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Betweenness and equidistance are ternary relations on a

set X, and−like ordering relations− arise throughout math-

ematics.

I(a, c, b) is read, “c lies between a and b;”

E(a, c, b) is read, “c lies equidistant from a and b.”

We then write

I(a, b) := {x ∈ X : I(a, x, b) holds},

the interval bracketed by a, b;

E(a, b) := {x ∈ X : E(a, x, b) holds},

the equiset with cocenters a, b.



As for axioms, there does not seem to be as much con-

sensus as there is in the case of−say−partial orderings.

However the following seem to be the least controversial

betweenness axioms, and hold in the major examples.

• (Inclusivity) {a, b} ⊆ I(a, b).

• (Symmetry) I(a, b) = I(b, a).

• (Uniqueness) I(a, a) = {a}.

• (Transitivity) If c ∈ I(a, b), then I(a, c) ⊆ I(a, b).

(“c ≤a b & d ≤a c =⇒ d ≤a b”)



In addition we have axioms that hold in some interesting

cases, but not in others.

• (Antisymmetry) If c ∈ I(a, b) and b ∈ I(a, c), then b = c.

(“c ≤a b & b ≤a c =⇒ b = c”)

• (Convexity) If c, d ∈ I(a, b), then I(c, d) ⊆ I(a, b).

Define a set K ⊆ X to be I-convex if I(a, b) ⊆ K for

all a, b ∈ K. Then the convexity axiom above says that

intervals themselves are I-convex. (SHOULDN’T THEY

BE?)



Well, not always. Consider first betweenness in a metric

space 〈X, %〉, as introduced in the 1920s by Menger. The

metric interval bracketed by a, b is defined as

I%(a, b) := {x ∈ X : %(a, b) = %(a, x) + %(x, b)}.

(And the equiset is defined in the obvious way as

E%(a, b) := {x ∈ X : %(a, x) = %(x, b)}.)



It’s easy to show this interpretation of betweenness satis-

fies all the axioms above, with the possible exception of

convexity.

It is indeed possible for c, d ∈ I%(a, b), with I%(c, d) 6⊆ I%(a, b).

(Indeed, for metric betweenness, convexity is more com-

mon “in the breach than the observance.”)

Here’s an easy example. In R2 let X be the theta-curve as

shown; the metric is given by minimal path length accord-

ing to the Euclidean metric. Then c, d ∈ I%(a, b) (= the

outer square), but

e ∈ I%(c, d) \ I%(a, b).





If X is a vector space over the real scalar field, the linear

interval bracketed by a, b is defined parametrically as

[[a, b]] := {(1− t)a+ tb : 0 ≤ t ≤ 1},

with linear betweenness defined accordingly.

(This is otherwise known as the line segment with end

points a and b.)



Linear betweenness in vector spaces satisfies all of the ax-

ioms above. And if 〈X, ‖ · ‖〉 is a normed vector space

with the norm-induced metric, we have two independently-

defined notions of betweenness, clearly related by the fact

that

[[a, b]] ⊆ I%(a, b)

always holds. Generally the inclusion is proper; a metric

interval is said to be linear if it equals its corresponding

linear interval.



In Euclidean space, metric intervals are all linear, and the

equiset cocentered at two distinct points is the hyperplane

that is the perpendicular bisector of the line segment with

those points as end points.

In the case of the Cartesian plane R2 equipped with the

taxicab norm, the metric interval I%(a, b) is the rectangle

with [[a, b]] as a diagonal, and with sides parallel to the

coordinate axes. In the case a = 〈−1,−1〉, b = 〈1,1〉,
c = 〈−1,1〉 and d = 〈1,−1〉, E(a, b) is the set

[[c, d]] ∪ ((−∞,−1]× [1,∞)) ∪ ([1,∞)× (−∞,−1]),

a line segment joining two disjoint quarter-planes.





In any metric space X, each metric interval I%(a, b) is closed

because it is the zero set of the continuous mapping

x 7→ %(a, x) + %(x, b)− %(a, b);

it is bounded, as its diameter is %(a, b).

When the metric is norm-induced, metric intervals are

compact in the finite-dimensional case, but not in gen-

eral. The Banach space c0, defined as the set of null

sequences with the supremum norm, has the property that

no nondegenerate metric interval is compact.



Each equiset E%(a, b) is closed because it is the zero set of

the map

x 7→ %(a, x)− %(x, b).

In the norm-induced case, however, it is never bounded.



In a vector space X, a set is linearly convex if it is I-convex

under the linear interpretation of betweenness; similarly we

define a subset of a metric space to be metrically convex.

Linear convexity is just convexity in the classical sense;

it is generally much weaker than metric convexity in the

context of normed vector spaces.

1 Proposition. In a normed vector space, all metric in-

tervals are linearly convex; however [Panda-Kapoor, 1974]

equisets are linearly convex iff the norm is induced by an

inner product.



In any metric space X, define the closed ball and sphere

of radius r ≥ 0 and center a ∈ X by

B(a; r) := {x ∈ X : %(x, a) ≤ r}

and

S(a; r) := {x ∈ X : %(x, a) = r},

respectively.

Then closed balls in normed vector spaces are well known

to be linearly convex; they can easily fail to be metrically

convex. (Consider R2 under the taxicab norm.)





A point e in a linearly convex subset K of a vector space

is an extreme point if e cannot be a relative interior point

of a line segment that is contained in K. Let E(K) be the

set of extreme points of K.

The Krein-Milman theorem states that if K is a compact

linearly convex subset of a normed vector space, then K is

the closed linearly convex hull of E(K).



Closed balls of positive radius in a normed vector space

are compact iff the dimension of the space is finite. It is

possible for closed balls to have no extreme points (viz. c0
and the next proposition); at any rate it is the case that

E(B(a; r)) ⊆ S(a; r).

2 Proposition Let X be a normed vector space, a, b ∈ X

distinct. Then I%(a, b) is linear iff a−b
‖a−b‖ is an extreme point

of B(0; 1).



A normed vector space is called strictly convex if each

point of the unit sphere is an extreme point of the unit

ball. (This is equivalent to the rotundity condition that if

a, b are nonzero vectors such that ‖a+ b‖ = ‖a‖+ ‖b‖, then

each of the vectors is a positive multiple of the other.

So, as a corollary to Proposition 2: A normed space is

strictly convex iff each of its metric intervals is linear.



Let’s now examine what metric intervals look like in the
case of a normed plane.

It suffices to look at pairs 〈a, b〉 of points where a = 0 and
b ∈ S(0; 1).

Step 1. If b ∈ E(B(0; 1)), then I%(a, b) = [[a, b]] (from Propo-
sition 2).

Step 2. Otherwise, there exist distinct p, q ∈ E(B(0; 1)),
and α, β > 0 such that:

(2.1) α+ β = 1 and b = αp+ βq;

(2.2) [[p, q]] ∩ E(B(0; 1)) = {p, q}.

Step 3. Then I%(a, b) is the parallelogram with vertices
0, αp, βq, b.





3 Proposition. All metric intervals in a normed plane are

metrically convex. Somewhat more generally: if X is a

normed vector space such that all the non-extreme points

of the unit ball are coplanar, then all metric intervals of X

are metrically convex.



Let’s now consider metric hyperspaces. For a metric space

〈X, %〉, K(X) denotes its hyperspace of nonempty compact

subsets, and F1(X) its hyperspace of singletons.

When X is a normed vector space, KL(X) is its hyper-

space of linearly convex compact subsets. We assume all

hyperspaces of X to lie between F1(X) and K(X).



The Hausdorff metric %H(·, ·) is defined on K(X) in three

steps:

Step 1. For a ∈ X and B ∈ K(X),

%(a,B) := min{%(a, b) : b ∈ B}

Step 2. For A,B ∈ K(X),

%(A,B) := max{%(a,B) : a ∈ A}

Step 3. For A,B ∈ K(X),

%H(A,B) := max{%(A,B), %(B,A)}



When we restrict our attention to KL(X) in the normed

situation, a consequence of the Bauer maximality principle

is that we may replace Step 2 with

Step 2’. For A,B ∈ KL(X),

%(A,B) := max{%(a,B) : a ∈ E(A)}

In particular,

%H({a}, B) = max{%(a, b) : b ∈ E(B)}.



If H is a hyperspace of X and Y ⊆ X, we denote by H[Y ]

the restriction

{A ∈ H : A ⊆ Y }.

We consider singleton brackets and cocenters.

For A,B ∈ K(X) and H a hyperspace of X, IH(A,B) is the

hyperspace interval

{C ∈ H : %H(A,B) = %H(A,C) + %H(C,B)}.

(Similarly for EH(A,B).)



4 Proposition. Let X be a metric space, with a, b ∈ X and

H a hyperspace of X. Then IH({a}, {b}) =

{C ∈ H : C ⊆ I%(a, b) & ∀x,y ∈ C, %(a, x) = %(a, y)}

=⋃
{H[S(a; r) ∩ I%(a, b)] : 0 ≤ r ≤ %(a, b)}.





For hyperspace equisets, we have a messy equality, which

has the following succinct inequality as a corollary.

5 Proposition. Let X be a metric space, with a, b ∈ X and

H a hyperspace of X. Then EH({a}, {b}) ⊇

H[E%(a, b)] ∪ {C ∈ H : {a, b} ⊆ C ⊆ I%(a, b)}.



6 Proposition. Let X be a normed vector space, with

a, b ∈ X. Then IKL(X)({a}, {b}) is metrically convex iff

I%(a, b) is linear.





7 Corollary. Let X be a normed vector space. Then X

is strictly convex iff all metric intervals in KL(X) with

singleton brackets are metrically convex.

Note that, because all metric intervals in a normed plane

are metrically convex, strict convexity is a much stronger

condition than having all metric intervals in X be metrically

convex.



If X is a normed vector space and A,B ∈ K(X), then define

the linear hyperinterval bracketed by A,B to be

[[A,B]] := {(1− t)A+ tB : 0 ≤ t ≤ 1}.

This is a setwise convex combination of the two brackets,

and is guaranteed to comprise a family of compact subsets

of X.



However, it does not yield an acceptable notion of be-

tweenness for K(X), as it doesn’t necessarily satisfy the

uniqueness axiom: if A is the doubleton set {a, b}, then

[[A,A]] contains the three-element set {a, b, 1
2a+ 1

2b}, and is

therefore not equal to {A}.

In particular, we cannot always conclude that

[[A,B]] ⊆ IK(X)(A,B).



On the other hand, if we restrict our attention to KL(X),

then, by the Rådström extension theorem, KL(X) embeds

as a cone in a normed vector space whose metric restriction

to KL(X) is the Hausdorff metric. (The process resembles

how one obtains the integers from the natural numbers, via

equivalence classes of “differences.”)

Consequently, a nondegenerate linear hyperinterval [[A,B]]

in KL(X) is isometric−via its parameterization−to a line

segment. Moreover, we always have

[[A,B]] ⊆ IKL(X)(A,B).



From Corollary 7, a strictly convex normed vector space

X has the property that all metric intervals in KL(X) are

metrically convex, as long as their brackets are singletons.

However, strict convexity goes only so far.

8 Proposition. Let X be a normed vector space of dimen-

sion at least two. Then there are A,B ∈ KL(X), where A is

a line segment and B is a singleton, such that IKL(X)(A,B)

is not metrically convex.





THANK YOU!


