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0. Overview.

• Strong noncut ⇒ distal ⇒ shore ⇒ noncut, for Hausdorff

continua; all implications are proper.

• They’re all the same for aposyndetic Hausdorff continua.

• Noncut points exist for all T1 continua.

• Shore points exist for all separable Hausdorff continua.

• Strong noncut points don’t exist at all for nondegenerate

metrizable continua that are indecomposable.



1. Moore’s Theorem.

• A continuum is a topological space that is both con-

nected and compact. A point c of a continuum X is a

non-cut point if X \ {c} is connected; otherwise c is a cut

point of X.

• A subset of a space is a subcontinuum if it is a contin-

uum in its subspace topology; a continuum is nondegen-

erate if it has more than one point.





• Theorem 1.1 (R. L. Moore, 1920). Every nondegenerate

metrizable continuum has at least two non-cut points.

• Historical Aside. Moore’s 1920 result is actually a bit

stronger than Theorem 1.1: If a nondegenerate metrizable

continuum contains no more than two non-cut points, then

it must be an arc. In 1921 S. Mazurkiewicz published a

somewhat weaker version of Theorem 1.1, and in 1923

Moore presented Theorem 1.1 more in its present form.

This, no doubt, firmily established his own priority.

The purpose of this talk is to survey some of the work

that has grown out of Moore’s theorem in the 95 years

since its publication. The first major upgrade took almost

a half-century to appear.



2. Whyburn’s Theorem.

• Theorem 2.1 (G. T. Whyburn, 1968). Every nondegen-

erate T1 continuum has at least two non-cut points.

Note that any infinite set with the cofinite topology is a T1

continuum. In this case it’s easy to see that every point is

non-cut.

A continuum X is irreducible about a subset S if no proper

subcontinuum of X contains S.

Whyburn, by judicious use of Zorn’s lemma, proved that if c

is a cut point of X and 〈U, V 〉 is a disconnection of X \ {c}
into disjoint nonempty open sets (open in X because of

T1), then each of U and V contains a non-cut point of X.

As a consequence, we have



• Corollary 2.2. A T1 continuum is irreducible about its set

of non-cut points.

Proof. Supposing, WLOG, X to be nondegenerate, let

N be the set of non-cut points of X, with K a proper

subcontinuum of X containing N . Let c ∈ X \K. Then c is

a cut point of X; hence there is a disconnection 〈U, V 〉 of

X\{c}. But K ⊆ U∪V can’t intersect both U and V because

of being connected; say K ∩ V = ∅. Whyburn’s theorem

tells us there is a non-cut point in V , a contradiction.

Hence no proper subcontinuum of X can contain all the

non-cut points of X �





3. Further Developments I: Shore Points.

In their study of dendroids and dendrites, I. Puga-Espinosa

et al (1990s) introduced the notion of shore point; and in

2014, R. Leonel took the study of shore points into the

broader realm of metrizable continua.

• Let X be a metric continuum (i.e., a particular metric is

specified). p ∈ X is a shore point if for any ε > 0 there is

a subcontinuum K ⊆ X \ {p} which is ε-close to X, relative

to the Hausdorff metric on the hyperspace of subcontinua

of X.



But we can broaden further: Because, for metric continua,

the Hausdorff metric gives rise to the Vietoris topology, we

quickly have the following, which allows the definition of

shore point to make sense for any topological space.

• Proposition 3.1. In a metric continuum X, p is a shore

point of X iff whenever U is a finite family of nonempty

open subsets of X, there is a subcontinuum K ⊆ X \ {p}
intersecting each set in U.

• Proposition 3.2. A shore point of a T1 continuum is a

non-cut point; the converse fails in general for metrizable

continua.



Proof of Proposition 3.2. If c ∈ X is a cut point, we have

a disconnection 〈U, V 〉 of X \ {c}. U and V are both open

in X because {c} is closed. No connected subset of X \{c}
can intersect both U and V ; hence c cannot be a shore

point of X.

An example of a metrizable continuum with a a non-cut

point that is not a shore point is depicted on the next slide.

�





Leonel improved on Moore’s Theorem 1.1 by showing that

every nondegenerate metrizable continuum has at least two

shore points. To do this, she employed an interesting 1948

result of R. H. Bing. First some notation:

• If A and P are subsets of X, denote by κ(A;P ) the

relative composant, consisting of the union of all proper

subcontinua of X that contain A and are disjoint from P .

Note that if A = {a}, then κ({a}; ∅) is the (usual) com-

posant κ(a) of X containing the point a. If X is a Haus-

dorff continuum and a ∈ X, κ(a) is well known to be

dense in X; the same argument (i.e., “boundary bump-

ing”) shows κ(A) := κ(A; ∅) to be dense whenever A is a

proper subcontinuum of X. κ(A;P ) is frequently nondense,

however.





• Theorem 3.3 (R. H. Bing, 1948). If X is a metrizable
continuum and A is a proper subcontinuum of X, then
there exists a point p ∈ X with κ(A; p) := κ(A; {p}) dense
in X.

• Corollary 3.4 (R. Leonel, 2014). Each nondegenerate
metrizable continuum contains at least two shore points.

Proof. Pick x ∈ X arbitrary; by Bing’s theorem 3.3, pick
p ∈ X with κ(x; p) dense in X. If U1, . . . , Un are nonempty
open sets, use density to find subcontinua K1, . . . , Kn such
that: for each 1 ≤ i ≤ n, Ki is a subcontinuum that
contains x, doesn’t contain p, and intersects Ui. Then
K = K1 ∪ · · · ∪Kn is a subcontinuum that doesn’t contain
p, and which intersects each Ui, 1 ≤ i ≤ n.

Hence we have one shore point p ∈ X. Now use Bing’s
theorem again to find q ∈ X such that κ(p; q) is dense in
X. �





Bing’s theorem 3.3 actually shows more.

• Corollary 3.5. A metrizable continuum is irreducible

about its set of shore points.

Proof. WLOG, let A be a proper subcontinuum of X. By

Bing’s theorem, there is a point p ∈ X with κ(A; p) dense

in X. By a simple argument similar to the above, we see

that p is a shore point; hence no proper subcontinuum can

contain all shore points of a metrizable continuum. �



What is significant in its absence is an analogue of Why-

burn’s Theorem 2.1. We restrict ourselves to the Hausdorff

case and state the following.

• Open Problem 3.6. Does Bing’s Theorem 3.3 work

for Hausdorff continua? (I.e., if X is a not-necessarily-

metrizable Hausdorff continuum and A is a proper subcon-

tinuum, is there a point p ∈ X with κ(A; p) dense in X?)

If so, then one can show that every nondegenarate Haus-

dorff continuum is irreducible about its set of shore points.



4. Further Developments II: A Reduction Process.

• Define a Hausdorff continuum X to be coastal at a

proper subcontinuum A ⊆ X if κ(A; p) is dense in X for

some p ∈ X.

Bing showed each metrizable continuum to be coastal at

each of its proper subcontinua; we do not know whether

this is still true for an arbitrary Hausdorff continuum.



• Remark. Two points of a Hausdorff continuum X lie

in the same composant of X iff there is a proper sub-

continuum containing both points. A continuum is inde-

composable if it is not the union of two proper subcon-

tinua; i.e., iff the relation ”being in the same composant”

is an equivalence relation. Nondegenerate indecomposable

metrizable continua are well known to possess c := 2ℵ0

(pairwise disjoint) composants, but D. Bellamy (1978) has

constructed an indecomposable Hausdorff continuum–of

weight ℵ1–with just one composant. Let us call such a

continuum a Bellamy continuum. Bellamy showed ev-

ery metrizable continuum may be embedded as a retract

of such a continuum, and M. Smith (1992) extended this

result to all Hausdorff continua.





• Theorem 4.1 (D. Anderson, 2015). If X is a Hausdorff

continuum that fails to be coastal at proper subcontinuum

A, then there is a continuous surjection f : X → Y where:

(i) Y is a Bellamy continuum; and (ii) Y fails to be coastal

at the proper subcontinuum f [A], which may be taken to

be a single point.

• Corollary 4.2. If every Bellamy continuum is coastal

at each of its points, then every Hausdorff continuum is

coastal at each of its proper subcontinua.

• Remark. Since composants are dense, and different com-

posants of indecomposable continua are disjoint, it is clear

that any indecomposable continuum with more than one

composant is coastal at each of its proper subcontinua.



• Further Remark. Bellamy’s construction starts with an

ω1-indexed inverse system of metrizable indecomposable

continua, with retractions for bonding maps. The result

is a continuum X, which has weight ℵ1 and exactly two

composants. The final touch is to identify a point of one

composant of X with a point of the other; the result is

a Bellamy continuum. However, any Bellamy continuum

resulting from such an identification is easily shown to be

coastal at proper subcontinua.



For any space X, let d(X) be its density; i.e., the minimal

cardinality of a dense subset. A space X is d-Baire if

intersections of at most d(X) dense open subsets are dense.

The Baire category theorem says that separable compact

Hausdorff spaces are d-Baire.

Using Theorem 4.1, Anderson has been able to show that

separable Hausdorff continua are coastal at their proper

subcontinua, and hence are irreducible about their sets of

shore points. Indeed, he proves the more general result:

• Theorem 4.3 (D. Anderson, 2015). Each d-Baire Haus-

dorff continuum is coastal at its proper subcontinua.



An interesting example of a separable continuum that isn’t

metrizable is the Stone-Čech compactification βH of the

real half-line H = [0,∞). Theorem 4.3 implies βH is coastal

at its proper subcontinua; however we can see this directly:

If A ⊆ βH is a proper subcontinuum that contains 0, then

A ⊆ H and thus κ(A; p) = H is dense for any p ∈ H∗ :=

βH \H.

If A doesn’t contain 0, then κ(A; 0) = βH \ {0} is dense.





What is even more interesting is the question of whether

H∗ is coastal at proper subcontinua: R. G. Woods (1968)

(also Bellamy (1971)) showed that H∗ is indecomposable;

hence the question has an easy yes answer if there is more

than one composant. M. E. Rudin (1970) proved that,

under CH, H∗ has 2c composants.

On the other hand, J. Mioduszewski (1974) proved that,

under NCF, H∗ is a Bellamy continuum. (See the 1987

survey paper by A. Blass on the Near Coherence of Filters

axiom.)



Recently Anderson has announced he has a proof that H∗

is coastal at its points. It also has a dense set of shore

points.



5. Further Developments III: Distal Points.

• Given continuum X and proper subcontinuum A, let K(A)

be the family {κ(A; q) : q ∈ X}, partially ordered by set

inclusion. Define p ∈ X to be A-distal if κ(A; p) is maximal

in K(A). A point is distal if it is A-distal for some proper

subcontinuum A.

• Proposition 5.1. If X is a Hausdorff continuum, A is a

proper subcontinuum and p ∈ X is A-distal, then κ(A; p)

is dense in X. Thus distal points are shore points; the

converse fails in general for metrizable continua.



Proof of Proposition 5.1. For any p ∈ X \ A, κ(A; p) is

a connected set that contains A but does not contain p.

κ(A; p) is therefore a subcontinuum of X that contains A.

If it did not contain p, then boundary bumping would allow

a subcontinuum M ⊆ X\{p} that properly contains κ(A; p),

a contradiction. Hence p ∈ κ(A; p).

Suppose κ(A; p) is not dense in X and let q ∈ X \ κ(A; p).

Then κ(A; p) ⊆ κ(A; p) ⊆ κ(A; q). The two relative com-

posants can’t be equal; otherwise we would have q 6∈ κ(A; q),

a contradiction. Hence κ(A; p) is not maximal in K(A).

That distal points are shore points immediately follows. A

depiction of a shore point that is not distal is left to the

next slide. �





• A point c of a connected topological space X is a strong
non-cut point if X \{c} is continuumwise connected; oth-
erwise c is a weak cut point.

• Proposition 5.2. Every strong non-cut point in a con-
nected topological space is distal; the converse fails in gen-
eral for metrizable continua.

Recall that a continuum is aposyndetic if for any two of its
points, each is contained in the interior of a subcontinuum
that does not contain the other.

• Theorem 5.3 (F. B. Jones, 1952). In an aposyndetic
continuum, every non-cut point is strong non-cut.

In particular, in aposyndetic continua, the strong non-cut
points, the distal points, the shore points, and the non-cut
points are the same.





Proof of Proposition 5.2. Assume p is not a distal point

of X and fix a ∈ X \ {p}. Then p is not {a}-distal; thus

there is a point b with κ(a; p) ⊆ κ(a; b), but κ(a; b) 6⊆ κ(a; p).

Immediately we have from the second condition that b ∈
X \ {a, p}, so a, b, p are three distinct points. The first

condition says that, since b 6∈ κ(a; b), we know b 6∈ κ(a; p).

Hence any subcontinuum containing both a and b must also

contain p. Thus X \ {p} is not continuumwise connected,

and p is therefore a weak cut point.

In a nondegenerate indecomposable metrizable continuum,

each point is both a weak cut point and distal. This is

because all composants are proper subsets. �



Any nondegenerate indecomposable metrizable continuum

stands in the way of a “strong non-cut point existence

theorem.” So we end with two problems.

• Open Problem 5.4: Identify an interesting class K of

Hausdorff continua such that: (i) weak cut points are not

necessarily cut points for members of K; and (ii) each con-

tinuum in K is irreducible about its set of strong non-cut

points.

• Open Problem 5.5. If A is a proper subcontinuum of a

Hausdorff (or even metrizable) continuum X, does there

always exist an A-distal point? (Clearly yes, unless κ(A) =

X.)



THANK YOU!


