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1. Metric Betweenness Structures

T he overarching theme of this study is the investigation of
how notions of betweenness and distance interact, and so
the fundamental objects we consider are metric between-
ness structures.

These are triples (X, I, ), where:

(1) I = I(-,-,-) is a ternary relation on underlying set X,
where we read I(a,c,b) as “point c lies between points a
and b’ : and

(2) 0 : X2 — [0,00) is a binary function, where we read
o(a,b) = t as “points a and b are distance ¢ from each
other.”



The distance function p satisfies the classical axioms for
real-valued metrics; the ternary relation I satisfies the fol-
lowing basic axioms:

e (Inclusivity) I(a,a,b) AN I(a,b,b)

e (Symmetry) I(a,c,b) — I(b,c,a)

e (Uniqueness) I(a,b,a) — b =a.

The pair (X,I) is a betweenness structure if the ternary
relation I satisfies these three axioms.



“Just about” all betweenness structures considered here
satisfy:

e (Transitivity) (I(a,c,b) ANI(a,d,c)) — I(a,d,b).

If we fix the first argument and rewrite I(a,z,y) as z <4 v,
then the transitivity axiom looks like usual binary transitiv-
ity for each relation <,. When transitity is combined with
inclusivity and uniqueness, each <, specifies a pre-ordering
on X with unique least element a.



In addition there are axioms that hold in some interesting
cases, but not in others.

e (Antisymmetry) (I(a,c,b) ANI(a,b,c)) - b=c

e (Convexity) (I(a,c,b) A I(a,d,b) N I(c,e,d)) — I(a,e,b)
(souped-up transitivity)

e (Disjunctivity) I(a,d,b) — (I(a,d,c) VvV I(b,d,c)).

For betweenness structures satisfying both transitivity and
antisymmetry, each binary relation <, specifies a partial
ordering with unigue minimal element a.



The set of points I-between a and b is denoted

I(a,b) .= {x € X;I(a,z,b) holds}.

This is referred to as the I-interval with bracket set {a,b}.

(For example, in interval terms, the uniqueness axiom says
I(a,a) = {a}, and transitivity says I(a,c) C I(a,b) whenever
ce I(a,b).)

Intervals may have several bracket sets; however if anti-
symmetry holds for I, then two distinct bracket sets for
the same interval must be disjoint. (For if I(a,b) = I(a,c)
then we have both c€ I(a,b) and b€ I(a,c); SO b=c.)



1.1 Example. A continuum is a nonempty, connected,
compact Hausdorff topological space. Given a continuum
X, let £(X) be its family of subcontinua; i.e., subsets
that are continua relative to their inherited topologies. For
a,b € X, the corresponding subcontinuum interval is

Ix(a,b) ;= {A € K(X) : {a,b} C A}

The betweenness structure (X,I) (where I = Ix) satisfies
all the axioms above, with the exception of antisymmetry,
which fails for the sin%—continuum because each of two
points on the spine lies subcontinuum-between the other
point and a third point on the wavy bit.

Disjunctivity, for example, holds because the union of two
overlapping subcontinua is a subcontinuum.



(Of particular importance in this talk are metric between-
ness structures where X is a continuum, I = Ix, and p
generates the continuum topology on X.)

We consider two natural ways in which a metric p gives
rise to betweenness: The first was studied by K. Menger
in 1929:

I (a,c,b) iff o(a,b) = o(a,c) + o(c, b);
the second seems to be new:

Igu(a, c,b) iff o(a,b) = p(a,c) U o(c,b).

(where “z Lly" is the infix version of “max{z,y}")



Both Ij and I satisfy the three basic axioms above, and

Menger originally showed that IQ+ satisfies transitivity, as
well as antisymmetry. (Both convexity and disjunctivity
may fail for I;'.)

For general metrics IQL' does not satisfy even transitivity.
HOWEVER: If p is an ultrametric; i.e., if it satisfies the
strong triangle inequality

o(a,b) < o(a,c) U o(c,b),

then convexity and disjunctivity both hold for IQU.



In fact, any two IQ‘—'—intervaIs are either disjoint or nested.

If o is an ultrametric on X, then Ig satisfies all the axioms
above, except antisymmetry.

(Indeed, if a,b,c € X are distinct and ¢ ¢ I;(a,b), then
I'Q—’(a, b,c) and Iélg'(b, a,c) both hold.)



Another axiom satisfied by IQL'—when o IS an ultrametric—is
e (Totality) I(a,c,b) VvV I(a,b,c).

To see this, suppose a,b,ce X. If c & I(a,b), then o(a,d) <
o(la,c) = o(b,c); i.e., triangles are “tall isosceles.” Then
o(a,b) U o(b,c) = po(b,c) = o(a,c); hence b e I(a,c).



In the presence of transitivity, totality is a strengthening of
disjunctivity.

Also totality, when interpreted as a property of the binary
relations <g,, is the condition that makes pre-orderings into
total ones. (As it turns out, however, having each <, be
a total order—when antisymmetry holds—implies that the
structure has at most two points.)



For (X, I,0) a metric betweenness structure, we may relate
I and p as follows.

I is +-induced (resp., +-subinduced by p if I = I;L (resp.,
_|_
I1CI,).

Similarly we may define being U-(sub)induced when p is an
ultrametric.

Note that if I is +-subinduced by a metric, then it satis-
fies antisymmetry, because the conclusion of that axiom
involves just equality.



Forr > 0, we say [ is r-compatible with ¢ if for all a,b,c € X
with I(a,c,b) holding, we have p(a,c) < ro(a,b).

(This includes o(a,b) < ro(a,b), which forces r > 1 in any
nondegenerate structure.)

I is compatible with p if it is r-compatible with p for some
r > 0.

Clearly if I is either 4-subinduced or U-subinduced by p,
then I is 1-compatible with p.

Observe that if I is compatible with p then all I-intervals
are o-bounded: for if x,y € I(a,b) and I is r-compatible

with o, then o(z,y) < o(a,z) + o(a,y) < 2ro(a,b).



2. Diameter Distance
If (X,1I,0) is a metric betweenness structure and A C X,
define the p-diameter of A to be

A(A) = ANp(A) :=sup{o(z,y) 1 z,y € A}.

We then define the diameter distance associated with p by
0" (a,b) := A(I(a,b)).
If I is r-compatible with p, then—from above—we have

o(a,b) < 0%(a,b) <2ro(a,b).



2.1 Proposition. Let (X,I,0) be a metric betweenness
structure.

(i) If I is +-subinduced by g, then po* = o.

(ii) If p is an ultrametric, then I is LU-subinduced by p if and
only if p* = o.

Proof. Fix a,b &€ X. Then for any z,y € X we have both
(1) o(z,y) < o(a,z) + o(a,y) and

(2) o(z,y) < o(z,b) + o(y,b);

and when we add these two inequalities we get

(3) 20(x,y) < (o(a,z) + o(x,b)) + (o(a,y) + o(y,b)).



If I is +-subinduced by p and z,y € I(a,b), then the right-
hand side of (3) equals 2p(a,b); hence p*(a,b) < o(a,b).
Thus we have equality.

If now p is an ultrametric, we take the join of the strong
triangle inequality versions of (1) and (2) to obtain

(4) o(z,y) < (e(a,z) U o(x,b)) U (o(a,y) U o(y,b)).

If I is U-subinduced by ¢ and z,y € I(a,b), then the right-
hand side of (4) equals p(a,b); and again o*(a,b) < o(a,b).
This establishes the only if parts of (i) and (ii).



To prove the if half of (ii), suppose p is an ultrametric and
that a,b,c € X are such that ¢ € I(a,b) \ I'(a,b). Then—
because p is an ultrametric—we have o(a,b) < o(a,c) =
o(b,c). But then—because I(a,c,b) holds—we have o*(a,b) >

o(a,c) > o(a,b); so ¢* # o. O
There is no converse to Proposition 2.1 (i) above.

2.2 Example. A metric betwenness structure (X, I, o) such
that o = p but it is not the case that I C I;’:

Set X = [0,1] C R, where I = I (so the betweenness in-
tervals are the usual closed intervals of [0, 1]) and o(z,y) :=
v/ |x —y|. Then Ié" is trivial—i.e., no interval contains more

than two points— while I is not; so I ¢ I;'. On the other
hand, o* = p.



Some terminology: (1) If o and o are two metrics on X,
o refines p if the topology generated by o is finer than
that generated by p. If each metric refines the other, then
they're termed equivalent.

(2) If there is a real t > 0 such that o(a,b) < to(a,b) for all
a,b € X, then o strongly refines p. If each metric strongly
refines the other, then they're termed strongly equivalent.

Strong refinement straightforwardly implies refinement; the
converse is not true, even if the underlying space is com-
pact: For X = [0, 1], the closed unit interval, let o(z,y) :=
lx—y|, and let o(x,y) = y/o(x,y). Then p and o are equiva-
lent and o strongly refines o, but o does not strongly refine
O.



2.3 Proposition. Let (X,I,0) be a metric betweenness
structure such that I satisfies transitivity and disjunctivity
and p is I-bounded (e.g., I = I, where X is a continuum,
and p generates the continuum topology). Then:

(i) The diameter distance o* is a metric on X that is 1-
compatible with I and strongly refines po.

(ii) I and p are compatible if and only if p* is strongly
equivalent to p.

(iii) o™ is a metric on X that is 1-compatible with I and
strongly equivalent to o*.



(iv) If I satisfies totality, then p* is an ultrametric on X

that U-subinduces I and strongly refines po. Moreover,
k

o™ = po*.



Proof. Ad (i). Clearly o < po*; so if p* is a metric then it
strongly refines p.

Symmetry and positive-definiteness are obvious; we show
that the triangle inequality holds. Indeed, suppose a,b,c €
X . We use the well-known fact that if sets A and B overlap,
then A(AUB) < A(A)+A(B). We also use the assumption
of disjunctivity:

0*(a,b) = A(I(a,b)) < A(I(a,c) UI(c,b)) <
< A(l(a,c)) + A((c, b)) = 0"(a,c) + 0" (¢, b).

As for 1-compatibility, use transitivity: If ¢ € I(a,b) then
I(a,c) C I(a,b). Hence

¢*(a,c) = A(I(a,c)) <

< A(l(a,b)) = 0"(a,b).



Ad (ii). Assume I and p are r-compatible, » > 0, and fix
a,be X. For z,y € I(a,b) arbitrary, we have

o(z,y) < o(a,z) + o(a,y) < 2ro(a,b).

Hence o* < 2rp, showing p strongly refines o*. By (i), this
makes the two metrics strongly equivalent.

For the converse, assume p* < rp for some r > 0. For
a,b,c € X such that ce€ I(a,b), we have

o(a,c) < o"(a,b) < ro(a,b);

hence I and p are r-compatible.



Ad (iii). This follows from (i) and (ii), plus the fact that
compatible implies I-bounded.

Ad (iv). If I satisfies totality, then {I(a,c),I(c,b)} is nested;
hence either I(a,b) C I(a,c) or I(a,b) C I(c,b). Thus

0" (a,b) < o*(a,c) Up"(c,b),

SO o™ is an ultrametric.

As for LI-subinducement, suppose I(a,c,b) holds. Then
I(a,b) = I(a,c) or I(a,b) = I(c,b), by totality. Hence
0" (a,b) = 0" (a,c) U 0" (c,b),

and so I C IQL'*. That o** = p* immediately follows from
Proposition 2.1 (ii). O



3. Metric Continua

A metric continuum is a pair (X, p), where X is a continuum
and p is a generating metric.

The metric continuum (X, o) is viewed here as a metric
betweenness structure, where I = Ii.

A continuum X is decomposable if it is the union of two
proper subcontinua; indecomposable otherwise. Being hered-
itarily indecomposable means that all subcontinua are in-
decomposable, and this is equivalent to saying that K(X)

IS @ rank one family; i.e., any two subcontinua are either
disjoint or nested.

And this means that the subcontinuum betweenness of X
satisfies totality.



3.1 Corollary. Let (X, p) be a hereditarily indecomposable
metric continuum. Then p* is an ultrametric on X that
LI-subinduces I and strongly refines p. Moreover, o** = po*
and p is not compatible with I.

Proof. Because [ satisfies totality, we may invoke Propo-
sition 2.3 (iv) to establish all but the assertion that I and
o are incompatible. But by Proposition 2.3 (ii), compat-
ibility would imply that p* and p are strongly equivalent.
This is impossible because ultrametrics are well known to
generate zero-dimensional topologies. U

Define a continuum X to be diameter stable if whenever
o iS a generating metric, the p*-topology is equal to the
o-topology. The continuum is diameter unstable if each o*-
topology properly contains the p-topology (and is thus not
homeomorphic to it). Hence nondegenerate hereditarily
indecomposable continua are diameter unstable.



Given a metrizable continuum X, there are at most two
topologies on X that arise from the diameter process ap-
plied to any given generating metric. We know that two
strongly equivalent generating metrics induce strongly equiv-
alent diameter metrics, but we do not have an answer for
the following.

3.2 Question. If X is a continuum with two generating
metrics o and o, is it true that po* and o* are equivalent?

[Post-talk comment: The answer to this question is YES.]



If (X, 0) is a nondegenerate metric continuum, then p* can
never have isolated points. In fact we have the following
stronger result—very much like boundary bumping—which
shows each nonempty p*-open set to have ¢ := R0 points.

3.3 Proposition Let (X, o) be a nondegenerate metric con-
tinuum, with a € X and U C X a p*-open set containing a.
Then there is a nondegenerate K € K(X) with ae K CU.



Proof. Fix a € U C X. Then for some r > 0 the p*-ball
neighborhood B,:(a;r) is contained in U. Using ordinary
boundary bumping for (X, o), fix nondegenerate K € K(X)
such that

a € K C By(a; 35).

Given any b € K we have I(a,b) C K. So pick any z,y €
I(a,b). Then

o(z,y) < o(a,x) + o(a,y) < F;
SO
0*(a,b) = Ay(I(a,b)) < F <.
Hence b € BQ*(a; r). Since b € K is arbitrary, we have
a€ KC BQ*(CL;’T‘) C U7

as desired. [



If X is a continuum, with a € X, then the composant of X
at a is the union of all proper subcontinua of X that contain
a. BEvery decomposable continuum has either one or three
separate composants; however if a metrizable continuum
IS nondegenerate and indecomposable, it has precisely ¢
pairwise disjoint composants.

3.4 Proposition Let (X, ) be a metric continuum. Then
each of its composants is p*-open. Hence, if X is nonde-
generate and indecomposable, then it can be partitioned
into ¢ clopen sets. In particular, I and p are incompatible
(and the metric space (X, p*) has weight ).



Proof. If X is degenerate there's nothing to prove. Oth-
erwise, let C be any composant of X, with a € C. Let
0 < r < Ap(X). We show that B,«(a;r) C C. Indeed, if
r € By(a;r), then r > 0*(a,xz) = Ap(I(a,z)), implying that
I(a,z) # X. Hence not every subcontinuum of X contain-
ing {a,xz} is all of X, so let A € K(X) \ {X} contain {a.x}.
Thus z € A C C, and we conclude that C is p*-open.

If X is nondegenerate and indecomposable, then all ¢ of its
pairwise disjoint composants are open, and hence closed
as well. Hence the p*-topology is quite distinct from the p-
topology, implying that I and p are incompatible, by Propo-
sition 2.3 (ii). O



By Proposition 3.4, all nondegenerate indecomposable con-
tinua are diameter unstable, not just the hereditarily inde-
composable ones.

But decomposable continua can be diameter unstable as
well.

3.5 Example Let X = AUS be the sin l-contlnuum in the
plane R?, where A = {0} x [—1,1] and S = {{z,sin1): 0 <
r < 1}. With p the inherited Euclidian metric, <X, o*) is
homeomorphic to X’ = A’ U S C R?, where A’ = {—1} x
[—1,1]. In particular, ¢* generates a disconnected topology.
This works for any metric equivalent to p: the reason is
that A is a nondegenerate proper subcontinuum which is
terminal, in the sense that any subcontinuum of X hitting
both A and X \ A must contain A. Such subcontinua are
invariably clopen relative to any diameter metric, and this
shows that X is a diameter unstable continuum.



We saw that if (X, o) is a hereditatily indecomposable met-
ric continuum, then I is U-subinduced by p*.

3.6 Question. In the situation above, is it possible for p*
to actually U-induce I

We can also ask the question of whether I can be -
(sub)induced by p*. To this end, we have a trivial answer
and a less trivial one: The trivial answer is to let (X, o) be
any metric continuum where I is trivial (a simple closed
curve, say). Then po* = p. And by letting o be /0, we
have that ¢ = o, both I and Ij are trivial, and there-
fore I = I;';. In particular, every continuum with trivial
subcontinuum betweenness is diameter stable.

Another, less trivial, source of diameter stability uses con-
vex metrics.



By classical work of Menger, Bing and Moise, a metrizable
continuum X has a convex metric po—i.e., where each non-
degenerate I;'-interval has more than two points—if and
only if X is locally connected.

Given such a metric continuum (X, o) and a,b € X distinct,
then, there is an isometry f : [0, 0(a,b)] — X with f(0) =«
and f(o(a,b)) = b. If I(a,c,b) holds, then ¢ = f(t) for
some 0 < t < o(a,b); hence o(a,b) = t + (o(a,b) —t) =
o(a,c) + o(e,b), and I C Ig_.



If A is the arc that is the image of the isometry f, then
0*(a,b) < Ap(A) = o(a,b); so o* = o.

In the event X is also hereditarily unicoherent, then A =
I(a,b); hence I = Ig)" = I;;. [Post-talk comment: Because
of the affirmative answer to Question 3.2, we know that
locally connected metrizable continua are diameter stable.]
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