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0. Background.

A continuum is a connected compact Hausdorff space.

Continua “come in one piece, fit in a box, have no loose

ends, and their points don’t stick to each other.” We

do not assume the existence of metrics, although a lot of

continuum theorists pack metrizability into the definition

of “continuum.”

A topological space is locally connected if it has an open

base consisting of connected sets; a dendrite is a lo-

cally connected metrizable continuum containing no simple

closed curves. Here’s a picture:





Dendrites are “spindly,” with “no circuits.” Furthermore,

each point has arbitrarily small connected neighborhoods.

0.1 Theorem (classical). A metrizable continuum X is a

dendrite iff each two points of X can be separated by a

third point; i.e., given a, b ∈ X, there is a point c ∈ X \{a, b}
such that X\{c} = A∪B, where A and B are disjoint clopen

subsets of X \ {c}, a ∈ A, and b ∈ B.





Notice this is a kind of “betweenness” condition, and there’s
no mention of local connectedness or of simple closed
curves.

And, with no simple closed curves, there is no essential use
made of the metrizability restriction.

We define a continuum to be a dendron if each two points
can be separated by a third point in this sense.

So “dendron” is a nice way of saying “not-necessarily-
metrizable dendrite.”

Dendrons have been studied from various points of view
for decades; in particular, they are the “simplest” continua
from the point of view of G. Whyburn’s cyclic element
theory.

Today’s point of view is betweenness.



1. The Gap Free Axiom.

This brings us to interpretations of betweenness in con-
tinua.

For us “betweenness” is a pre-theoretical term, which may
be given a precise meaning in a variety of ways.

The first-order language of betweenness has a single ternary
predicate symbol [·, ·, ·], and we read [a, c, b] as saying:
“c lies between a and b” (with c ∈ {a, b} permitted).

A two-point set {a, b} is a gap if [a, c, b] implies c ∈ {a, b};
gap freeness says that there are no gaps. This is expressed
formally as

• ∀ ab (a 6= b → ∃x ([a, x, b] ∧ x 6= a ∧ x 6= b))



For example, gap freeness holds for the obvious between-

ness relation associated with a linear ordering iff the order-

ing is dense in the usual sense.

The theme of this talk is gap freeness in three natural be-

tweenness interpretations for continua, and various com-

parisons that can be made.



2. Three Topological Interpretations.

Let X be a continuum, and fix points a, b, c ∈ X. Assuming
c 6∈ {a, b}, we define:

• [a, c, b]Q if there’s a disconnection 〈A, B〉 of X \{c} such
that a ∈ A and b ∈ B (i.e., a and b lie in different quasi-
components of X \{c}). (Note: this is the betweenness
condition used in defining “dendron.”)

• [a, c, b]C if no connected subset of X \{c} contains {a, b}
(i.e., a and b lie in different components of X \ {c});
and

• [a, c, b]K if no subcontinuum of X \ {c} contains {a, b}
(i.e., a and b lie in different continuum components of
X \ {c}).



Clearly [a, c, b]Q ⇒ [a, c, b]C ⇒ [a, c, b]K always; hence

Q-gap free ⇒ C-gap free ⇒ K-gap free.

A continuum is a Q-dendron (resp., C-dendron, K-dendron)

if it is Q-gap free (resp., C-gap free, K-gap free).

So Q-dendron = dendron.



3. When Interpretations Agree.

A continuum is aposyndetic (after F. B. Jones, 1941:

apo- denoting “being away from;” syndesis denoting “be-

ing bound together”) if for each two of its points, one lies

in the interior of a subcontinuum that excludes the other.

(This looks like a souped-up T1 axiom, but is really a weak

form of local connectedness.)





3.1 Theorem (PB, 2014). If X is an aposyndetic contin-

uum, then [·, ·, ·]K = [·, ·, ·]C. If X is also locally connected,

then [·, ·, ·]K = [·, ·, ·]Q. �



4. When Interpretations Disagree.

Any comb space or sin(1/x)-continuum serves to show that

[·, ·, ·]C needn’t coincide with [·, ·, ·]K.

What’s more, these continua are K-dendrons but not

C-dendrons.

Thus K-gap free 6⇒ C-gap free (for continua).







We know that [·, ·, ·]K can disagree with [·, ·, ·]C.

We even have the stronger statement that being K-gap

free does not imply being C-gap free for a continuum.

Now we want to compare C and Q.

Our first big question is whether these two interpretations

of betweenness necessarily agree for continua, and the an-

swer is NO.



4.1 Example. Hairball: a plane continuum for which [·, ·, ·]C 6=
[·, ·, ·]Q.

Construction. For n = 1,2, . . . , let

An = ([0,1]× {1/n})

∪{〈x, y〉 : x ≥ 1 and (x− 1)2 + y2 = (1/n)2}

∪((1/2,1]× {−1/n}),

let

A = [0,1/2)× {0},

B = (1/2,1]× {0},

and put

X = (
∞⋃

n=1

An) ∪ (A ∪B).



X is a locally compact topological space, no component

of which is compact. Hence the Alexandroff one-point

compactification Y = X∪{p} is a continuum. And if a ∈ A,

b ∈ B, we have [a, p, b]C, but not [a, p, b]Q. Here’s the picture

of our hairball:





5. Are C-Dendrons Actually Dendrons Anyway?

Our second big question is whether C-gap free continua are

necessarily Q-gap free–i.e., are C-dendrons just dendrons

traveling incognito–and the answer is a surprising YES.



First some nomenclature: A continuum X is:

• decomposable if X is the union of two proper sub-

continua;

• indecomposable otherwise; and

• unicoherent if X is not the union of two subcontinua

whose intersection is disconnected.

The addition if “hereditarily” in front of any of these adjec-

tives confers the associated property to all nondegenerate

subcontinua.







A cut point in a space is one whose removal disconnects

the space.

5.1 Lemma. Suppose X is a C-dendron. Then for each

nondegenerate connected subset K of X, there is a point

c ∈ K such that c is a cut point of every connected subset

of X containing K.

Proof. Given K a nondegenerate connected subset of X,

pick a, b ∈ K distinct. By C-gap freeness, we have a point

c ∈ X \{a, b} with [a, c, b]C holding. Every connected subset

of X must contain c if it contains both a and b; so if M is

one such, with K ⊆ M , then M \ {c} cannot be connected.

Hence c is a cut point of M . �



In 1988, L. E. Ward dubbed as “Property T” the condition

that for nondegenerate subcontinua K ⊆ M , K contains a

cut point of M . Clearly the conclusion of Lemma 5.1 im-

plies Property T, but it is actually no stronger. Indeed,

Ward proved that Property T is equivalent to being a den-

dron. (He states in his paper that W. Bula and E. D. Tym-

chatyn had together proved the same result.)

Thus we immediately have

5.2 Theorem (Ward, 1988 (essentially)). C-dendrons are

dendrons; i.e., C-gap free ⇒ Q-gap free (for continua).



Proof Outline. Assuming X to be a C-dendron, first use

Lemma 5.1 to show that X is hereditarily unicoherent.

Then for each two points a, b ∈ X, the set of all c ∈ X

with [a, c, b]K holding is the intersection of all subcontinua

containing both a and b, and is a subcontinuum of X–

which we denote by [a, b] = [a, b]K. Call [a, b] the K-interval

determined by a and b.

Next show that each nondegenerate K-interval [a, b] has

only a and b as non-cut points, and is hence an arc. (Metriz-

able arcs are all homeomorphic to a closed bounded interval

in R.)

The following picture illustrates how you show hereditary

unicoherence.





The final step is to pick a, b ∈ X distinct, and to let c ∈
[a, b] \ {a, b}. Then c is a cut point of [a, b], and hence a

cut point of X, by Lemma 5.1.

We then proceed to show that [a, c, b]Q holds, by showing

X \ {c} = Aa ∪ Ab, where, for x ∈ X \ {c}, Ax is the union

of all subarcs in X \ {c} containing x. That Aa ∩ Ab = ∅
follows since c is a cut point of X. The only tricky–but

not too tricky–part is to show each Ax is open in X. �



5.3 Theorem (PB, unpublished) Let X be a continuum;
the following are equivalent:

(i) X is a dendron.

(ii) X is hereditarily unicoherent and locally connected.

(iii) X is hereditarily unicoherent and aposyndetic.

(iv) X is an aposyndetic K-dendron.

(v) X is a C-dendron.

(The equivalences (i) ⇔ (ii) ⇔ (iii) are well known in the
metric case.)



6. K-Dendrons.

We recall the following fact, used in the proof of Theorem

5.2.

6.1 Proposition. A continuum is hereditarily unicoherent

iff each of its K-intervals is a subcontinuum. �

Hereditary unicoherent continua are clearly K-dendrons,

and it is natural to ask whether the converse is true.

The answer turns out to be NO.



A continuum X is a crooked annulus if it has a decom-

position X = M ∪N into subcontinua such that:

• Both M and N are hereditarily indecomposable; and

• M ∩N = A ∪B, where A and B are disjoint nondegen-

erate subcontinua.

6.2 Theorem (PB, 2013). Every crooked annulus is a

K-dendron, which fails to be unicoherent. �





We know dendrons are hereditarily decomposable; by virtue

of this, they’re curves (i.e., of covering dimension 1)–as

they should be. But hereditarily unicoherent continua–and

hence K-dendrons–can be of any dimension at all. Even a

crooked annulus, being the union of two hereditarily uni-

coherent continua, can have any old dimension, by a 1954

result of R. H. Bing.

Our third big question is whether K-dendrons are anything

in particular.

For example, are they hereditarily unicoherent if assumed

to be hereditarily decomposable?

Are there any interesting properties that K-dendrons en-

joy?



7. Strong K-Dendrons.

Recall the first-order statement of gap freeness from above.

• Gap Freeness:

∀ ab (a 6= b → ∃x ([a, x, b] ∧ x 6= a ∧ x 6= b))

If we replace negations of equality in the conclusion with

negations of betweenness, we obtain a stronger property

(when betweenness is interpreted so that [x, x, y] and

[x, z, y] ↔ [y, z, x] always hold).

• Strong Gap Freeness:

∀ ab (a 6= b → ∃x ([a, x, b] ∧ ¬[x, a, b] ∧ ¬[a, b, x]))



With the Q- and the C-interpretations, strong gap freeness

is equivalent to gap freeness.

But strong K-gap freeness really is stronger.

7.1 Theorem (PB, 2013). A continuum is a strong K-

dendron if and only if it is both hereditarily unicoherent

and hereditarily decomposable. �

In particular, strong K-dendrons are curves.



8. Antisymmetric K-Dendrons.

The reason strong gap freeness is no stronger than gap

freeness for Q and C is the following:

8.1 Proposition. Both [·, ·, ·]Q and [·, ·, ·]C satisfy the anti-

symmetry condition: if [a, c, b] and [a, b, c] hold, then b = c.

�

A continuum X is antisymmetric if its K-interpretation

of betweenness satisfies the antisymmetry condition. This

is equivalent to saying that for any a, b, c ∈ X with b 6= c,

there is a subcontinuum of X containing a and exactly one

of b and c.



Recall from above that an arc is any continuum with ex-

actly two non-cut points. Metrizable arcs are all homeo-

morphic to [0,1] ⊆ R, but nonmetrizable arcs can be quite

exotic; e.g., the lexicographically ordered square.

X is arcwise connected if each two of its points are the

non-cut points of an arc in X.



8.2 Theorem (PB, 2013). A continuum is an antisymmet-

ric K-dendron if and only if it is both hereditarily unicoher-

ent and arcwise connected. �

It it interesting to note that lots of topological properties

of the form

HEREDITARILY UNICOHERENT + ????

are expressible first-order gap freeness conditions for ap-

propriate interpretations of betweenness in a continuum.

So our last big question is: how about hereditary unicoher-

ence all by itself? Is there a first-order sentence ϕ–involving

equality and one ternary predicate–such that a continuum

is hereditarily unicoherent iff its associated K-betweenness

structure satisfies ϕ?



THANK YOU!


