Topological Interpretations of the Gap Free Betweenness Axiom

Paul Bankston, Marquette University 17th Galway Topology Colloquium 30 June–02 July, 2014, University of Birmingham

1. The Gap Free Axiom.

For us "betweenness" is a pre-theoretical term, which may be given a precise meaning in a variety of ways.

The first-order language of betweenness has a single ternary predicate symbol $[\cdot, \cdot, \cdot]$, and we read [a, c, b] as saying: "c lies between a and b" (with $c \in \{a, b\}$ permitted).

Gap freeness says that any two points have a third point between them; this is expressed formally as

• Gap Freeness:

 $\forall ab (a \neq b \rightarrow \exists x ([a, x, b] \land x \neq a \land x \neq b))$

For example, if we start with a totally ordered set $\langle X, \leq \rangle$ and define [a, c, b] to mean $(a \leq c \leq b) \lor (b \leq c \leq a)$, then gap freeness in this interpretation means that the ordering is dense.

We'll be talking today about gap free betweenness relations naturally arising in the context of connected topological spaces.

A connected space that is also compact Hausdorff is called a **continuum**; a continuum that is contained in a space is a **subcontinuum** of the space.

2. Three Topological Interpretations.

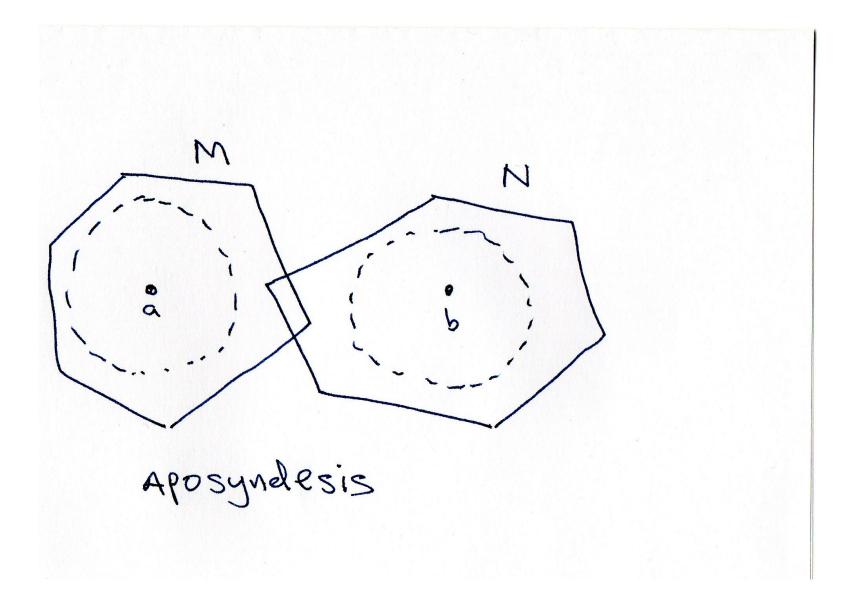
We highlight three such interpretations for a connected space X and points $a, b, c \in X$. Assuming $c \notin \{a, b\}$, we define:

- $[a, c, b]_Q$ if there's a disconnection $\langle A, B \rangle$ of $X \setminus \{c\}$ such that $a \in A$ and $b \in B$ (i.e., a and b lie in different quasicomponents of $X \setminus \{c\}$);
- $[a, c, b]_C$ if no connected subset of $X \setminus \{c\}$ contains $\{a, b\}$ (i.e., a and b lie in different components of $X \setminus \{c\}$); and
- $[a, c, b]_K$ if no subcontinuum of $X \setminus \{c\}$ contains $\{a, b\}$ (i.e., a and b lie in different continuum components of $X \setminus \{c\}$).

Clearly $[\cdot, \cdot, \cdot]_Q \subseteq [\cdot, \cdot, \cdot]_C \subseteq [\cdot, \cdot, \cdot]_K$; hence

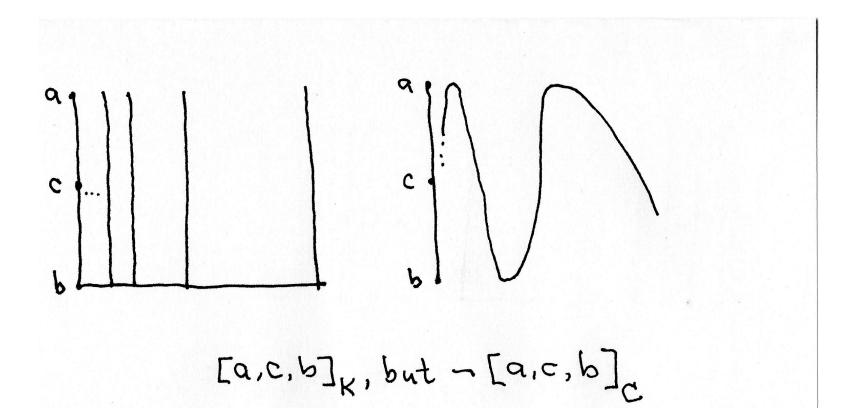
Q-gap free \Rightarrow C-gap free \Rightarrow K-gap free.

So what about instances where betweenness interpretations agree? A continuum is **aposyndetic** (after F. B. Jones, 1941) if for each two of its points, one lies in the interior of a subcontinuum that excludes the other.



2.1 Theorem (PB, unpublished). If X is an aposyndetic continuum, then $[\cdot, \cdot, \cdot]_K = [\cdot, \cdot, \cdot]_C$. If X is also locally connected, then $[\cdot, \cdot, \cdot]_K = [\cdot, \cdot, \cdot]_Q$. \Box

As for disagreement, any comb space or $sin(\frac{1}{x})$ -continuum serves to show that $[\cdot, \cdot, \cdot]_C$ needn't coincide with $[\cdot, \cdot, \cdot]_K$.



However, we have no example of a continuum for which $[\cdot, \cdot, \cdot]_C \neq [\cdot, \cdot, \cdot]_Q$. A connected metrizable-but not compact-example of this inequality may be described as follows:

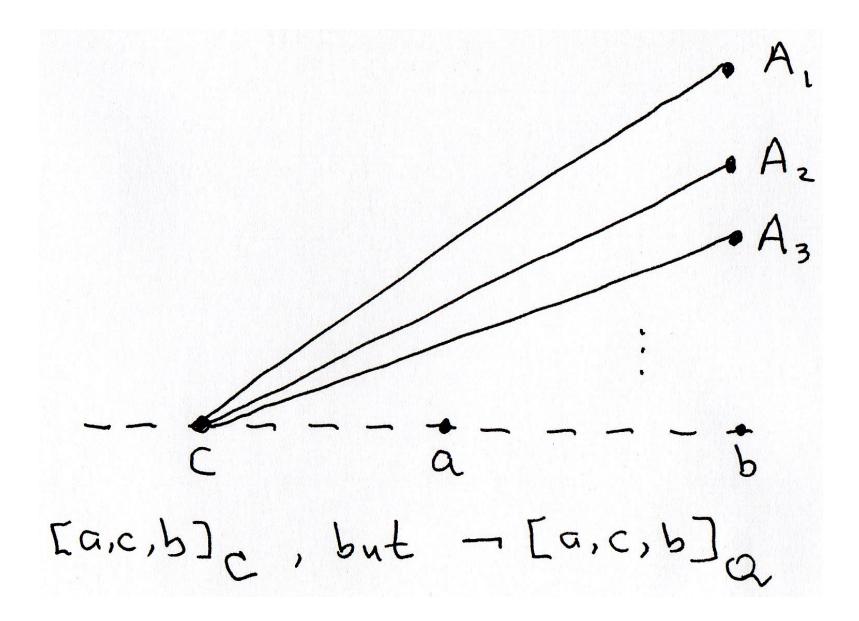
In the plane, let $a = \langle \frac{1}{2}, 0 \rangle$, $b = \langle 1, 0 \rangle$, and $c = \langle 0, 0 \rangle$. For n = 1, 2, ..., let

$$A_n = \{ \langle t, \frac{t}{n} \rangle : 0 \le t \le 1 \},\$$

and set

$$X = (\bigcup_{n=1}^{\infty} A_n) \cup \{a, b\}.$$

Then $\{a\}$ and $\{b\}$ are components of $X \setminus \{c\}$; so we have $[a, c, b]_C$ holding. However, if U is any clopen subset of $X \setminus \{c\}$ with $a \in U$, then U also contains almost all sets A_n . Hence $b \in U$ as well; so $[a, c, b]_Q$ does not hold.



Added post-talk: We can now produce a continuum example for which $[\cdot, \cdot, \cdot]_C \neq [\cdot, \cdot, \cdot]_Q$: Back in the plane, let $A_n = [0,1) \times \{\frac{1}{n}\}, n = 1, 2, \dots, \text{ with } A = [0,\frac{1}{2}) \times \{0\}$ and $B = (\frac{1}{2}, 1) \times \{0\}$. Pick $a \in A$ and $b \in B$. Then A and B are the components of a and b, respectively, but a and b lie in the same quasicomponent of X, namely $A \cup B$. X is locally compact, and none of its components is compact. Hence its one-point compactification $Y = \alpha(X)$ is a continuum. Let $c \in Y$ be the "point at infinity." Then, in Y, we have $[a, c, b]_C$, but not $[a, c, b]_Q$. Y is not C-gap free, however, so we still do not know whether C-gap free imples Q-gap free.

3. Q-gap Freeness.

Q-gap freeness is the defining condition for a continuum being a **dendron**. Dendrons are locally connected (L. E. Ward, 1954); hence Q=C=K for them (Theorem 2.1).

(Dendrites, the locally connected metrizable continua containing no simple closed curves, are just the metrizable dendrons.)

A topological space satisfies the **connected intersection property** (cip) if the intersection of any two of its connected subsets is connected. The following generalizes a well-known characterization of dendrites.

3.2 Theorem (Ward, 1991). A continuum satisfies the cip if and only if it is a dendron. \Box

4. C-gap Freeness.

Currently we do not know of any literature on the Cinterpretation of betweenness, so here is an opportunity to ask some questions, especially in relation to continua:

- Do the Q- and the C-interpretations of betweenness agree for continua? [No, see note added post-talk above.]
- Or, failing that, does C-gap freeness imply Q-gap freeness?

- Assuming Q- and C-gap freeness are distinct notions for continua, are there any well-known consequences of Q-gap freeness that are also consequences of Cgap freeness? (E.g.: local connectedness, aposyndesis, hereditary unicoherence, hereditary decomposability).
- Or, is there some weakened form of the cip that characterizes C-gap freeness?

We will return to this later on.

5. K-gap Freeness.

Given a continuum X and $a, b \in X$, let $\mathcal{K}(a, b)$ constitute the subcontinua of X that contain both a and b. Then the **K-interval** $[a, b]_K$ bracketed by a and b is defined to be $\cap \mathcal{K}(a, b)$. Hence $[a, c, b]_K$ holds iff $c \in [a, b]_K$.

The following is straightforward.

5.1 Proposition. A continuum is hereditarily unicoherent iff each of its K-intervals is a subcontinuum. \Box

Hereditary unicoherence clearly implies K-gap freeness, and it is natural to ask whether this weakening of the cip is actually a characterization.

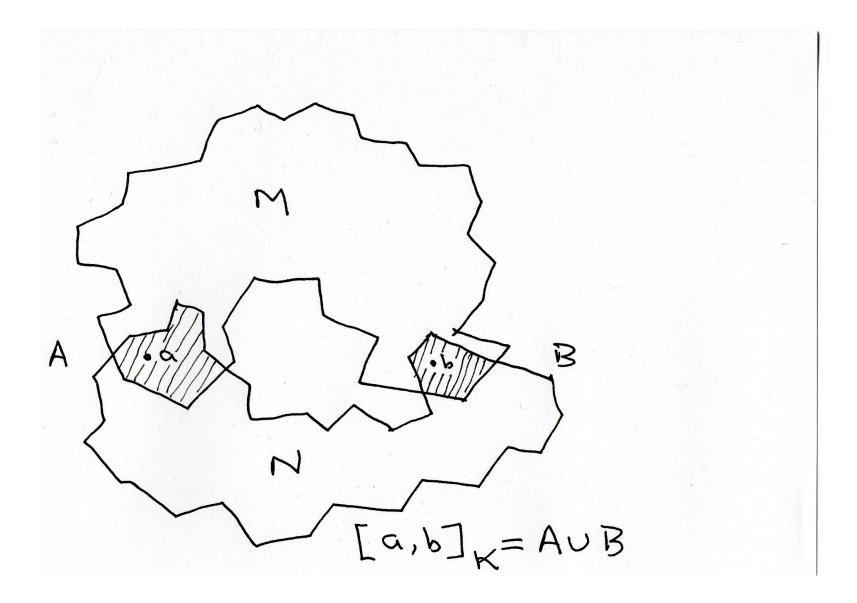
The answer turns out to be NO.

A continuum X is a **crooked annulus** if it has a decomposition $X = M \cup N$ into subcontinua such that:

- Both M and N are hereditarily indecomposable; and
- $M \cap N = A \cup B$, where A and B are disjoint nondegenerate subcontinua.

5.2 Theorem (PB, 2013). A crooked annulus is K-gap free without being even unicoherent, let alone hereditarily so.

In a crooked annulus one can show that each nondegenerate K-interval $[a, b]_K$ contains two nondegenerate subcontinua, one containing a and the other containing b. (E.g., if $a \in A$ and $b \in B$, then $[a, b]_K = A \cup B$.) This clearly gives us K-gap freeness.



6. Strong K-gap Freeness.

Recall the first-order statement of gap freeness from above.

• Gap Freeness: $\forall ab (a \neq b \rightarrow \exists x ([a, x, b] \land x \neq a \land x \neq b))$

If we replace negations of equality in the conclusion with negations of betweenness, we obtain a stronger property (when betweenness is interpreted properly).

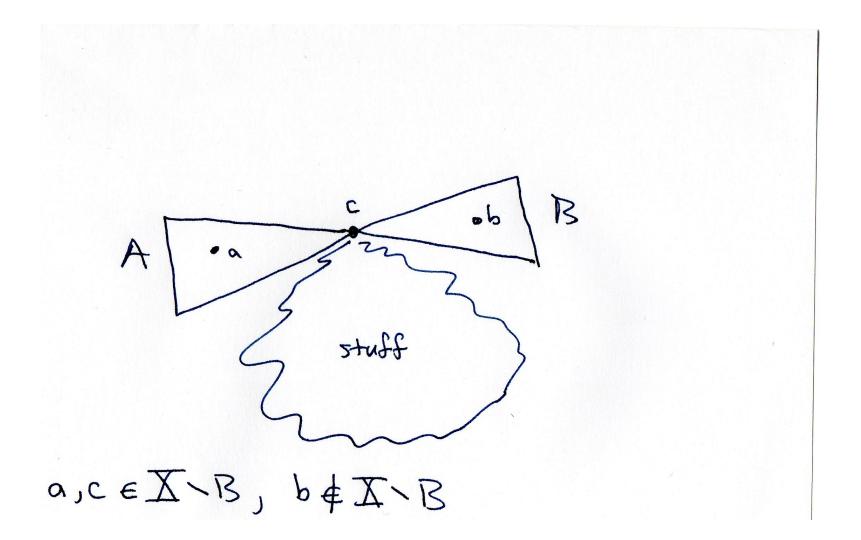
• Strong Gap Freeness:

 $\forall ab (a \neq b \rightarrow \exists x ([a, x, b] \land \neg [x, a, b] \land \neg [a, b, x]))$

With the Q- and the C-interpretations, strong gap freeness is not really stronger than gap freeness because these interpretations satisfy

• Antisymmetry: $\forall abc (([a, b, c] \land [a, c, b]) \rightarrow b = c)$

Antisymmetry in a "reasonable" betweenness interpretation amounts to saying that each binary relation \leq_a , given by $x \leq_a y$ iff [a, x, y] holds, is antisymmetric in the usual sense. When this happens, the relation \leq_a is a tree ordering, with root a. To see why the C-interpretation is antisymmetric, suppose $[a, c, b]_C$ and $b \neq c$. We want to show that $[a, b, c]_C$ fails. If c = a then clearly $\neg[a, b, c]_C$; so assume $c \notin \{a, b\}$. Then there are components A and B of $X \setminus \{c\}$ with $a \in A$ and $b \in B$. Thus, by an old theorem of K. Kuratowski, $X \setminus B$ is a connected subset of $X \setminus \{b\}$ containing a and c; so $\neg[a, b, c]_C$. The Q-interpretation is antisymmetric as well because it is finer than the C-interpretation.



By Theorem 2.1 (aposyndetic \Rightarrow C=K), aposyndetic continua are K-antisymmetric. The converse is not true, as the comb space is K-antisymmetric without being aposyndetic.

The $sin(\frac{1}{x})$ -continuum is not K-antisymmetric: if a is any point on the graph of $y = sin(\frac{1}{x})$, $0 < x \leq 1$, and b and c are any two points on the line segment $\{0\} \times [-1, 1]$, then both $[a, c, b]_K$ and $[a, b, c]_K$ hold.

[Indeed, for a continuum X to be K-antisymmetric it is necessary for $|X \setminus C| \le 1$ for each composant C of X.]

Ъ... - |-| [a,c,b] K and [a,b,c] K

Recall Ward's result (Theorem 3.1) that Q-gap freeness in continua is equivalent to the cip, but (Theorem 5.2) that K-gap freeness is strictly weaker than hereditary unicoherence. We coin the term λ -**arboroid**-inspired by a 1974 paper of Ward-to refer to a continuum that is both hereditarily unicoherent and hereditarily decomposable. (So that what is commonly known as a λ -dendroid is just a metrizable λ -arboroid.)

6.1 Theorem (PB, 2013). A continuum is strongly K-gap free if and only if it is a λ -arboroid. \Box

7. Extra Strong K-gap Freeness.

By extra strong gap freeness in an interpretation of betweenness we mean that both gap freeness and antisymmetry hold. A continuum is arcwise connected if each two of its points constitute the noncut points of a subcontinuum; an arboroid is a hereditarily unicoherent continuum that is arcwise connected. (The dendroids are the metrizable arboroids; the dendrites are the locally connected dendroids, the locally connected λ -dendroids, as well as the metrizable dendrons. A comb space is a dendroid that is not a dendrite; a $sin(\frac{1}{x})$ -continuum is a λ -dendroid that is not a dendroid.) We can now state an analogue of Theorem 6.1 for extra strong K-gap freeness.

7.1 Theorem (PB, unpublished). A continuum is extra strongly K-gap free if and only if it is an arboroid. \Box

So, if we were to *define* being a dendron as satisfying the cik, our main gap free characterization results for continua could be summarized as:

Q-gap free \Leftrightarrow dendron;

Extra strongly K-gap free \Leftrightarrow arboroid; and

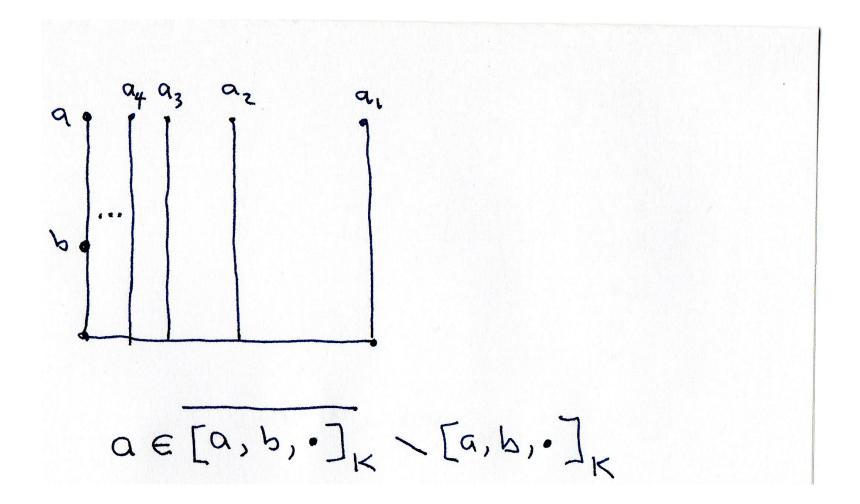
Strongly K-gap free $\Leftrightarrow \lambda$ -arboroid.

We currently have no characterizations of C-gap free or of K-gap free.

8. K-Closedness and C-Gap Freeness.

Define a continuum X to be **K**-closed if the ternary relation $[\cdot, \cdot, \cdot]_K$ is a closed subset of the cube X^3 .

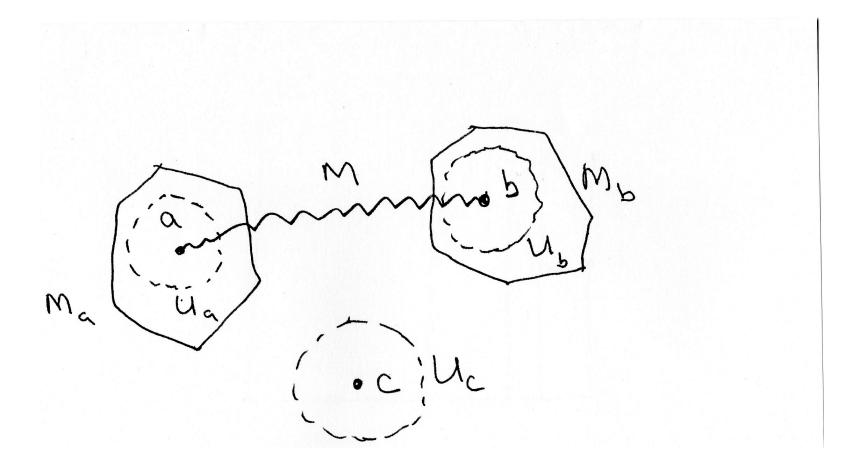
A comb space is not K-closed: indeed, if a_1, a_2, \ldots are the end points of the "free teeth" of X and a is the end point of the "limit tooth," then we have $a = \lim_{n\to\infty} a_n$. If b any point on the limit tooth other than a, then $[a, b, \cdot]_K$ contains all the points a_n , but not a itself. Hence $[a, b, \cdot]_K$ is not closed in X.



We may relate K-closedness to properties previously discussed as follows:

8.1 Theorem (PB, unpublished). Aposyndetic continua are K-closed; and K-closed hereditarily unicoherent continua are aposyndetic, as well as C-gap free.

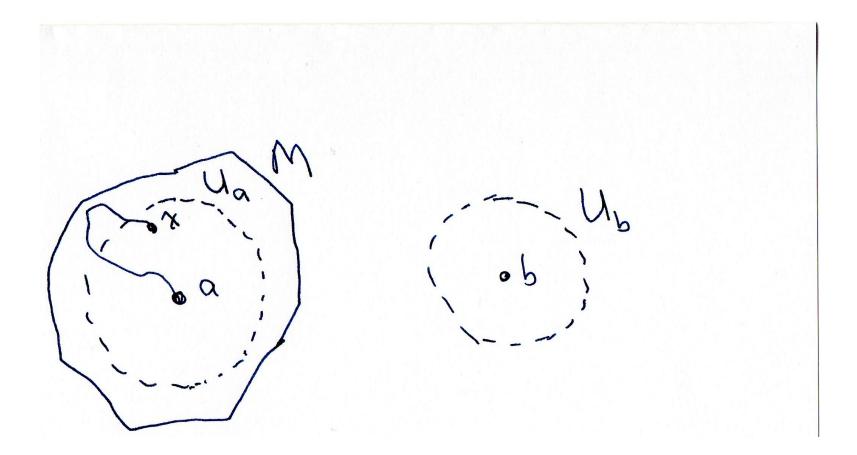
Proof (part 1). Suppose X is aposyndetic and that $\langle a, c, b \rangle \notin [\cdot, \cdot, \cdot]_K$; i.e., that $[a, c, b]_K$ does not hold. Then there is a subcontinuum $M \in \mathcal{K}(a, b)$ with $c \notin M$. Using aposyndesis, we have open sets U_a and U_b , and subcontinua M_a and M_b , with $a \in U_a \subseteq M_a \subseteq X \setminus \{c\}$ and $b \in U_b \subseteq M_b \subseteq X \setminus \{c\}$. Let U_c be an open neighborhood of c missing the subcontinuum $M_a \cup M \cup M_b$. Then $U_a \times U_c \times U_b$ is an open neighborhood of $\langle a, c, b \rangle \in X^3$ that does not intersect $[\cdot, \cdot, \cdot]_K$. Hence X is K-closed. \Box



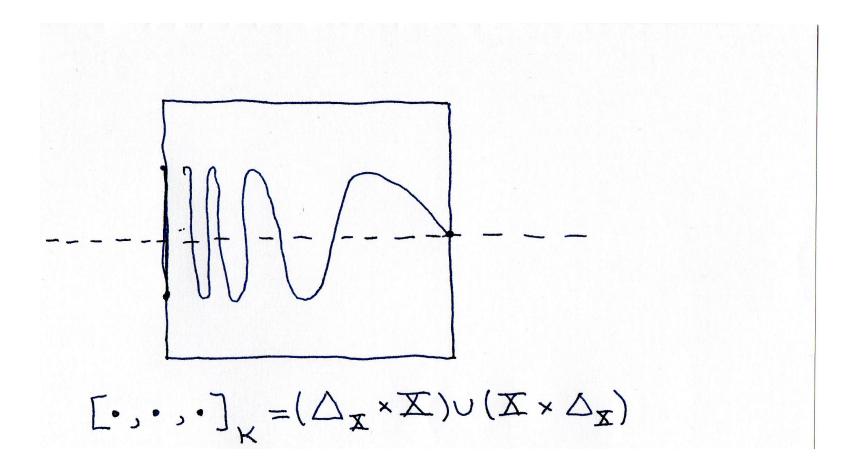
Proof (part 2). Assume X is hereditarily unicoherent, as well as K-closed, with a and b distinct points of X. Then $[a, b, a]_K$ does not hold; and by K-closedness, there are open sets U_a and U_b , with $a \in U_a$ and $b \in U_b$, such that if $\langle x, z, y \rangle \in U_a \times U_b \times U_a$, then $[x, z, y]_K$ does not hold either. In particular, for each $\langle x, z \rangle \in U_a \times U_b$, there is a subcontinuum of X that contains both a and x, but not z. Thus, for each $x \in U_a$ we have $[a, x]_K \cap U_b = \emptyset$; and so

$$M = \overline{\bigcup_{x \in U_a} [a, x]_K}$$

contains U_a and misses U_b . By hereditary unicoherence (Proposition 5.1), each $[a, x]_K$ is a subcontinuum of X. Hence M is a subcontinuum of X that contains a in its interior and excludes b, thereby establishing aposyndesis for X. That X is C-gap free now follows from Theorem 2.1 (aposyndetic $\Rightarrow C=K$), since hereditary unicoherence trivially implies K-gap freeness. \Box



K-closedness is not enough by itself to imply aposyndesis: indeed, consider the "topologist's oscilloscope" X in the plane, described as the union of the two horizontal segments $[0,1] \times \{i\}$, $i = \pm 1$, the two vertical segments $\{i\} \times [-1,1]$, i = 0,1, and the curve $\{\langle x, \frac{1}{2} \sin(\frac{\pi}{x}) \rangle : 0 < x \leq 1\}$. X is non-aposyndetic, but its betweenness relation, being trivial, is just $(\Delta_X \times X) \cup (X \times \Delta_X) \subseteq X^3$. Thus X is K-closed.



So, returning to the question of whether C-gap free continua are aposyndetic: an affirmative answer would give us

C-gap free \Leftrightarrow K-closed + hereditarily unicoherent.

["K-closed + hereditarily unicoherent \Rightarrow C-gap free" and "aposyndetic \Rightarrow K-closed" come from Theorem 8.1; so we would have "C-gap free \Rightarrow K-closed." Aposyndesis gives us C=K, hence K-antisymmetry and thus strong K-gap freeness. Now apply Theorem 6.1 to obtain hereditary unicoherence.]

Even if we were able to show C-gap free continua are Kantisymmetric, we could conclude that

C-gap free \Rightarrow arboroid.

9. C-Gap Freeness and Strong K-Gap Freeness.

The modest result we can prove now is that C-gap free continua are λ -arboroids, and hence strongly K-gap free, by Theorem 6.1. (This is definitely not a characterization because the $\sin(\frac{1}{x})$ -continuum is a λ -dendroid that is not C-gap free. Indeed, the comb space is a dendroid that is not C-gap free.)

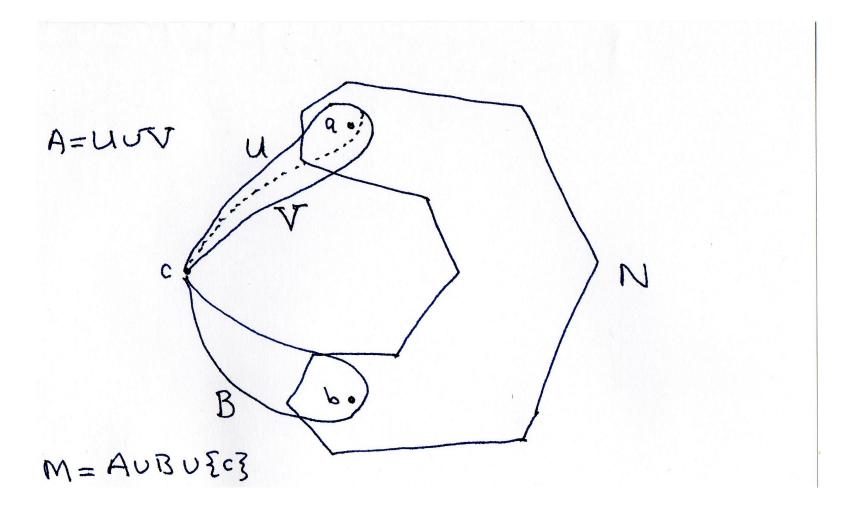
9.1 Lemma Suppose X is a C-gap free continuum. Then for each two points $a, b \in X$, there is a third point c such that c is a cut point of every connected subset of X containing $\{a, b\}$. In particular, each nondegenerate connected subset C of X has a point which is a cut point of every connected subset of X containing C.

Proof. Let C be a connected subset of X containing the doubleton $\{a, b\}$. By C-gap freeness, we have a third point c with $[a, c, b]_C$ holding. Thus, in particular, $c \in C$. No connected subset of $X \setminus \{c\}$ can contain both a and b; hence $C \setminus \{c\}$ is disconnected, and so c is a cut point of C. The second sentence follows immediately. \Box

9.2 Theorem (PB, unpublished). *C-gap free continua are* λ -*arboroids.*

Proof (Hereditary Decomposability). By Lemma 9.1, every nondegenerate subcontinuum of a C-gap free continuum has a cut point, and hence must be decomposable.

(Hereditary Unicoherence). If C-gap free continuum X fails to be hereditarily unicoherent, then there exist points $a, b \in X$ and two subcontinua M and N, both irreducible about $\{a, b\}$, with neither contained in the other. Since $M \setminus N$ is a nonempty open subset of M, boundary bumping ensures that $M \setminus N$ contains a nondegenerate subcontinuum of X. Hence, by Lemma 9.1, there is a point $c \in M \setminus N$ that is a cut point of both M and $M \cup N$. Let $\langle A, B \rangle$ be a disconnection of $M \setminus \{c\}$. If, say, A contained both a and b, then $A \cup \{c\}$ would be proper subcontinuum of M containing $\{a, b\}$, contradicting irreducibility. Hence we may assume $a \in A$ and $b \in B$. Suppose A had a disconnection $\langle U, V \rangle$, say, with $a \in U$. Then U is clopen in A and A is clopen in $M \setminus \{c\}$; hence U is clopen in $M \setminus \{c\}$. But then we have both a and b contained in the subcontinuum $(U \cup \{c\}) \cup (B \cup \{c\})$, properly contained in M. Again we contradict irreducibility, and conclude that both A and B are connected. But then we have $(M \cup N) \setminus \{c\} = A \cup N \cup B$, a connected set; so c is not a cut point of $M \cup N$, contradicting Lemma 9.1.



THANK YOU!

Slides available at http://www.mscs.mu.edu/~paulb/talks.html