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TOPOLOGICAL REDUCED PRODUCTS AND 1rHE GCH 

Paul Bankston 1 

Since its inception in the late fifties, the theory of 

reduced products in model theory and algebra has developed into 

an active field of research with increasingly many participants. 

In particular the theory of ultraproducts has provided "alge

braic" proofs of the compactness theorem of first order logic, 

the existence of saturated models of certain kinds; as well as 

a characterization of the notion of elementary equivalence be

tween models. Copious details can be found in [BS] and [CK]. 

In our paper [B] we attempted to translate the notion of 

reduced product into the context of general topology and found, 

not too surprisingly, that here was a vast untapped source of 

research problems, many of the type already encountered in the 

theory of box products. In [B] several parallel problems involv

ing box products and "topological" ultraproducts are explored; 

and it turns out that the ultraproduct theorems are often either 

easier than their counterparts to prove or can be proved directly 

in ZFC without recourse to extra set-theoretic axioms. 

Topological reduced products are formed as certain quotients 

of box products where the equivalence relations in question 

derive from filters on the index set. In this note ~N'e present 

a result about paracompactness in topological ultraproducts 

(i.e. where the filter is maximal) and show how this result 

relates to a known theorem about paracompactness in box products 

(trivially reduced products via the singleton filter). Both of 

these results relate directly with the Generalized Continuum 

Hypothesis (GCH). 

lResearch completed while the author was a Post-doctoral 
Fellow at McMaster University, Hamilton, Ontario. 
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1. Preliminaries 

Let <X : a < K> be a K-sequence of spaces. An open box is a 

a cartesian product ITKU where U ~ X is open. The cartesian a a a 

product of the Xa's, together with all open boxes form a space 

called the box product ITKX . Now let D be a filter of subsets a 

of K. The topological reduced product via D of the Xa's is 

then TIDX = TI X i and if D is an ultrafilter then TIDX is re
a K a a 

ferred to as a topological ultraproduct. The natural projection 

r D: IT X ~ TIDX is clearly an open map, and rD(TI U ) = ITDU
K a a K a a 

{If]D: {a: f(a) E Ua} E D} is called an open ultrabox. One 

obvious remark: If 93 is a basis for the topology on X and 
a a 

if D is any filter then TID 93 = {TIDU : U E 93 all a < K} is a a a a a 

basis for the reduced product topology. 

From here on, all filters D on K will be ultrafilters. If 

A is a cardinal, we say that D is A-regular if there is a subset 

E C D of power A which is point-finite (i.e. nE O = ~ for all 

infinite EO S E). D is regular if D is K-regular. It is well 

known that K+-regular ultrafilters cannot exist, that regular 

ultrafilters do exist in abundance, and that w-regularity is the 

same as countable incompleteness. 

We let ·UP be the following statement: If <X : a < K) isK a 

a K-sequence of regular spaces of weight ~exp(K) and if D is 

any regular ultrafilter on K then ITDX is paracompact.
a 

+1.1 Theorem. UP iff exp(K) K •
K
 

Our proof is presented in the next two sections.
 

2. The "If" Direction 

We define a space to be A-open (A ~ w a cardinal) if every 

intersection of <A open sets is open. If X is any space we 

define (X)A' the A-modification of X, to be the space with X 

as point set and whose open sets are unions of <A intersections 
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of open sets of X. Thus X is A-open iff X = (X) A. By way of a 

category-theoretic aside, the operation (e)A is functorial 

(where for f: X + Y, (f) A is the same function f) from the 

category of spaces and continuous maps to its full subcategory 

of A-open spaces. In fact (e)A is a co-reflection (i..e. right 

adjoint to inclusion) . 

A space is A-Lindelof if every open cover has a subcover 

of power ~A. If X has weight <A then clearly X is (hereditarily) 

A-Lindelof. 

2.1 Lemma. Regular, A-Lindelof, A-open spaces are para-

compact. 

Proof. This statement has been independently observed by 

several people. A simple proof follows: In the caSE~ A = w, 

the lemma reduces to a well-known result. Assume A > wI. We 

first note that regular wI-open spaces are zero-dimensional (in 

the sense of weak inductive dimension). To see this let x E X 

with Uo an open neighborhood of x. By regularity there is an 

open set U with x E U S IT ~ UO. Repeat the process obtainingl l I 

a decreasing sequence of neighborhoods U ~ 01 ~ U ~ IT ~ U ~ o 1 2 2 

of x. Then U= nUn IT is both open and closed. 
n<w n n<w n 

Now suppose GlL is an open cover of X. Since X is zero-

dimensional and >"-Lindelof we can assume GU is well-orderable in 

type A, say (Ua : a < A) where each U a is clopen. USle A-openness 

to refine GU to a clopen partition by letting V 
a 

U 
ex 

- u U 
~<a ~ 

for a < A. 

2.2 Lemma. UZtraproducts via A-regular ultrafilters are 

A+-open. 

Proof. This is the "only if" half of Theorem 4.1 of [B]. 

Assume D is A-regular on K and let (X : ex < K) be a K-sequencea 

of spaces. To check A+-openness it clearly suffices to restrict 

attention to families of basic open sets, so let (rrDUa,~: ~ < A) 



264	 Bankston 

be such a family in TIDX and let [f]D E n TI U . By Aa ~<A D a,~ 

regularity there is a (well-ordered) "regularizing set" 

E = (J ~: ~ < A) S;; D. Let K ~ {a < K: f (a) E Ua , ~} ED: and 

for each a < K let F(a) {~ < A: a E J~ n K~}. Each F(a) is 

finite, so the set Va n U is open. We show 
~EF(a) a,~ 

[f] D E TIDVa c: n IIDU t". Indeed {a < K: f (a) E Va} KED. 
~<A a,s 

Now suppose n < A. Then {a < K: V C U } ~ {a < K: n E F(a)}~_ 
a - a,n 

I n K E D. This completes the proof.n	 n 

2.3 Lemma. Ultraproducts preserve regularity of spaces. 

Proof. In fact all reduced products preserve this property. 

The proof is quite straightforward. 

+Now	 to prove the "if" direction, assume exp(K) = K , 

that	 (X : a < K) is a K-sequence of regular spaces of weighta 

~exp(K), and that D is a regular ultrafilter on K. Then TIDX 
a 

is K+-open by 2.2, regular by 2.3, and exp(K)-Lindelof since its 

weight is 2IexP(K)KI = exp(K). Thus by 2.1, TIDX is paracompact
a
 

(even hereditarily ultraparacompact) .
 

3.	 The "Only If" Direction 

Let (X : a < K) be a sequence of spaces. An open box a 

II U is a A-box if I{a: U ~ X } I < A. The A-box productK a a a 

IIAX uses only the A-boxes to form a basis for its topology;
K a +

Kso TIwX is the usual Tychonov product, while TI X is the fullK a K a 

box product. 

Now in [Bo] Borges generalizes a technique originated by 

A. H. Stone ([5]) to show that for K a regular cardinal the 

K-box	 product of K+ copies of a discrete space of cardinality 
W 

K is not normal (Stone showed that w 1 is not normal). Now it 

is easy to show that if each X is discrete of power K, K regu
+ a + 

lar,	 then IIK+X ~ (KK )K' where KK denotes the Tychonov producta 
K 

rr w X. Thus we can state Borges' theorem as follows: 
+ a 

K 
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3.1 Lemma (Borges). Le t K be a regu lar cardina l. Then 
+
 

(KK) isn't normal.
 
K 

In [vn] , van nouwen uses 3.1 in the case K = wI to prove 
w2

that (2 ) fails to be normal. We use a similar technique to 
wI 

prove the following: 

++3.2 Lemma. Let A K • Then (2 A ) is not normal.
A 

Proof· A is a successor cardinal so is regular. By 3.1 
A+ 

(A ) A isn't normal. Now A ~ exp(K) which is discrete and 
+K Kprecisely (2 ) A (since 2 has weight K). Thus (AA ) A C 

+K
(((2 ) A)A ) A as a closed set so that the larger space isn't 

normal either. But it is quite straightforward to show that 
+ 

this space is just ((2 K)A )A which in turn is homeomorphic to 
+ A+KXA 

(2 )A (2 )A. 

Our strategy is to show that if n is regular on K then 
++Kthe ultrapower TI (2 ) isn't normal. Then, when exp(K) ¥ K+,n 

++Kthe space 2 will be a counterexample to UP. Thus: we are 
K 

done once we show the following: 

3.3 Lemma. Let X be any compact T space~ K a cardinal~2 

and n a regular ultrafilter on K. Then (X) + embeds as a closed 
K 

subset of the ultrapower TID(X). 

Proof. We draw upon the techniques of §7, [B]. The 

D-diagonal map 6 0 : X ~ TIo(X) takes x E X to the O-equi~alence 

class of the constant sequence f where f(a) = x for all a < K. 

6 is always one-one; and in the case n is regular yTe have (seen 

7.2 [B]) that 6 embeds (X) + into TIn(X). Now when X is compactn 
K 

T2 we define the V-limit map limn: TIn(X) ~ X by [flo ~ x whenever 

x is the unique point such that [flo E TIo(U) for every open U 

containing x (see 7.4 [B]). By 7.1 of [B] limn is continuous; 

and in view of the fact that TIo(X) is K+-open, so also is 

(limn) +. Limn is clearly a left inverse for 6 ; whence 6 n n 
K 
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embeds (X) + as a retract of TID (X) . Since retracts are always 
K 

closed, we have our lemma and hence the proof of 1.1. 

Remark 1. In light of the foregoing proof it can be seen 

that UP K can be paraphrased in several logically equivalent 

forms. UP (et al): If <X : a < K) is a K-sequence ofK	 a 

regular
 
normal
 spaces of weight <exp(K) then for [some] regular-	 everycompact T2 

ultrafilter D on K, the ultraproduct TIDX is (hereditarily)a 

paracompact] . 
[normal 

Remark 2. In [K] it is proved that the CH implies the 

statement BP where for general K, BP K says that for any Kw 

sequence <X : a < K) of compact T spaces of weight ~exp(K), a 2 

the box product TIKX is paracompact. In [vD] it is shown that 
a 

w2	 w2 
(2 ) is not normal. Thus if CH fails then 2 is a counter

wI 
example to BP . In any event, by throwing in singletons where 

w w 
necessary, we have that 2 2 is an honest counterexample to BP

K 

for K > Wi so that the status of BP for any K is also settled. 
K 
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