjection. Then there is a compact Hausdorff Y and maps 0:Y > Z,
y 1 X — Y such that 0 is a continuous surjection, y is a co-elementary map, n=_00y,
and w(Y)=w(Z) R,.

Proof. Let #: X — Z be given, and assume B is a basis of closed subsets of Z, of
minimal cardinality, such that B is closed under finite intersections and finite unions.
Then |B|=w(Z) 8y, and #” : B> F(X) is a lattice embedding. By the usual
Loéwenheim-Skolem downward theorem, there is a lattice L and maps § : B— L,
g:L— F(X) such that J is an embedding, ¢ is an elementary map, 7~ =god, and
|L|=<|B|- Ro=w(Z): R,. Since L=F(X) and X is a normal space, L is an atomic
lattice which can naturally be viewed as a normal basis of closed sets over its set of
atoms. Let Y be the Wallman-Frink compactification w(l). Then w(Y)=
|L| =w(Z)- 8, Let peew(l) be an L-ultrafilter, and define 6(p) to be the unique
zeZ such that d(b)ep for each beB with zeb. For xelX, let y(x)=
{leL:xee(®)}. Then y{x) € w(L), and it is easy to check that both § and y are con-
tinuous surjections, with y=807y.

Now g : L —» F(X}is an elementary embedding; hence there is an ultrafilter & and
an isomorphism A :[[, £ =[] F(X) such that Acg=104. Let ¥ be the set of
atoms of L, and think of elements of [[4 L as ultraproducts [[, 4;, where A;e L,
A;C Y, A typical member of w(L) is an L-ultrafilter; a typical basic closed set is
of the form A* ={p: Aep} for AeL. A typical member of L, (L) is an
ultrafilter of sets [Jg C;, where C; is closed in w(L). A typical member of L5 X is
an ultrafilter of sets [, K;, where K;C X is closed. Define, for pe ¥, w(l),
Ap)={llg KicLy X: Iy A¥ €p}, where [Ig K;=A([[g A:). The straightfor-
ward verification that 1: Yaoll)—=Y,; X is a continuous bijection, hence a
homeomorphism; and that the appropriate diagram ¢ommutes, is left to the reader.
Thus y is a co-elementary map. O

1.8. Corollary. Every compact Hausdorff space is co-elementarily equivalent to a
compact metrizable space.
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1.9. Remark, If R(-) is a first order representation, it is natural to ask whether
there is a Lowenheim-Skolem result for R(- ); namely whether, given X KH, one
can always find Y compact metrizable such that R (Y )=R(X). Clearly this is true
for B(-), but it is false for F(-), Z(+), and C(-): Pick X € KH, extremally discon-
nected and infinite. If ¥Ye KH and F(Y)=F(X), then Y is also extremally discon-
nected and infinite. If Z(Y)=Z(X), then Y is basically disconnected and infinite.
Hence B(Y') is an infinite countably complete Boolean algebra, hence uncountable,
Consequently, w(¥)=|B(Y)| is uncountable and Y fails to be metrizable. If
C(Y)=C(X), then, by a result of A. Macintyre (see [4]}), Z(¥V)=Z(X). An in-
teresting problem area would be to determine, given R(-), the smallest cardinal
number Ap such that whenever X e KH, there is Ye KH with R(Y)=R(X) and
w(Y)=<A1g.

1.10. Corollary. Any topological property which holds for all separable metrizable
spaces but not for all compact Hausdorff spaces (e.g. hereditary normality, the
equality of covering dimension and the inductive dimensions) fails to be preserved
by co-elementary equivalence.

In answer to [6, Question 2.2.4(i)], we have the following:

1.11, Corollary. Co-elementary equivalence does not preserve large, or small, in-
ductive dimension.

Proof. Let X be the classic example, due to A.L. Lunc (se¢ [13]), of a compact
Hausdorff space such that dim(X)=1 and ind(X)=Ind(X)=2, Let ¥Y=X be com-
pact and metrizable. Then dim(Y)=1 because covering dimension is preserved by
co-elementary equivalence. But now Y is separable metrizable, and basic dimension
theory dictates that ind(Y)=Ind(¥Y)=dim(¥)=1. O

1.12. Remark. In [6] we catalogued several topological properties which are not
preserved by co-elementary equivalence, but which also do not obtain for all
separable metrizable spaces. Some of these properties are: point-homogeneity, being
an F-space, basic disconnectedness, extremal disconnectedness, and path con-
nectedness.

2, Step 5 revisited: the happy ending

Returning to the topic of Theorem 0.1, let us first examine why the conclusion
is so weak, Let & be a lexicon of relation and function symbols. A positive-universal
formula is one built up from the atomic formulas of # using conjunctions, disjunc-
tions, and universal quantification.
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2.1. Proposition. Let E be a fixed #-structure, and let % be a class of #-structures
satisfying:

(1) each A e embeds in a power E' of E in such a way that the image of A
under the embedding contains all constant maps from I to E; and

(2) for each A€ and finite subset FC E, there is some fc A (viewing A as a
substructure of E') with f{I1 2 F. Then every two members of X satisfy the same
positive-universal sentences from &.

Proof. A typical positive-universal sentence ¢ can be written in the form
Vo; - Un Ay <icp Visj<s 8y» Where each 6 is atomic with at most the variables
v=0p, ..., U, free.

Case 1: ¢ is Vvé, 8 atomic. If E = o, then E/ = g, so A = o whenever ACE'.
Conversely, if A = g, then E = o since E is a homomorphic image of 4. Thus the
proposition holds in this case.

Case 2: 6 is VoV j=t 0;» where each 6; is atomic. Let A €5, and assume for
cach 1=<j=</ that 4 &= Vv, We show A x=¢. Indeed, if A= Hp=6;, then
E=Hdv—6; by Case 1. So plug in g; ;€ E for the variable v, t <=k=<n. Then
E= —8lay ..., a,;] for some such choice; and we have an /X n array of a;;’s.
For 1<i<n, let f,e A contain {q; |, ...,a;,} in its range. Then 4 = =§,[£,..., f,];
whence A = 3o\ | _;., 28 and A .= 0. Soif A,Be s and A = ¢, then A = Vv,
for some 1= j=/. Thus B= Vo8, by Case 1. Hence B = 0.

Case 3: o is VoA oiop Vi<j<i 0> Where cach 6; is atomic. Then o is
Nisisk @i where g;is VoV, .., 6;. Let A,Be . If A E o, then A4 = g; for cach
l<i=<k. By Case 2, Be=g; for cach l=<i<k,so B=o. [

An immediate application of Proposition 2.1 is that we can take E to be any inter-
val of real numbers equipped with all continuous operations and any relations we
like. Let 2 be all relevant structures of continucus bounded E-valued functions
with infinite normal topological spaces for domains. Then Tietze’s extension
theorem trivially ensures that condition (2) is satisfied in the hypothesis of Proposi-
tion 2.1.

2.2, Corollary. Lef X,YeKH be any two infinite spaces. Then C(X) and C(Y)
satisfy the same positive-universal sentences.

In order to rectify the situation, let us, for the remainder of this section, view
C(X) as a Banach space. Specifically, the relevant lexicon includes the vector space
operations, a unary operation of scalar multiplication for each rational scalar, and
two additional unary relations P and Q: Px (resp. Ox) is to mean that the norm of
x is to be =1 (resp. =1). A formula is positive-bounded if it is built up from the
atomic formulas using the finitary logical operations of conjunction and disjunc-
tion, and ‘bounded quantification’: Vx(Px—---) and Hx(PxA---).
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The above notions are the invention of Henson [11] who went on to define a
natural, but technical, notion of ‘approximate satisfaction’ between Banach spaces
and sentences. A main result of [11] is that two Banach spaces approximately satisfy
the same positive-bounded sentences if and only if they have isometrically isomor-
phic Banach ultrapowers.

For completeness, we reproduce Henson’s definition of approximate satisfaction
here. Let ¢ be an arbitrary positive-bounded formula, 1=m<w. The ‘approxi-
mation’ &, is obtained from ¢ using induction on complexity: If ¢ is atomic, we
replace x=y by Pm-{(x—y); Px by P(1-1/m)-x; and Qx by Q(1+1/m)-x. For
more complex formulas, use the identities (G A7), =0, ATy, (OVT)=0,AT,,
(Vx(Px - a)), = Vx(Px —g,,), and (Ux(PxA ¢)),,=dx(PxAa,).

If A is any structure appropriate to our lexicon (e.g. a Banach space} and ¢ is a
positive-bounded sentence (possibly with constants from A), we say that 4 approxi-
mately satisfies o if A = o, for each 1=m<w.

What all this means to us is that, at Step 4 of the proof of Theorem 0.1, we can
infer easily that the Banach ultrapowers Hg C*(X) and Hg C*(Y) are isometri-
cally isomorphic as Banach spaces. A new Step 5, using Henson’s theorem, allows
us to infer that C*(X) and C*(Y) approximately satisfy the same positive-bounded
sentences. Hence we have the following substitute for Theorem 0.1:

2.3. Theorem. Let X and Y be two Tichonov spaces (resp. normal spaces) such that
Z(X)=Z(Y) (resp. F(X)=F(Y)). Then their Banach spaces C*(X) and C*(Y) of
hounded continuous real-valued functions approximately satisfy the same positive-
bounded sentences.

2.4. Remark. By Henson’s theorem [11] and our Step 4, the conclusion of Theorem
2.3 is equivalent to saying (X )= g(¥). Thus, by various results concerning the
sharpness of co-elementary equivalence (including Theorem 1.5), we see that this re-
placement for Theorem 0.1 is much more substantial.

3. Toward an analogue to Theorem 0.1 for compact abelian groups

In view of the classical Pontryagin-van Kampen duality between compact
Hausdorff abelian groups and (discrete) abelian groups (see [12]), the temptation
is overwhelming to try to effect an analogue to Theorem 0.1. Let KAb be the cate-
gory of compact Hausdorff abelian groups and continuous homomorphisms, and
let Ab be the category of abelian groups and homomorphisms. Let 7' KAb be the
circle group, that is, the multiplicative group of complex numbers of unit norm.
For GeKAb, let D(G) be the group of continuous homomorphisms (characters)
x:G—T. For AeAb let D71(A) be the compact abelian group of all homomor-
phisms (characters again) x: 4 — 7. The compact topology on D~1(A) is inherited
from the topological power 7. The famed result of Pontryagin-van Kampen is
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that D: KAb — Ab is a category duality. One of the beauties of this duality is that
the right-hand side, as with Stone duality, is a class of structures in which the ultra-
product construction is the usual one.

Our analogue to Theorem 0.1 should conclude that D{(G)=D(H) whenever
R(G)=R(H) for suitably chosen first order representation K(-) on KAb.

Two first order representations which leap to mind are F(G) = the closed set lat-
tice of G, and U(G) = the underlying group of G. Of course both of these are
‘forgetful’, and one should not expect either to replace R(-) in our analogue. The
candidate for R(-) which we would like to champion is the obvious ‘composite’ of
F(-)and U(-); namely define M(G) to be F(G) with the group structure of U(G)
on the set of atoms. Our analogue can now be stated, but only as speculation.

3.1. Conjecture. Let G and HeKAb, and assume M(G)=M(H). Then D(G)=
D(H}.

An attempted proof might go as follows: Step 1 is no problem; Step 2 looks
reasonable (it was easy in the compact Hausdorff case); there is no need for Step 3;
Step 4 is simply an application of the duality theorem, and we conclude [[, I{G)=
[Ig D{(H); and Step 5 is the easy direction of the ultrapower theorem. As we shall
see, Step 2 is the stumbling block.

3.2. Remark. There are twelve versions of Conjecture 3.1 when we allow the
various first order representations above to be substituted (so as not to obtain a
tautology). Some are trivially true, while others can fairly easily be shown false, Still
others, we have no firm answers for. We believe that all are false, save the trivial
ones and Conjecture 3.1. As an example, let us show the converse is false. We will
actually do more and find G, H e KAb such that 2(G)=D(H), but F(G)&F(H).
Let Z, be the two-element group, let G=2Z5, and let H=Z%". By duality (see
[12]), D(G) and D(H) are respectively the direct copowers ZS” and Z{°. These
groups have equal Szmielew invariants (see [16]) and are hence elementarily equiva-
lent. Now G has a metrizable topology, and is hence hereditarily normal. In par-
ticular, the complement in G of any point {= atom of the lattice F(G)) is normal.
It is easy to write this statement down as a first order sentence in the language of
lattices. However, the removal of a point from an uncountable product of discrete
spaces ruins normality (since one can embed an uncountable power w® of the
integers as a closed subset, and w®' is not normal, by a theorem of Stone [17]).
An alternate proof uses ultrapowers, and is more in the spirit of this paper. Let
G be totally disconnected. Then (see [12]) D{() is a torsion group. Choose G so
that D(G) has elements of arbitrarily high order (say G=]],_, Z,), and let @ be a
free ultrafilter on w. Then [], D(G} is not a torsion group; hence D‘l(]'[g D(G))
is not totally disconnected. Thus, F(G)ﬁF(D*I(Hg, D(G))). However, D(G)=
DD~ (Il D(GY)).
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Given a family ¢(G;: ief) in KAb and an ultrafilter @ on [, define the KAb-
ultracoproduct to be D’l(l'[gg D(G,)), and denote it by E% G;. Clearly two compact
abelian groups are co-elementarily equivalent if and only if their character groups
are elementarily equivalent. One obvious way in which E; G; and the topological
ultracoproduct ¥, G; differ is that ¥, G; ‘almost never’ supports a topological
group structure (i.e., when @ is countably incomplete and {i: |G;|=n} e @ for all
n>w). Another difference is in the preservation of dimension: as we saw in Remark
3.2, G can have dimension zero and be co-elementarily equivalent to a group of non-
zero dimension.

The problem with Step 2 in this situation is that we do not know whether an iso-
morphism between ultraproducts [[5 M(G;) and [[4 M(H)) leads to a topological
isomorphism between E% G; and 2% H;. As we have seen, topological ultracopro-
ducts are compactifications of topological ultraproducts. This is no longer true in
the setting of topological groups.

Denote [[; M(G;) simply by [], G;. This is the usual topological ultraproduct,
with extra group structure. We will show how to define a continuous monomor-
phism #:]]4 G, — E% G;; however it is ‘almost never’ the case, in the same sense
as above, that [, G; topologically embeds in Z% G;. This is the main obstacle to
our analogue to Step 2.

Let GeKAb, and let & be an ultrafilter. The diagonal map A: G- [, G is an
elementary embedding of topological groups, in the sense of U{- ). It fails to be con-
tinuous whenever G is infinite and @ is countably incomplete (see [2]}. For each
lgl€[ly G, there is a unique x € G such that for all open neighborhoods U of x,
[g]lellgy U (see [2]; use compactness of G). Denote this x by A([g]). A is the
‘@-limit’, or ‘standard part” map.

3.3. Lemma. A:]], G— G is a continuous homomorphism onto G, and is a left-
inverse for A.

Proof. Clearly A04 is the identity map on G; hence A is surjective. If UC G
is open, then AT[U)=J{Il, V: VC G is open and PC U} (see [2]). To prove
A is a homomorphism, let [g], [fl€e g G:, let x=A([g]), y=A(A]D, and z=
A(lgl- A" Y=A(lg- £7"]). We show z=x-y~!. So let U be any open neighbor-
hood of x-y~'. We must show [g-h '1e]l, U; ie., {ig-h'eUled. By
continuity of the group operations, there are open neighborhoods V of x and W
of y such that if x'eV and y'e W, then x’-(»') 'eU. Now {i:g;eV}e @ and
{irheW}ed; hence {itg;-hi'eU}24i:g;eV and h;e W} e D, as desired. [

Now let {G;:iel) be any family of compact abelian groups. We define the
evaluation map n:1], G- E‘;, G; as follows. Regarding zg,, G; as a closed sub-
group of the power Tlls 2G>, we let n([g])([al) =A([r]), where r,=a;(g;). (N.B.:
each g; is a continuous homomorphism from G; to T; each g; is an ¢lement of G;;
so each r; is an element of T.)
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3.4. Lemma. 7 is well defined, with values in Eg, G;.

Proof. Suppose (g]=[#] in [I4 G;. Then {i: g;=#;} € D. Let [a] €[], D(G;). Then
{i: a;(g;)=a;(R)} € D, so n{[g])=n{[AD; hence » is a well defined function from
[Iy G; to Tlls PG, We need to show that 7([g]) is a homomorphism. Let [a], [6] €
g D(G)). Then n(igl)lal- [b] Y=n(gl}la- b~'1)=A(r]), where r;=(g; b7 )(g,).
Let 5;=a;(g;), t;=0,(g). Then r;=s;- £;'; so A([r}=A(s]- [117)=A(sD- (AT,
by Lemma 3.3. This last expression is just #([g]}([a])- (n([g]X[B]) . O

3.5. Lemma. 7 is continuous.

Proof. Let UCT be open, and let ae[];,., D(G;). The subbasic open set de-
termined by U and @ is denoted [a, Ul={x€ ):2., G;: x([alye U}. We claim that
n"[la, UIl=U{Il @ [V): VC T is open and ¥ c U}. For let [g] €7 [[a, U]]. Then
n([glXlalye U, so A([r]}e U, where r;=a;(g;). Thus, by results of [2], [r]€]], V
for some open V' T with ¥’ U. This says that [g] €[4 a; [V]. The reverse inclu-
sion is similar. O

3.6. Lemma. n is a homomorphism.

Proof. Let [g],[hl €[], G, let {e] €]]4 D(G;). We need to show
(gl - [h)" ) (a]) = n{(gD((a)) - (A1 ([EIN "

This is straightforward application of Lemma 3.3. O
3.7. Lemma. » is an injection.

Proof. This uses the key idea in the proof of the duality theorem, that if GeKAb
and g#1in G, then for some x in D(G), x(g)# 1. Represent ze T as e' for unique
—n<d=<7. Write 6 =a(z). For each ne Z, the map el® . ¥ is a character on T; so
for each zeT, z#1, there is a character y € D(T) such that |a(z)| = n/4.

Now suppose [g] €[], G; is not 1, say {i: g;#1} € @. For each such i, choose
a;€ D(G;) so that |a(a,(g)) =n/4. Then n((g])([e])#1, hence [g] is not in the
kernel of . O

Lemmas 3.4 to 3.7 prove the following:
3.8. Theorem. 7r:[], G~ E% G; is a continuous monomorphism of groups.

Our assertion that [],, G; ‘almost never’ topologically embeds as a subgroup of
Egﬂ G; can be made precise as follows:

3.9. Propesition. Let ¢:[[, G, —~ Eg, G; be any continuous homomorphism. If
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g G is infinite, i.e., if {i: |G)|zn} e D for all n<w, and if D is countably in-
complete, then ¢ is not a topological embedding.

Proof. If ¢:1[5 G~ E% G, is a topological embedding as well as a group homo-
morphism, let G be the closure in Eg, G; of the image of ¢. Then G is a compact
subgroup; hence its topology is point-homogeneous. If [[4 G; is infinite, then so is
G. If, furthermore, @ is countably incomplete, then []; G; is a P-space. (See [2]:
every point x is a P-point, i.e., whenever U, is an open neighborhood of x for each
n<w, there is an open U containing x and contained in each U,.) Hence G is an
infinite compact group with a dense subspace which is a P-space. This says that each
point of the dense subspace must be a P-point of G. By point-homogeneity, G must
itself be a P-space. But compact P-spaces are finite. Thus, no continuous homomor-
phism from [[4 G; to zg,, G, can be a topological embedding. [

3.10. Remarks. (i} All we know about 7 has now been expressed. We do not know,
for example, whether the image n[[[4 G,] is generally dense in E?z G;; and we do
not know whether # can be used to achieve a continuous isomorphism between
E% G and Zg, H from an isomorphism between [, M{(G) and [], M(H). If, on
the other hand, Conjecture 3.1 turns out to be false, then we will know that # plays
a much weaker role than its counterpart in KH.

(ii) We have mentioned little about co-elementary equivalence = in KAb. Al-
though there are interesting questions as to which properties P of compact abelian
groups ar¢ preserved by =, the problem boils down to an analysis of duality and
of ¢lementary equivalence of abelian groups. Thus, P is preserved by co-elementary
equivalence if and only if D(P) is preserved by elementary equivalence. For ex-
ample, given G € KAb, (the underlying space of) G is connected if and only if U{G)
is divisible, if and only if D{G) is torsion-free [12]. Thus, the property of connected-
ness (or of divisibility) is preserved by co-elementary equivalence. On the other
hand, G is zero-dimensional if and only if D(G) is a torsion group. This implies that
zero-dimensionality is not preserved.

(iil) As to the number of =-classes in KAb, the answer is immediately ¢: use
duality and count Szmiclew invariants [16].

(iv) Since duality converts weight of compact groups to cardinality of their
discrete character groups, the analogue of Theorem 1.7 goes through without dif-
ficulty.
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