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1. Metric Betweenness Structures

The overarching theme of this study is the investigation of

how notions of betweenness and distance interact, and so

the fundamental objects we consider are metric between-

ness structures.

These are triples 〈X, I, %〉, where:

(1) I = I(·, ·, ·) is a ternary relation on underlying set X,

where we read I(a, c, b) as “point c lies between points a

and b”; and

(2) % : X2 → [0,∞) is a binary function, where we read

%(a, b) = t as “points a and b are distance t from each

other.”



The distance function % satisfies the classical axioms for

real-valued metrics; the ternary relation I satisfies the fol-

lowing basic axioms:

• (Inclusivity) I(a, a, b) ∧ I(a, b, b)

• (Symmetry) I(a, c, b)→ I(b, c, a)

• (Uniqueness) I(a, b, a)→ b = a.

The pair 〈X, I〉 is a betweenness structure if the ternary

relation I satisfies these three axioms.



“Just about” all betweenness structures considered here

satisfy:

• (Transitivity) (I(a, c, b) ∧ I(a, d, c))→ I(a, d, b).

If we fix the first argument and rewrite I(a, x, y) as x ≤a y,

then the transitivity axiom looks like usual binary transitiv-

ity for each relation ≤a. When transitity is combined with

inclusivity and uniqueness, each ≤a specifies a pre-ordering

on X with unique least element a.



In addition there are axioms that hold in some interesting

cases, but not in others.

• (Antisymmetry) (I(a, c, b) ∧ I(a, b, c))→ b = c

• (Convexity) (I(a, c, b) ∧ I(a, d, b) ∧ I(c, e, d)) → I(a, e, b)

(souped-up transitivity)

• (Disjunctivity) I(a, d, b)→ (I(a, d, c) ∨ I(b, d, c)).

For betweenness structures satisfying both transitivity and

antisymmetry, each binary relation ≤a specifies a partial

ordering with unique minimal element a.



The set of points I-between a and b is denoted

I(a, b) := {x ∈ X; I(a, x, b) holds}.

This is referred to as the I-interval with bracket set {a, b}.

(For example, in interval terms, the uniqueness axiom says

I(a, a) = {a}, and transitivity says I(a, c) ⊆ I(a, b) whenever

c ∈ I(a, b).)

Intervals may have several bracket sets; however if anti-

symmetry holds for I, then two distinct bracket sets for

the same interval must be disjoint. (For if I(a, b) = I(a, c)

then we have both c ∈ I(a, b) and b ∈ I(a, c); so b = c.)



1.1 Example. A continuum is a nonempty, connected,

compact Hausdorff topological space. Given a continuum

X, let K(X) be its family of subcontinua; i.e., subsets

that are continua relative to their inherited topologies. For

a, b ∈ X, the corresponding subcontinuum interval is

IK(a, b) :=
⋂
{A ∈ K(X) : {a, b} ⊆ A}.

The betweenness structure 〈X, I〉 (where I = IK) satisfies

all the axioms above, with the exception of antisymmetry,

which fails for the sin 1
x-continuum because each of two

points on the spine lies subcontinuum-between the other

point and a third point on the wavy bit.

Disjunctivity, for example, holds because the union of two

overlapping subcontinua is a subcontinuum.



(Of particular importance in this talk are metric between-

ness structures where X is a continuum, I = IK, and %

generates the continuum topology on X.)

We consider two natural ways in which a metric % gives

rise to betweenness: The first was studied by K. Menger

in 1929:

I+
% (a, c, b) iff %(a, b) = %(a, c) + %(c, b);

the second seems to be new:

It% (a, c, b) iff %(a, b) = %(a, c) t %(c, b).

(where “x t y” is the infix version of “max{x, y}”)



Both I+
% and It% satisfy the three basic axioms above, and

Menger originally showed that I+
% satisfies transitivity, as

well as antisymmetry. (Both convexity and disjunctivity

may fail for I+
% .)

For general metrics It% does not satisfy even transitivity.

HOWEVER: If % is an ultrametric; i.e., if it satisfies the

strong triangle inequality

%(a, b) ≤ %(a, c) t %(c, b),

then convexity and disjunctivity both hold for It% .



In fact, any two It% -intervals are either disjoint or nested.

If % is an ultrametric on X, then It% satisfies all the axioms

above, except antisymmetry.

(Indeed, if a, b, c ∈ X are distinct and c 6∈ It% (a, b), then

It% (a, b, c) and It% (b, a, c) both hold.)



Another axiom satisfied by It%−when % is an ultrametric−is

• (Totality) I(a, c, b) ∨ I(a, b, c).

To see this, suppose a, b, c ∈ X. If c 6∈ I(a, b), then %(a, b) <

%(a, c) = %(b, c); i.e., triangles are “tall isosceles.” Then

%(a, b) t %(b, c) = %(b, c) = %(a, c); hence b ∈ I(a, c).



In the presence of transitivity, totality is a strengthening of

disjunctivity.

Also totality, when interpreted as a property of the binary

relations ≤a, is the condition that makes pre-orderings into

total ones. (As it turns out, however, having each ≤a be

a total order−when antisymmetry holds−implies that the

structure has at most two points.)



For 〈X, I, %〉 a metric betweenness structure, we may relate

I and % as follows.

I is +-induced (resp., +-subinduced by % if I = I+
% (resp.,

I ⊆ I+
% ).

Similarly we may define being t-(sub)induced when % is an

ultrametric.

Note that if I is +-subinduced by a metric, then it satis-

fies antisymmetry, because the conclusion of that axiom

involves just equality.



For r > 0, we say I is r-compatible with % if for all a, b, c ∈ X
with I(a, c, b) holding, we have %(a, c) ≤ r%(a, b).

(This includes %(a, b) ≤ r%(a, b), which forces r ≥ 1 in any

nondegenerate structure.)

I is compatible with % if it is r-compatible with % for some

r > 0.

Clearly if I is either +-subinduced or t-subinduced by %,

then I is 1-compatible with %.

Observe that if I is compatible with % then all I-intervals

are %-bounded: for if x, y ∈ I(a, b) and I is r-compatible

with %, then %(x, y) ≤ %(a, x) + %(a, y) ≤ 2r%(a, b).



2. Diameter Distance

If 〈X, I, %〉 is a metric betweenness structure and A ⊆ X,

define the %-diameter of A to be

∆(A) = ∆%(A) := sup{%(x, y) : x, y ∈ A}.

We then define the diameter distance associated with % by

%∗(a, b) := ∆(I(a, b)).

If I is r-compatible with %, then−from above−we have

%(a, b) ≤ %∗(a, b) ≤ 2r%(a, b).



2.1 Proposition. Let 〈X, I, %〉 be a metric betweenness
structure.

(i) If I is +-subinduced by %, then %∗ = %.

(ii) If % is an ultrametric, then I is t-subinduced by % if and
only if %∗ = %.

Proof. Fix a, b ∈ X. Then for any x, y ∈ X we have both

(1) %(x, y) ≤ %(a, x) + %(a, y) and

(2) %(x, y) ≤ %(x, b) + %(y, b);

and when we add these two inequalities we get

(3) 2%(x, y) ≤ (%(a, x) + %(x, b)) + (%(a, y) + %(y, b)).



If I is +-subinduced by % and x, y ∈ I(a, b), then the right-

hand side of (3) equals 2%(a, b); hence %∗(a, b) ≤ %(a, b).

Thus we have equality.

If now % is an ultrametric, we take the join of the strong

triangle inequality versions of (1) and (2) to obtain

(4) %(x, y) ≤ (%(a, x) t %(x, b)) t (%(a, y) t %(y, b)).

If I is t-subinduced by % and x, y ∈ I(a, b), then the right-

hand side of (4) equals %(a, b); and again %∗(a, b) ≤ %(a, b).

This establishes the only if parts of (i) and (ii).



To prove the if half of (ii), suppose % is an ultrametric and

that a, b, c ∈ X are such that c ∈ I(a, b) \ It% (a, b). Then–

because % is an ultrametric–we have %(a, b) < %(a, c) =

%(b, c). But then–because I(a, c, b) holds–we have %∗(a, b) ≥
%(a, c) > %(a, b); so %∗ 6= %. �

There is no converse to Proposition 2.1 (i) above.

2.2 Example. A metric betwenness structure 〈X, I, %〉 such

that %∗ = % but it is not the case that I ⊆ I+
% :

Set X = [0,1] ⊆ R, where I = IK (so the betweenness in-

tervals are the usual closed intervals of [0,1]) and %(x, y) :=√
|x− y|. Then I+

% is trivial–i.e., no interval contains more

than two points– while I is not; so I 6⊆ I+
% . On the other

hand, %∗ = %.



Some terminology: (1) If % and σ are two metrics on X,

σ refines % if the topology generated by σ is finer than

that generated by %. If each metric refines the other, then

they’re termed equivalent.

(2) If there is a real t > 0 such that %(a, b) ≤ tσ(a, b) for all

a, b ∈ X, then σ strongly refines %. If each metric strongly

refines the other, then they’re termed strongly equivalent.

Strong refinement straightforwardly implies refinement; the

converse is not true, even if the underlying space is com-

pact: For X = [0,1], the closed unit interval, let %(x, y) :=

|x−y|, and let σ(x, y) =
√
%(x, y). Then % and σ are equiva-

lent and σ strongly refines %, but % does not strongly refine

σ.



2.3 Proposition. Let 〈X, I, %〉 be a metric betweenness

structure such that I satisfies transitivity and disjunctivity

and % is I-bounded (e.g., I = IK, where X is a continuum,

and % generates the continuum topology). Then:

(i) The diameter distance %∗ is a metric on X that is 1-

compatible with I and strongly refines %.

(ii) I and % are compatible if and only if %∗ is strongly

equivalent to %.

(iii) %∗∗ is a metric on X that is 1-compatible with I and

strongly equivalent to %∗.



(iv) If I satisfies totality, then %∗ is an ultrametric on X

that t-subinduces I and strongly refines %. Moreover,

%∗∗ = %∗.



Proof. Ad (i). Clearly % ≤ %∗; so if %∗ is a metric then it
strongly refines %.

Symmetry and positive-definiteness are obvious; we show
that the triangle inequality holds. Indeed, suppose a, b, c ∈
X. We use the well-known fact that if sets A and B overlap,
then ∆(A∪B) ≤∆(A)+∆(B). We also use the assumption
of disjunctivity:

%∗(a, b) = ∆(I(a, b)) ≤∆(I(a, c) ∪ I(c, b)) ≤

≤∆(I(a, c)) + ∆(I(c, b)) = %∗(a, c) + %∗(c, b).

As for 1-compatibility, use transitivity: If c ∈ I(a, b) then
I(a, c) ⊆ I(a, b). Hence

%∗(a, c) = ∆(I(a, c)) ≤

≤∆(I(a, b)) = %∗(a, b).



Ad (ii). Assume I and % are r-compatible, r > 0, and fix

a, b ∈ X. For x, y ∈ I(a, b) arbitrary, we have

%(x, y) ≤ %(a, x) + %(a, y) ≤ 2r%(a, b).

Hence %∗ ≤ 2r%, showing % strongly refines %∗. By (i), this

makes the two metrics strongly equivalent.

For the converse, assume %∗ ≤ r% for some r > 0. For

a, b, c ∈ X such that c ∈ I(a, b), we have

%(a, c) ≤ %∗(a, b) ≤ r%(a, b);

hence I and % are r-compatible.



Ad (iii). This follows from (i) and (ii), plus the fact that

compatible implies I-bounded.

Ad (iv). If I satisfies totality, then {I(a, c), I(c, b)} is nested;

hence either I(a, b) ⊆ I(a, c) or I(a, b) ⊆ I(c, b). Thus

%∗(a, b) ≤ %∗(a, c) t %∗(c, b),

so %∗ is an ultrametric.

As for t-subinducement, suppose I(a, c, b) holds. Then

I(a, b) = I(a, c) or I(a, b) = I(c, b), by totality. Hence

%∗(a, b) = %∗(a, c) t %∗(c, b),

and so I ⊆ It%∗. That %∗∗ = %∗ immediately follows from

Proposition 2.1 (ii). �



3. Metric Continua

A metric continuum is a pair 〈X, %〉, where X is a continuum

and % is a generating metric.

The metric continuum 〈X, %〉 is viewed here as a metric

betweenness structure, where I = IK.

A continuum X is decomposable if it is the union of two

proper subcontinua; indecomposable otherwise. Being hered-

itarily indecomposable means that all subcontinua are in-

decomposable, and this is equivalent to saying that K(X)

is a rank one family ; i.e., any two subcontinua are either

disjoint or nested.

And this means that the subcontinuum betweenness of X

satisfies totality.



3.1 Corollary. Let 〈X, %〉 be a hereditarily indecomposable
metric continuum. Then %∗ is an ultrametric on X that
t-subinduces I and strongly refines %. Moreover, %∗∗ = %∗

and % is not compatible with I.

Proof. Because I satisfies totality, we may invoke Propo-
sition 2.3 (iv) to establish all but the assertion that I and
% are incompatible. But by Proposition 2.3 (ii), compat-
ibility would imply that %∗ and % are strongly equivalent.
This is impossible because ultrametrics are well known to
generate zero-dimensional topologies. �

Define a continuum X to be diameter stable if whenever
% is a generating metric, the %∗-topology is equal to the
%-topology. The continuum is diameter unstable if each %∗-
topology properly contains the %-topology (and is thus not
homeomorphic to it). Hence nondegenerate hereditarily
indecomposable continua are diameter unstable.



Given a metrizable continuum X, there are at most two

topologies on X that arise from the diameter process ap-

plied to any given generating metric. We know that two

strongly equivalent generating metrics induce strongly equiv-

alent diameter metrics, but we do not have an answer for

the following.

3.2 Question. If X is a continuum with two generating

metrics % and σ, is it true that %∗ and σ∗ are equivalent?

[Post-talk comment: The answer to this question is YES.]



If 〈X, %〉 is a nondegenerate metric continuum, then %∗ can

never have isolated points. In fact we have the following

stronger result–very much like boundary bumping–which

shows each nonempty %∗-open set to have c := 2ℵ0 points.

3.3 Proposition Let 〈X, %〉 be a nondegenerate metric con-

tinuum, with a ∈ X and U ⊆ X a %∗-open set containing a.

Then there is a nondegenerate K ∈ K(X) with a ∈ K ⊆ U .



Proof. Fix a ∈ U ⊆ X. Then for some r > 0 the %∗-ball

neighborhood B%∗(a; r) is contained in U . Using ordinary

boundary bumping for 〈X, %〉, fix nondegenerate K ∈ K(X)

such that

a ∈ K ⊆ B%(a; r3).

Given any b ∈ K we have I(a, b) ⊆ K. So pick any x, y ∈
I(a, b). Then

%(x, y) ≤ %(a, x) + %(a, y) < 2r
3 ;

so

%∗(a, b) = ∆%(I(a, b)) ≤ 2r
3 < r.

Hence b ∈ B%∗(a; r). Since b ∈ K is arbitrary, we have

a ∈ K ⊆ B%∗(a; r) ⊆ U,

as desired. �



If X is a continuum, with a ∈ X, then the composant of X

at a is the union of all proper subcontinua of X that contain

a. Every decomposable continuum has either one or three

separate composants; however if a metrizable continuum

is nondegenerate and indecomposable, it has precisely c

pairwise disjoint composants.

3.4 Proposition Let 〈X, %〉 be a metric continuum. Then

each of its composants is %∗-open. Hence, if X is nonde-

generate and indecomposable, then it can be partitioned

into c clopen sets. In particular, I and % are incompatible

(and the metric space 〈X, %∗〉 has weight c).



Proof. If X is degenerate there’s nothing to prove. Oth-

erwise, let C be any composant of X, with a ∈ C. Let

0 < r ≤ ∆%(X). We show that B%∗(a; r) ⊆ C. Indeed, if

x ∈ B%∗(a; r), then r > %∗(a, x) = ∆%(I(a, x)), implying that

I(a, x) 6= X. Hence not every subcontinuum of X contain-

ing {a, x} is all of X, so let A ∈ K(X) \ {X} contain {a.x}.
Thus x ∈ A ⊆ C, and we conclude that C is %∗-open.

If X is nondegenerate and indecomposable, then all c of its

pairwise disjoint composants are open, and hence closed

as well. Hence the %∗-topology is quite distinct from the %-

topology, implying that I and % are incompatible, by Propo-

sition 2.3 (ii). �



By Proposition 3.4, all nondegenerate indecomposable con-
tinua are diameter unstable, not just the hereditarily inde-
composable ones.

But decomposable continua can be diameter unstable as
well.

3.5 Example Let X = A∪S be the sin 1
x-continuum in the

plane R2, where A = {0} × [−1,1] and S = {〈x, sin 1
x〉 : 0 <

x ≤ 1}. With % the inherited Euclidian metric, 〈X, %∗〉 is
homeomorphic to X ′ = A′ ∪ S ⊆ R2, where A′ = {−1} ×
[−1,1]. In particular, %∗ generates a disconnected topology.
This works for any metric equivalent to %: the reason is
that A is a nondegenerate proper subcontinuum which is
terminal, in the sense that any subcontinuum of X hitting
both A and X \ A must contain A. Such subcontinua are
invariably clopen relative to any diameter metric, and this
shows that X is a diameter unstable continuum.



We saw that if 〈X, %〉 is a hereditatily indecomposable met-

ric continuum, then I is t-subinduced by %∗.

3.6 Question. In the situation above, is it possible for %∗

to actually t-induce I?

We can also ask the question of whether I can be +-

(sub)induced by %∗. To this end, we have a trivial answer

and a less trivial one: The trivial answer is to let 〈X, %〉 be

any metric continuum where I is trivial (a simple closed

curve, say). Then %∗ = %. And by letting σ be
√
%, we

have that σ∗ = σ, both I and I+
σ are trivial, and there-

fore I = I+
σ∗. In particular, every continuum with trivial

subcontinuum betweenness is diameter stable.

Another, less trivial, source of diameter stability uses con-

vex metrics.



By classical work of Menger, Bing and Moise, a metrizable

continuum X has a convex metric %–i.e., where each non-

degenerate I+
% -interval has more than two points–if and

only if X is locally connected.

Given such a metric continuum 〈X, %〉 and a, b ∈ X distinct,

then, there is an isometry f : [0, %(a, b)]→ X with f(0) = a

and f(%(a, b)) = b. If I(a, c, b) holds, then c = f(t) for

some 0 ≤ t ≤ %(a, b); hence %(a, b) = t + (%(a, b) − t) =

%(a, c) + %(c, b), and I ⊆ I+
% .



If A is the arc that is the image of the isometry f , then

%∗(a, b) ≤∆%(A) = %(a, b); so %∗ = %.

In the event X is also hereditarily unicoherent, then A =

I(a, b); hence I = I+
% = I+

%∗. [Post-talk comment: Because

of the affirmative answer to Question 3.2, we know that

locally connected metrizable continua are diameter stable.]



THANK YOU


