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1. Moore’s Theorem.

• A point c of a connected topological space X is a non-

cut point if X\{c} is connected; otherwise c is a cut point

of X.

• Every point of the real line is a cut point; no point of the

real plane is. (This is one way of showing new topology

students that R and R2 are non-homeomorphic, despite

being of the same cardinality.)



• Define a continuum to be a topological space that is

both connected and compact. A continuum is nondegen-

erate if it has at least two points.

• Theorem 1.1 (R. L. Moore, 1920). Every nondegenerate

metrizable continuum has at least two non-cut points.

• Moore actually proves a stronger result: If a nondegen-

erate metrizable continuum has no more than two non-cut

points, then it must be an arc.

The purpose of this talk is to survey some of the work that

has grown out of Moore’s theorem in the 95 years since its

publication.



2. Whyburn’s Theorem.

• Theorem 2.1 (G. T. Whyburn, 1968). Every nondegen-

erate T1 continuum has at least two non-cut points.

Note that any infinite set with the cofinite topology is a T1

continuum. In this case it’s easy to see that every point is

non-cut.

A continuum X is irreducible about a subset S if no proper

subcontinuum of X contains S.

Whyburn, by judicious use of Zorn’s lemma, proved that if c

is a cut point of X and 〈U, V 〉 is a disconnection of X \ {c}
into disjoint nonempty open sets (open in X because of

T1), then each of U and V contains a non-cut point of X.

As a consequence, we have



• Corollary 2.2. A nondegenerate T1 continuum is irre-

ducible about its set of non-cut points.

Proof. Let N be the set of non-cut points of X, with K

a proper subcontinuum of X containing N . Let c ∈ X \K.

Then c is a cut point of X; hence there is a disconnection

〈U, V 〉 of X \ {c}. But K ⊆ U ∪ V can’t intersect both

U and V because of being connected; say K ∩ V = ∅.
Whyburn’s theorem tells us there is a non-cut point in V ,

a contradiction. Hence no proper subcontinuum of X can

contain all the non-cut points of X �



3. Further Developments I: Shore Points.

In their study of dendroids and dendrites, I. Puga-Espinosa

et al (1990s) introduced the notion of shore point; and in

her 2014 paper, Shore points of a continuum, R. Leonel

took the study of shore points into the realm of general

metrizable continua.

• Let X be a metric continuum. p ∈ X is a shore point if

for any ε > 0 there is a subcontinuum K ⊆ X \ {p} which

is ε-close to X, relative to the Hausdorff metric on the

hyperspace of subcontinua of X.



Because, for metric continua, the Hausdorff metric gives

rise to the Vietoris topology, we quickly have the following,

which allows the definition of shore point to make sense

for any topological space.

• Proposition 3.1. In a metric continuum X, p is a shore

point of X iff whenever U is a finite family of nonempty

open subsets of X, there is a subcontinuum K ⊆ X \ {p}
intersecting each set in U.

• Proposition 3.2. A shore point of a T1 continuum is a

non-cut point; the converse fails in general for metrizable

continua.



Proof of Proposition 3.2. If c ∈ X is a cut point, we have

a disconnection 〈U, V 〉 of X \ {c}. U and V are both open

in X because {c} is closed. No connected subset of X \{c}
can intersect both U and V ; hence c cannot be a shore

point of X.

An example of a metrizable continuum with a a non-cut

point that is not a shore point is depicted on the next slide.

�





Leonel proved that every metrizable continuum has at least
two shore points, as a consequence of a 1948 result of
Bing. First some notation:

• If A and P are subsets of X, denote by κ(A;P ) the
relative composant, consisting of the union of all proper
subcontinua of X that contain A and are disjoint from P .

Note that if A = {a}, then κ({a}; ∅) is the usual composant
κ(a) of X containing the point a. If X is a Hausdorff
continuum and a ∈ X, κ(a) is well known to be dense in
X; the same argument shows κ(A) := κ(A; ∅) to be dense
whenever A is a proper subcontinuum of X.

• Theorem 3.3 (R. H. Bing, 1948). If X is a metrizable
continuum and A is a proper subcontinuum of X, then
there exists a point p ∈ X with κ(A; p) := κ(A; {p}) dense
in X.



• Corollary 3.4 (R. Leonel, 2014). Each nondegenerate

metrizable continuum contains at least two shore points.

Proof. Pick x ∈ X arbitrary; by Bing’s theorem 3.3, pick

p ∈ X with κ(x; p) dense in X. If U1, . . . , Un are nonempty

open sets, use density to find subcontinua K1, . . . , Kn such

that: for each 1 ≤ i ≤ n, Ki is a subcontinuum that

contains x, doesn’t contain p, and intersects Ui. Then

K = K1 ∪ · · · ∪Kn is a subcontinuum that doesn’t contain

p, and which intersects each Ui, 1 ≤ i ≤ n.

Hence we have one shore point p ∈ X. Now use Bing’s

theorem again to find q ∈ X such that κ(p; q) is dense in

X. �





Bing’s theorem 3.3 actually shows more.

• Corollary 3.5. A nondegenerate metrizable continuum is

irreducible about its set of shore points.

Proof. Let A be a proper subcontinuum of X. By Bing’s

theorem, there is a point p ∈ X with κ(A; p) dense in X.

By a simple argument similar to the above, we see that p is

a shore point; hence no proper subcontinuum can contain

all shore points of a metrizable continuum. �



What is significant in its absence is an analogue of Why-

burn’s Theorem 2.1. We restrict ourselves to the Hausdorff

case and state the following.

• Open Problem 3.6. Does Bing’s Theorem 3.3 work for

Hausdorff continua?

If so, then one can show that every nondegenarate Haus-

dorff continuum is irreducible about its set of shore points.



4. Further Developments II: A Reduction Process.

• Define a Hausdorff continuum X to be coastal about a

proper subcontinuum A ⊆ X if κ(A; p) is dense in X for

some p ∈ X. X is coastal if it is coastal about each of its

proper subcontinua.

Bing showed each metrizable continuum to be coastal; we

do not know whether this is still true for an arbitrary Haus-

dorff continuum.



• Theorem 4.1 (D. Anderson, 2015). If X is a Hausdorff

continuum that fails to be coastal at proper subcontinuum

A, then there is a continuous surjection f : X → Y where:

(i) Y is an indecomposable Hausdorff continuum with ex-

actly one composant; and (ii) Y fails to be coastal at the

proper subcontinuum f [A], which may be taken to be a

single point.

Note that two points lie in the same composant of a con-

tinuum if there is a proper subcontinuum containing them

both. A continuum is indecomposable iff this binary rela-

tion is transitive; i.e., an equivalence relation. Hence inde-

composable continua sporting more than one composant

have to be coastal since composants are dense.



For any space X, let d(X) be its density; i.e., the minimal

cardinality of a dense subset. A space X is d-Baire if

intersections of at most d(X) dense open subsets are dense.

The Baire category theorem says that separable compact

Hausdorff spaces are d-Baire.

Using Theorem 4.1, Anderson has been able to show that

separable Hausdorff continua are coastal, and hence irre-

ducible about their sets of shore points. Indeed, he proves

the more general result:

• Theorem 4.2 (D. Anderson, 2015). Each d-Baire Haus-

dorff continuum is coastal.



An interesting example of a separable continuum that isn’t

metrizable is the Stone-Čech compactification β[0,1) of

the half-open unit interval. Theorem 4.2 implies β[0,1) is

coastal; however we can see this directly:

If A ⊆ β[0,1) is a proper subcontinuum that contains 0,

then A ⊆ [0,1) and thus κ(A; p) = [0,1) is dense for any

p ∈ [0,1)∗ := β[0,1) \ [0,1).

If A doesn’t contain 0, then κ(A; 0) = β[0,1)\{0} is dense.





What is even more interesting is the question of whether

[0,1)∗ is coastal: It was shown in 1971 by D. Bellamy

that [0,1)∗ is an indecomposable continuum. Hence its

composants are pairwise disjoint. If there are at least two

composants, then [0,1)∗ is clearly coastal, as mentioned

earlier.

On the other hand, it is consistent with ZFC (see, e.g.,

A. Blass’ paper on the Near Coherence of Filters axiom)

that [0,1)∗ has exactly one composant. Is it still coastal?



5. Further Developments III: Distal Points.

• Given continuum X and proper subcontinuum A, let K(A)

be the family {κ(A; q) : q ∈ X}, partially ordered by set

inclusion. Define p ∈ X to be A-distal if κ(A; p) is maximal

in K(A). A point is distal if it is A-distal for some proper

subcontinuum A.

• Proposition 5.1. If X is a Hausdorff continuum, A is a

proper subcontinuum and p ∈ X is A-distal, then κ(A; p)

is dense in X. Thus distal points are shore points; the

converse fails in general for metrizable continua.



Proof of Proposition 5.1. For any p ∈ X \ A, κ(A; p) is

a connected set that contains A but does not contain p.

κ(A; p) is therefore a subcontinuum of X that contains A.

If it did not contain p, then boundary bumping would allow

a subcontinuum M ⊆ X\{p} that properly contains κ(A; p),

a contradiction. Hence p ∈ κ(A; p).

Suppose κ(A; p) is not dense in X and let q ∈ X \ κ(A; p).

Then κ(A; p) ⊆ κ(A; p) ⊆ κ(A; q). The two relative com-

posants can’t be equal; otherwise we would have q 6∈ κ(A; q),

a contradiction. Hence κ(A; p) is not maximal in K(A).

That distal points are shore points immediately follows. A

depiction of a shore point that is not distal is left to the

next slide. �





• A point c of a connected topological space X is a strong
non-cut point if X \{c} is continuumwise connected; oth-
erwise c is a weak cut point.

• Proposition 5.2. Every strong non-cut point in a con-
nected topological space is distal; the converse fails in gen-
eral for metrizable continua.

Recall that a continuum is aposyndetic if for any two of its
points, each is contained in the interior of a subcontinuum
that does not contain the other.

• Theorem 5.3 (F. B. Jones, 1952). In an aposyndetic
continuum, every non-cut point is strong non-cut.

In particular, in aposyndetic continua, the strong non-cut
points, the distal points, the shore points, and the non-cut
points are the same.



Proof of Proposition 5.2. Assume p is not a distal point

of X and fix a ∈ X \ {p}. Then p is not {a}-distal; thus

there is a point b with κ(a; p) ⊆ κ(a; b), but κ(a; b) 6⊆ κ(a; p).

Immediately we have from the second condition that b ∈
X \ {a, p}, so a, b, p are three distinct points. The first

condition says that, since b 6∈ κ(a; b), we know b 6∈ κ(a; p).

Hence any subcontinuum containing both a and b must also

contain p. Thus X \ {p} is not continuumwise connected,

and p is therefore a weak cut point.

The pseudo-arc is a metrizable continuum in which each

point is a weak cut point. However, because it contains at

least two disjoint composants, every point is distal. �



The pseudo-arc stands in the way of a “strong non-cut

point existence theorem.” So what remains is the following

• Open Problem 5.4. If A is a proper subcontinuum of a

Hausdorff (or even metrizable) continuum X, does there

always exist an A-distal point?

• The answer to Problem 5.4 is yes if the composant κ(A)

is proper: any p ∈ X \ κ(A) is A-distal.



• Parting Comment. It is tempting to look for maximal

elements in K(A) via Zorn’s lemma. Assuming C to be a

chain in K(A), it is easy to show there is an upper bound

if
⋃
C fails to be dense in X: just pick q ∈ X \

⋃
C, and

an argument like that for the proof of Proposition 5.1 will

show κ(A; q) to be an upper bound of C. The snag happens

when
⋃

C is dense in X.



THANK YOU!


