Co-Existential Metric Images of Ultra-Arcs

Paul Bankston, Marquette University

50th Spring Topology and Dynamical Systems Conference Baylor University, 10–13 March, 2016. Introduction.

A generalized arc is any continuum (= connected compact Hausdorff space) with exactly two noncut points; an **arc** is metric generalized arc, well known to be homeomorphic to the real unit interval I := [0, 1].

By an **ultra-arc** we mean an ultracopower $\mathbb{I}_{\mathcal{D}}$ of \mathbb{I} via a nonprincipal ultrafilter \mathcal{D} on the set $\omega := \{0, 1, ...\}$ of natural numbers.

Alternatively, the ultra-arcs are the components of the Stone-Čech remainder $(\mathbb{I} \times \omega)^* := \beta(\mathbb{I} \times \omega) \setminus (\mathbb{I} \times \omega)$.

And the first of t D ÷

Ultra-arcs were first introduced by Mioduszewski in the mid 1970s in order to study \mathbb{H}^* , where \mathbb{H} is the real half-line $[0,\infty)$. They naturally embed as the "standard subcontinua" of \mathbb{H}^* , but that is not our focus here.

What we are interested in is the problem of deciding when a continuum is a continuous image of an ultra-arc under various kinds of mapping. If we make no restrictions on the mapping, we have the following important result, due to Dow-Hart (extending a much older theorem of Bellamy beyond the metric context).

Proposition 1. Every continuum of weight $\leq \aleph_1$ is a continuous image of any ultra-arc.

In this talk, we focus down on the classes of monotone and of co-existential maps. The first is familiar, the second somewhat less so.

Ultracopowers and Co-Existential Maps.

Given a compactum X and (discrete) set I, first form the cartesian product $X \times I$, with coordinate maps $p : X \times I \to X$ and $q : X \times I \to I$. Next apply the Stone-Čech functor, obtaining the following diagram.

ZB B(X × I) 6 1 I) pß

If \mathcal{D} is an ultrafilter on I, then it may be viewed as a point in $\beta(I)$. Denote by $X_{\mathcal{D}}$ the pre-image of $\{\mathcal{D}\}$ under q^{β} . This is the \mathcal{D} -ultracopower of X.

When X is a continuum, these ultracopowers partition $\beta(X \times I)$ into its components.

The map

$$p_{\mathcal{D}} := p^{\beta} | X_{\mathcal{D}} : X_{\mathcal{D}} \to X$$

is a continuous surjection, called the **ultracopower codi**agonal map.

A mapping $f: Y \to X$ between compacta is **co-existential** if there is an ultracopower $X_{\mathcal{D}}$ and a surjective map $g: X_{\mathcal{D}} \to Y$ such that $f \circ g = p_{\mathcal{D}}$.

Co-existential maps play a category-theoretic rôle dual to that played by existential embeddings in model theory.

The classes of monotone and of co-existential maps are not directly related; however we can make the following assertion.

Proposition 2. Every co-existential map with locally connected range is monotone. And if a compactum fails to be locally connected, there is an ultracopower of it whose associated codiagonal map is not monotone.

Some Preservation Results.

(i) (Hereditary) unicoherence [both co-existential and monotone].

(ii) Hereditary decomposability (but not decomposability)[both].

(iii) (Hereditary) indecomposability [both].

(iv) Chainability [both].

(v) Irreducibility [monotone only].

(vi) Covering dimension one [co-existential only].

Regularized Ultracopowers.

The usual \mathcal{D} -ultraproduct of an *I*-sequence $\vec{F} = \langle F_i : i \in I \rangle$ of sets is denoted $\vec{F}^{\mathcal{D}}$ or $\prod_{\mathcal{D}} F_i$.

If X is a compactum the collection $\mathfrak{F}(X, \mathcal{D})$ of \mathcal{D} -ultraproducts of closed subsets of X constitutes an atomic lattice under \cup and \cap .

The \mathcal{D} -ultracopower $X_{\mathcal{D}}$ is the Wallman construction applied to $\mathfrak{F}(X, \mathcal{D})$; the points of $X^{\mathcal{D}}$ may be viewed as the maximal filters of this lattice.

This makes it possible to view $X^{\mathcal{D}}$ as a dense subset of $X_{\mathcal{D}}$; its points are the **regular points** of the ultracopower.

Moreover...

If the topology on X is induced by a total ordering < (say, when X is a generalized arc), then the ultrapower ordering $<^{\mathcal{D}}$ -also total-induces the subspace topology on $X^{\mathcal{D}}$.

The regular points of an ultra-arc may be viewed as "nonstandard reals":

Given continuum X, define $\mu, \nu \in X_{\mathcal{D}}$ to be \mathcal{R} -equivalent if they contain the same closed-set ultraproducts $\vec{K}^{\mathcal{D}}$, whose factors are subcontinua of X.

Clearly the \mathcal{R} -class of any regular point of $X_{\mathcal{D}}$ is degenerate, so there are lots of equivalence classes in general. The topological quotient $X_{\mathcal{D}}^{\mathcal{R}}$ is called the **regularized** \mathcal{D} ultracopower of X.

 $X_{\mathcal{D}}^{\mathcal{R}}$ is a compact connected T_0 space, which may fail to be T_1 .

However $X_{\mathcal{D}}^{\mathcal{R}}$ is Hausdorff in certain "nice" cases.

One such case is when X is locally connected, as well as n-SLC; i.e., each subcontinuum has arbitrarily small neighborhoods whose complements have $\leq n$ components.

 $\mathbb I$ is locally connected and 2-SLC, so $\mathbb I_{\mathcal D}^{\mathcal R}$ is a continuum.

Ultra-Arcs in More Detail.

Here are some useful facts about the ultra-arc $\mathbb{I}_{\mathcal{D}}$.

(i) It is hereditarily unicoherent, as well as irreducible about $\{0_{\mathcal{D}}, 1_{\mathcal{D}}\}$.

(ii) The \mathcal{R} -classes—also known as *layers*—form an upper semicontinuous partition into nowhere dense subcontinua. Moreover, these subcontinua are indecomposable.

(iii) The ultrapower ordering $<^{\mathcal{D}}$ (obtained from the usual ordering on I) induces a total ordering of the layers of $\mathbb{I}_{\mathcal{D}}$, so that the regularized ultra-arc $\mathbb{I}_{\mathcal{D}}^{\mathcal{R}}$ is a generalized arc. (Never metric.)

(iv) Every subcontinuum is either contained in a layer or is a union of layers.

This suggests imagining an ultra-arc as a "generalized arc with indecomposable hair"...

And the first of t D ÷

Necessary Conditions.

Proposition 3. A nondegenerate monotone image of an ultra-arc is hereditarily unicoherent and irreducible.

(We do not know whether it is of covering dimension one; monotone maps can raise dimension.)

Proposition 4. A co-existential image of an ultra-arc is hereditarily unicoherent and of covering dimension one. Any metric image is irreducible as well.

(We do not know whether nonmetric images of ultra-arcs are always irreducible; co-existential maps need not preserve irreducibility.)

Sufficient Conditions I: Generalized Arcs.

The codiagonal maps $p_{\mathcal{D}} : \mathbb{I}_{\mathcal{D}} \to \mathbb{I}$ witness that the arc is a co-existential (and monotone) image of any ultra-arc.

We have only a conditional answer to the question of which nonmetric generalized arcs are such images.

Proposition 5. (CH) Every generalized arc of weight $\leq \aleph_1$ is a co-existential monotone image of every ultra-arc.

Remark. The proof of Proposition 5 makes essential use of both the Löwenheim-Skolem Theorem and Keisler's Ultrapower Theorem (CH version).

Sufficient Conditions II: Chainabile + Metric.

Proposition 6. Every nondegenerate chainable metric continuum is a co-existential image of every ultra-arc.

Proof Idea. Write the nondegenerate chainable metric continuum X as an inverse limit of arcs and surjective bonding maps:

$$\mathbb{I} \xleftarrow{f_0} \mathbb{I} \xleftarrow{f_1} \mathbb{I} \xleftarrow{f_2} \dots$$

Let $\vec{\pi} = \langle \pi_n : n \in \omega \rangle$ be the associated sequence of projection maps from X to I, so that $\pi_n = f_n \circ \pi_{n+1}$ always holds.

Next form the **ultracoproduct map**

$$\vec{\pi}_{\mathcal{D}}: X_{\mathcal{D}} \longrightarrow \mathbb{I}_{\mathcal{D}}$$

via the rule:

$$\prod_{\mathcal{D}} F_n \in \vec{\pi}_{\mathcal{D}}(\mu) \text{ iff } \prod_{\mathcal{D}} \vec{\pi}_n^{-1}[F_n] \in \mu.$$

The next trick is to define maps $g_n : \mathbb{I}_{\mathcal{D}} \to \mathbb{I}$ so that the commutativities

$$g_n \circ \vec{\pi}_{\mathcal{D}} = \pi_n \circ p_{\mathcal{D}}$$

and

$$g_n = f_n \circ g_{n+1}$$

always hold.

(This is possible because every final segment of ω is in \mathcal{D} .)

This gives rise to a unique map

$$g: \mathbb{I}_{\mathcal{D}} \to X$$

so that

$$g \circ \vec{\pi}_{\mathcal{D}} = p_{\mathcal{D}}$$

holds too.

This makes g a co-existential map. \Box

While co-existential maps preserve chainability, ultra-arcs are well known not to be chainable themselves.

Could it be that chainability is still a necessary condition for a metric continuum to be a co-existential image of an ultra-arc?

We next show the answer to be *no*.

Sufficient Conditions III: Co-Existentially Closed + Metric.

A co-existentially closed continuum is a continuum X such that every continuous map from a continuum onto X is co-existential.

(Compare this with classic continuum-theoretic notions, such as Class(C) and Class(W).)

Proposition 7.

(i) Every co-existentially closed continuum is hereditarily indecomposable, as well as of covering dimension one. (In particular, it's nondegenerate.)

(ii) Every nondegenerate continuum is a continuous image of a co-existentially closed continuum, of the same weight.

(iii) There exists an uncountable family of pairwise nonhomeomorphic metric co-existentially closed continua which are not chainable.

(iv) (Eagle, Goldbring, Vignati) The pseudo-arc is a coexistentially closed metric continuum (the only chainable one, up to homeomorphism).

Harking back to the Dow-Hart Proposition 1, Bellamy originally showed that every metric continuum is a continuous image of any nondegenerate subcontinuum of \mathbb{H}^* . In particular:

Proposition 8. Every co-existentially closed metric continuum is a co-existential image of every ultra-arc.

Corollary 9. There exists a nonchainable metric continuum which is a co-existential image of every ultra-arc.

Proposition 10 (Hoehn, Oversteegen). Every hereditarily indecomposable metric continuum of span zero is chain-able.

Corollary 11. There exists a nonzero-span metric continuum which is a co-existential image of every ultra-arc.

When Images are Generalized Arcs.

Proposition 12. If X is a nondegenerate hereditarily decomposable monotone image of an ultra-arc, then X is a generalized arc.

Remark. The proof of Proposition 12 makes essential use of the fact that layers of ultra-arcs are indecomposable continua. The assertion is no longer true with *monotone* replaced with *co-existential*: the $sin(\frac{1}{x})$ -continuum is hereditarily decomposable, but is not an arc. Hence it is not a monotone image of any ultra-arc. On the other hand, it is chainable, and therefore a co-existential image of every ultra-arc, by Proposition 8.

(We do not know of a nondegenerate monotone image of an ultra-arc which is not a co-existential image.) Proposition 13.

(i) If X is an aposyndetic (resp., metric antisymmetric) coexistential image of an ultra-arc, then X is a generalized arc (resp., arc).

(ii) If X is a nondegenerate antisymmetric monotone image of an ultra-arc, then X is a generalized arc.

Remark. Antisymmetry is strictly weaker than aposyndesis; the obstruction to being able to just assume *antisymmetric* in (i) above is that we do not know whether co-existential images of ultra-arcs are irreducible, except in the metric case. (Co-existential maps are known not to preserve this property in general.)

THANK YOU!