1 What is a Group? With Exercises

In class we axiomatized a group as a structure $\left(G, \cdot,^{-1}, e\right)$, often simply written G, where
$x \cdot y$ is a two-variable function called product,
x^{-1} is a one-variable function called inverse, and
e is a constant called unity.
Instead of $x \cdot y$ one usually writes $x y$. We gave as axioms
(a) $\forall x, y, z(x(y z)=(x y) z)$
(i) $\quad \forall x\left(x x^{-1}=e\right)$
(e) $\quad \forall x(x e=x)$

Using only these axioms, we proved in class the following Propositions for all groups:

Proposition (1): $\forall x, y, z(x z=y z \rightarrow x=y)$.
You can use this outcome on exams. Nevertheless, can you prove this from only the axioms above?

Proposition (2): $\forall x(e x=x)$.
You can use this outcome on exams. Nevertheless, can you prove this from only the axioms and Proposition (1)?

Proposition (3): $\forall x\left(x^{-1} x=e\right)$.
You can use this outcome on exams. Nevertheless, can you prove this from only the axioms and Propositions (1) and (2)?

A group is call abelian, or commutative, when it satisfies the extra property
(c) $\forall x, y(x y=y x)$

For abelian group one often uses notation $(G,+,-, 0)$, so $x+y$ and $-x$ and 0 .

