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AMALGAMATION-TYPE PROPERTIES OF ARCS AND

PSEUDO-ARCS

PAUL BANKSTON

Abstract. A continuum X is base if it satis�es the following
�dual amalgamation� condition: whenever f : Y → X and g : Z →
X are continuous maps from continua onto X, there is a continuum
W and continuous surjections ϕ : W → Y , γ : W → Z such
that f ◦ ϕ = g ◦ γ. A metrizable continuum is base metrizable

if it satis�es the condition above, relativized to the subclass of
metrizable continua. It is easy to show that simple closed curves
are neither base nor base metrizable; however metrizable continua
of span zero are known to be base metrizable. Furthermore, co-
existentially closed continua are known to be base. The arc and
the pseudo-arc are span zero; but, of the two, only the pseudo-arc
is co-existentially closed. Hence the pseudo-arc is base metrizable
for being span zero and base for being co-existentially closed. Here
we show that: (i) there is a base metrizable continuum which is not
span zero; and (ii) any metrizable continuum is base if and only if
it is base metrizable.

1. Introduction

In algebra and model theory a structure A in a certain class C is referred
to as an amalgamation base for C if whenever A sits as a substructure
of two members of C, there is a third member of C which contains all
of them. There are many natural variations on this theme; the one we
consider here has continua instead of relational structures and quotients
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instead of substructures. More precisely: if C is a class of continua (i.e.,
connected compact Hausdor� spaces), de�ne a member X of C to be
base for C if whenever we have continua Y and Z in C and continuous
surjections f : Y → X, g : Z → X, there is some W ∈ C and continuous
surjections ϕ : W → Y , γ : W → Z, such that f ◦ ϕ = g ◦ γ. In this note
we restrict our attention to where C is either the class of all continua or its
subclass of metrizable continua. We will then refer to X as being base or
base metrizable according to whether it is base for the corresponding
class C.

It is easy to show that simple closed curves are neither base nor base
metrizable. In [14], J. Krasinkiewicz proves that arcs are base continua;
moreover the techniques of [17] may be used to show that any span zero
metrizable continuum is base metrizable. From [5, Theorem 2.2] we know
that every co-existentially closed continuum is base, and recent work [9]
tells us that pseudo-arcs are co-existentially closed continua. (Hence
pseudo-arcs are base metrizable on account of being span zero and are
base on account of being co-existentially closed.) Our aim here is to
prove the following:

(i) There is a base metrizable continuum which is not span zero.
(ii) A metrizable continuum is base if and only if it is base metrizable.

Our main technique uses the ultracopower construction for compacta;
i.e., compact Hausdor� spaces, along with some classical model theory of
bounded lattices.

2. A Preliminary Example

For the purposes of this note, a quintuple 〈X, Y, Z, f, g〉 of compacta and
continuous surjections is a wedge if f and g map Y and Z, respectively,
onto X, or vice versa. In the �rst case the wedge is inward; in the second

it is outward. If Y
f→ X

g← Z is an inward wedge and Y
ϕ←W

γ→ Z is an
outward wedge, the latter is a completion of the former if the resulting
mapping square commutes; i.e., if f ◦ ϕ = g ◦ γ.

Given an inward wedge Y
f→ X

g← Z, we let P (f, g) denote the pull-
back of f and g, de�ned to be the compactum {〈y, z〉 ∈ Y × Z : f(y) =
g(z)}. With p and q denoting the coordinate projection maps from P (f, g)
to Y and Z, respectively, we see that Y

p← P (f, g)
q→ Z is an outward

wedge which is a completion of the original. (Commutativity is immedi-
ate; surjectivity of p (resp., q) follows from that of g (resp., f).)

The signal feature of the pullback P (f, g) is the following universal

mapping property: given any completion Y
ϕ← W

γ→ Z for Y
f→ X

g← Z,
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there is a unique continuous map λ : W → P (f, g)�given by λ(w) =
〈ϕ(w), γ(w)〉�such that p ◦ λ = ϕ and q ◦ λ = γ.

Proposition 2.1. An inward wedge Y
f→ X

g← Z of continua has a

completion Y
ϕ← W

γ→ Z, where W is a continuum, if and only if there

is a component C of P (f, g) such that both restrictions p|C and q|C are

surjective.

Proof. Suppose Y
f→ X

g← Z is an inward wedge of continua, and there
is a component C ⊆ P (f, g) such that p|C and q|C are surjective. Then

Y
p|C← C

q|C→ Z is a suitable completion.

Given a completion Y
ϕ← W

γ→ Z for Y
f→ X

g← Z, where W is a
continuum, let C be the component of P (f, g) containing the continuum
λ[W ]. �

Up to homeomorphism, there is just one metrizable continuum which has
exactly two noncut points; this continuum is known as the arc. The
following example, suggested by L. C. Hoehn [11], illustrates how a one-
dimensional continuum can fail to be base (metrizable).

Example 2.2. Let X be a metrizable simple closed curve, as represented
by the unit circle in the complex plane; let Y be an arc, as represented
by the interval [0, 2π] in the real line. Let f : Y → X be given by
t 7→ cos(t)+ i sin(t), and let g = −f . Then P (f, g) consists of two disjoint
line segments, resulting from the intersection of the square [0, 2π]× [0, 2π]
with the graphs of the lines y = x±π. Since neither of these line segments
projects onto Y , we infer from Proposition 2.1 that no suitable completion

for Y
f→ X

g← Y can exist. Since Y is a metrizable continuum, this tells
us that X is neither base nor base metrizable.

3. Span Zero

Given a set X, let p, q : X × X → X be the �rst and second coordi-
nate projections, respectively, and let ∆ := {〈x, x〉 : x ∈ X} denote the
diagonal in X ×X. A continuum X is span zero if whenever Z is a sub-
continuum of X ×X and p[Z] = q[Z], then Z ∩∆ 6= ∅. X is chainable
if it has the property that each of its open covers re�nes to a �nite open
cover {U1, . . . , Un}, where Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1. Finally,
X is indecomposable if it is not the union of two of its proper subcon-
tinua, and is hereditarily indecomposable if each of its subcontinua
is indecomposable.

Up to homeomorphism, there is just one nondegenerate metrizable con-
tinuum which is both hereditarily indecomposable and chainable; this
continuum is known as the pseudo-arc.
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Remarks 3.1.

(i) It is well known [15] that every metrizable continuum is span
zero if it is chainable. And after lying open for almost �fty years,
the problem whether the converse holds was �nally settled by
L. Hoehn in the negative [12].

(ii) Apparently stronger than span zero is semispan zero, where the
condition of equality of p[Z] and q[Z] is weakened to where one of
the two is contained in the other. A main result of [8], however,
is that both notions agree for metrizable continua.

(iii) L. Hoehn [11] has informed us that the techniques of [17] may be
used to prove that any span zero metrizable continuum is base
metrizable. This, of course, includes both arcs and pseudo-arcs.
Hoehn also conjectured that span zero is equivalent to being base
metrizable; but, as we show in the sequel, there are base metriz-
able continua which are not span zero.

(iv) It has recently been shown by Hoehn and L. Oversteegen [13] that
span zero does imply chainable for hereditarily indecomposable
metrizable continua. Thus the pseudo-arc may now be charac-
terized as being the only (up to homeomorphism) nondegenerate
metrizable continuum that is both hereditarily indecomposable
and span zero.

(v) A slight rewording of the so-called �mountain climbing problem�

asks under what circumstances an inner wedge Y
f→ X

g← Z has
a completion Y

ϕ← W
γ→ Z, where X = Y = Z = W . This is of

special interest when X is an arc, and both f and g satisfy further
conditions, such as �xing both end points and being piecewise
monotone (see [18]).

4. Ultracopowers and Co-existential Maps

The topological ultracopower�more generally, ultracoproduct�construction
for compacta was initiated in [1]; also, independently (in the case of arcs),
by J. Mioduszewski in [16]. We start with a compactum X and an in�nite
set I, viewed as a discrete topological space. With p : X × I → X and
q : X × I → I the coordinate projection maps, we apply the Stone-�ech
functor β(·) to obtain the outward wedge

X = β(X)
pβ

← β(X × I)
qβ

→ β(I).

Regarding an ultra�lter D on the set I as a point in β(I), we form the
D-ultracopower XD as the pre-image (qβ)−1[{D}]. It is a basic fact
about this construction that XD is a continuum if and only if X is a
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continuum. (Many more important properties of compacta are preserved�
and re�ected�by ultracopowers; the reader is directed to either [2] or [4]
for a detailed account of this construction and its connections with the
ultrapower construction in model theory.)

The restriction pX,D = pβ |XD is a continuous surjection from XD onto
X, known as the canonical codiagonal map. A continuous map f : Y →
X between compacta is co-existential if there is an ultra�lter D and a
continuous surjection g : XD → Y such that f ◦g = pX,D. The continuum
X is co-existentially closed if every continuous map from a continuum
onto X is co-existential.

Recall that the weight w(X) of a space X is the smallest in�nite
cardinal κ such that X has an open-set base of cardinality ≤ κ. (So a
compactum X is metrizable if and only if w(X) = ℵ0.)

Our �rst background result states that there are �enough� co-existentially
closed continua, and is based on the analogous model-theoretic idea that
ensures the existence of �enough� existentially closed models of a theory
(see, e.g., [7, Lemma 3.5.7]).

Theorem 4.1. ([3, Theorem 6.1]) Every continuum is a continuous image

of a co-existentially closed continuum of equal weight.

Recall that a continuum X is of covering dimension one if it is non-
degenerate, and each of its open covers re�nes to a �nite open cover, no
three of whose members has nonempty intersection.

The second background result was proved in several stages over the
years, and takes the following present form.

Theorem 4.2. ([6, Corollary 4.13]) Every co-existentially closed contin-

uum is hereditarily indecomposable, and of covering dimension one.

Theorems 4.1 and 4.2 may be combined with known results to obtain
the following.

Corollary 4.3. There are uncountably many topologically distinct metriz-

able continua which are co-existentially closed, but not span zero.

Proof. By Theorem 4.1, every metrizable continuum is a continuous im-
age of a metrizable continuum which is co-existentially closed. Since a
countable product of metrizable continua is a metrizable continuum, and
no one metrizable continuum continuously surjects onto every metrizable
continuum [19], there must be an uncountable number of pairwise non-
homeomorphic metrizable co-existentially closed continua. By Theorem
4.2, all are hereditarily indecomposable; and, by [13, Theorem 1], only
one of them can be span zero. �
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Remark 4.4. By the Main Theorem of [9], the pseudo-arc is a span zero
co-existentially closed continuum.

The following is a special case of [5, Theorem 2.2]. We include a sketch
of the proof for completeness; we note that the second step requires some
deep results from model theory, and the interested reader is invited to
consult [7] for details.

Theorem 4.5. Every co-existentially closed continuum is base.

Proof.

(Step 1) Start with an inward wedge Y
f→ X

g← Z of continua, where X is
co-existentially closed. By de�nition, there are outward wedges

Y
f ′← XD

pX,D→ X and Z
g′← XE

pX,E→ X,

with f ◦ f ′ = pX,D and g ◦ g′ = pX,E .
(Step 2) Let F (X) be the relational structure consisting of the closed-

set lattice for X, augmented with constant symbols naming the
points x ∈ X (viewed as atoms of F (X)). Letting dF (X),D :
F (X) → F (X)D be the canonical diagonal embedding into the
(model-theoretic) D-ultrapower, we note [7, Theorem 4.1.9] that
dF (X),D is an elementary embedding. Doing the same thing with
the ultra�lter E , we see that the two ultrapowers F (X)D and
F (X)E are elementarily equivalent as lattices with extra constants
from X. By the main construction in the proof of the ultrapower
theorem [7, Theorem 6.1.15], there is an ultra�lter F , and an
isomorphism e : (F (X)E)F → (F (X)D)F . Since this isomorphism
respects all constants naming elements of X, the obvious mapping
pentagon commutes; i.e., e◦(dF (X)E ,F )◦(dF (X),E) = (dF (X)D,F )◦
(dF (X),D).

Now the points of the ultracopower XD are the maximal �l-
ters from the lattice F (X)D. This �maximal spectrum� operation
is contravariantly functorial, converting diagonal embeddings to
codiagonal maps and the isomorphism e into a homeomorphism
h : (XD)F → (XE)F . What is more, the resulting mapping pen-
tagon commutes; i.e., (pX,E) ◦ (pXE ,F ) ◦ h = (pX,D) ◦ (pXD,F ).
(What is important for this argument is that h is a continuous
surjection which results in a commuting pentagon.)

(Step 3) Applying the ultracopower construction via a single ultra�lter
is covariantly functorial. Thus the application of (·)F produces
continuous surjections f ′F : (XD)F → YF and g′F : (XE)F →
ZF , such that the appropriate mapping squares commute; i.e.,
(pY,F ) ◦ f ′F = f ′ ◦ (pXD,F ) and (pZ,F ) ◦ g′F = g′ ◦ (pXE ,F ).
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(Step 4) Finally, let W be (XD)F , ϕ be pY,F ◦ f ′F , and γ be pZ,F ◦ g′F ◦ h.

Then Y
ϕ←W

γ→ Z is the required completion for Y
f→ X

g← Z.
�

If we think of the words metrizable and base linguistically, as adjectives in
English, it matters what order they come in: to check that a metrizable
continuum is metrizable base, the quanti�cation domain comprises all
continua; while to show it to be base metrizable, all quanti�cation is
taking place in the restricted metrizable realm. Thus the expressions
metrizable base continuum and base metrizable continuum have ostensibly
di�erent denotations.

In the next section we show that there is actually no di�erence on a
deeper semantic level; we begin the process by showing the easy direction
of the equivalence.

Proposition 4.6. Every metrizable base continuum is base metrizable.

Proof. Assume X is a metrizable base continuum, and suppose Y
f→ X

g←
Z is an inward wedge, with Y and Z metrizable. Since X is base, we
invoke Proposition 2.1 to �nd a component C of P (f, g) such that both
p|C and q|C are surjective. C is clearly metrizable; hence the outward

wedge Y
p|C← C

q|C→ Z witnesses that X is base metrizable. �

Using Corollary 4.3, Theorem 4.5, and Proposition 4.6 we may now satisfy
the �rst of the aims set out in the Introduction (see also Remark 3.1 (iii)).

Corollary 4.7. There are uncountably many topologically distinct metriz-

able continua which are base metrizable, but not span zero.

5. Base Metrizable Implies Metrizable Base

We begin the section with a notion that �rst appears in [2], and which is�in
a substantial sense�dual to that of elementary embedding in model theory.
Given a map f : Y → X between compacta, we say f is co-elementary
if there is a homeomorphism h : YE → XD between ultracopowers of Y
and X, respectively, such that the appropriate mapping square commutes;
i.e., pX,D◦h = f ◦pY,E . Co-elementary maps are clearly co-existential, but
the converse is far from true; e.g., co-existential maps can lower covering
dimension, while co-elementary maps cannot. (See [2, Theorem 2.2.2]
and [3, Example 2.12].) The following helpful result is a re�nement of the
�Löwenheim-Skolem� approach used by R. Gurevi£ in [10].

Lemma 5.1. ([3, Theorem 3.1]) Let f : X → Y be a continuous surjection

between compacta, with κ a cardinal such that w(X) ≥ κ ≥ w(Y ). Then
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there is a compactum Z of weight κ, and continuous surjections g : X → Z
and h : Z → Y , where g is co-elementary and f = h ◦ g.

We are now in a position to prove the converse of Proposition 4.5.

Theorem 5.2. Every base metrizable continuum is metrizable base.

Proof.

(Step 1) Start with an inward wedge Y
f→ X

g← Z of continua, where X is
base metrizable. By Lemma 5.1, there are continuous surjections
f ′′ : Y → Y ′, f ′ : Y ′ → X, g′′Z → Z ′, g′ : Z ′ → X, where Y ′ and
Z ′ are metrizable, f ′′ and g′′ are co-elementary maps, and both
mapping triangles commute.

(Step 2) Since X is base metrizable, the inward wedge Y ′ f ′→ X
g′← Z ′ has a

completion Y ′ ϕ′←W ′ γ′→ Z ′, where W ′ is a metrizable continuum.
(Step 3) By [3, Lemma 2.1], there is a single ultra�lter D witnessing the

co-elementarity of f ′′ and g′′; i.e., there are homeomorphisms
hY : YD → Y ′

D, hZ : ZD → Z ′
D such that the appropriate mapping

squares commute.
(Step 4) Using the functoriality of (·)D, we have continuous surjections

ϕ′
D : W ′

D → Y ′
D and γ′D : W ′

D → Z ′
D, also making the appropriate

mapping squares commute. There are �ve mapping squares and
two mapping triangles by now, all commutative, so set W = W ′

D,
with ϕ = pY,D ◦ h−1

Y ◦ ϕ′
D and γ = pZ,D ◦ h−1

Z ◦ γ′D. Then Y
ϕ←

W
γ→ Z is a completion for Y

f→ X
g← Z, showing that X is a

base continuum.
�

We end with some questions.

Questions 5.3.

(i) Since span zero makes sense in the non-metrizable context, it is
natural to ask whether span zero (Hausdor�) continua are base.

(ii) In [15, Corollary, Section 7] A. Lelek proves that a nondegenerate
metrizable span zero continuum must have covering dimension
one. Does this result still hold in the non-metrizable context?

(iii) Are nondegenerate base continua necessarily of covering dimen-
sion one?

(iv) Co-existential maps preserve many interesting properties, includ-
ing hereditary indecomposability, chainability, and covering di-
mension one. Do they also preserve span zero? (being base?) (If
they preserve span zero�even if they need to be co-elementary to
do it�then there is an a�rmative answer to (ii) above.)
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