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Preface

This text is intended for a one or two-semester undergraduate course in
abstract algebra. Traditionally, these courses have covered the theoreti-
cal aspects of groups, rings, and fields. However, with the development of
computing in the last several decades, applications that involve abstract
algebra and discrete mathematics have become increasingly important,
and many science, engineering, and computer science students are now
electing to minor in mathematics. Though theory still occupies a central
role in the subject of abstract algebra and no student should go through
such a course without a good notion of what a proof is, the importance
of applications such as coding theory and cryptography has grown signif-
icantly.

Until recently most abstract algebra texts included few if any applica-
tions. However, one of the major problems in teaching an abstract algebra
course is that for many students it is their first encounter with an envi-
ronment that requires them to do rigorous proofs. Such students often
find it hard to see the use of learning to prove theorems and propositions;
applied examples help the instructor provide motivation.

This text contains more material than can possibly be covered in a
single semester. Certainly there is adequate material for a two-semester
course, and perhaps more; however, for a one-semester course it would
be quite easy to omit selected chapters and still have a useful text. The
order of presentation of topics is standard: groups, then rings, and finally
fields. Emphasis can be placed either on theory or on applications. A
typical one-semester course might cover groups and rings while briefly
touching on field theory, using Chapters 1 through 6, 9, 10, 11, 13 (the
first part), 16, 17, 18 (the first part), 20, and 21. Parts of these chapters
could be deleted and applications substituted according to the interests
of the students and the instructor. A two-semester course emphasizing
theory might cover Chapters 1 through 6, 9, 10, 11, 13 through 18, 20,
21, 22 (the first part), and 23. On the other hand, if applications are to
be emphasized, the course might cover Chapters 1 through 14, and 16
through 22. In an applied course, some of the more theoretical results
could be assumed or omitted. A chapter dependency chart appears below.
(A broken line indicates a partial dependency.)

vii



viii

Chapters 1–6

Chapter 8 Chapter 9 Chapter 7

Chapter 10

Chapter 11

Chapter 13 Chapter 16 Chapter 12 Chapter 14

Chapter 17 Chapter 15

Chapter 18 Chapter 20 Chapter 19

Chapter 21

Chapter 22

Chapter 23

Though there are no specific prerequisites for a course in abstract
algebra, students who have had other higher-level courses in mathematics
will generally be more prepared than those who have not, because they
will possess a bit more mathematical sophistication. Occasionally, we
shall assume some basic linear algebra; that is, we shall take for granted
an elementary knowledge of matrices and determinants. This should
present no great problem, since most students taking a course in abstract
algebra have been introduced to matrices and determinants elsewhere in
their career, if they have not already taken a sophomore or junior-level
course in linear algebra.

Exercise sections are the heart of any mathematics text. An exercise
set appears at the end of each chapter. The nature of the exercises
ranges over several categories; computational, conceptual, and theoretical
problems are included. A section presenting hints and solutions to many
of the exercises appears at the end of the text. Often in the solutions a
proof is only sketched, and it is up to the student to provide the details.
The exercises range in difficulty from very easy to very challenging. Many
of the more substantial problems require careful thought, so the student
should not be discouraged if the solution is not forthcoming after a few
minutes of work.

Ideally, students should read the relavent material before attending
class. Reading questions have been added to each chapter before the
exercises. To prepare for class, students should read the chapter before
class and then answer the section’s reading questions to prepare for the
class.

There are additional exercises or computer projects at the ends of
many of the chapters. The computer projects usually require a knowledge
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of programming. All of these exercises and projects are more substantial
in nature and allow the exploration of new results and theory.

Sage (sagemath.org2) is a free, open source, software system for ad-
vanced mathematics, which is ideal for assisting with a study of abstract
algebra. Sage can be used either on your own computer, a local server, or
on CoCalc (cocalc.com3). Robert Beezer has written a comprehensive
introduction to Sage and a selection of relevant exercises that appear at
the end of each chapter, including live Sage cells in the web version of
the book. All of the Sage code has been subject to automated tests of
accuracy, using the most recent version available at this time: SageMath
Version 9.6 (released 2022-05-15).

Thomas W. Judson
Nacogdoches, Texas 2022

2sagemath.org
3cocalc.com

http://sagemath.org
https://cocalc.com


x



Contents

Acknowledgements v

Preface vii

1 Preliminaries 1

1.1 A Short Note on Proofs . . . . . . . . . . . . . 1
1.2 Sets and Equivalence Relations . . . . . . . . . . . 3
1.3 Reading Questions . . . . . . . . . . . . . . . 14
1.4 Exercises . . . . . . . . . . . . . . . . . . . 14
1.5 References and Suggested Readings . . . . . . . . . 16

2 The Integers 19

2.1 Mathematical Induction . . . . . . . . . . . . . 19
2.2 The Division Algorithm . . . . . . . . . . . . . 22
2.3 Reading Questions . . . . . . . . . . . . . . . 26
2.4 Exercises . . . . . . . . . . . . . . . . . . . 26
2.5 Programming Exercises. . . . . . . . . . . . . . 28
2.6 References and Suggested Readings . . . . . . . . . 29

3 Groups 31

3.1 Integer Equivalence Classes and Symmetries . . . . . . 31
3.2 Definitions and Examples . . . . . . . . . . . . . 35
3.3 Subgroups . . . . . . . . . . . . . . . . . . 40
3.4 Reading Questions . . . . . . . . . . . . . . . 42
3.5 Exercises . . . . . . . . . . . . . . . . . . . 42
3.6 Additional Exercises: Detecting Errors . . . . . . . . 46
3.7 References and Suggested Readings . . . . . . . . . 47

4 Cyclic Groups 49

4.1 Cyclic Subgroups . . . . . . . . . . . . . . . . 49
4.2 Multiplicative Group of Complex Numbers . . . . . . 52
4.3 The Method of Repeated Squares . . . . . . . . . . 56

xi



xii CONTENTS

4.4 Reading Questions . . . . . . . . . . . . . . . 58
4.5 Exercises . . . . . . . . . . . . . . . . . . . 58
4.6 Programming Exercises. . . . . . . . . . . . . . 61
4.7 References and Suggested Readings . . . . . . . . . 61

5 Permutation Groups 63

5.1 Definitions and Notation . . . . . . . . . . . . . 63
5.2 Dihedral Groups . . . . . . . . . . . . . . . . 70
5.3 Reading Questions . . . . . . . . . . . . . . . 74
5.4 Exercises . . . . . . . . . . . . . . . . . . . 75

6 Cosets and Lagrange’s Theorem 79

6.1 Cosets . . . . . . . . . . . . . . . . . . . . 79
6.2 Lagrange’s Theorem . . . . . . . . . . . . . . . 81
6.3 Fermat’s and Euler’s Theorems . . . . . . . . . . . 83
6.4 Reading Questions . . . . . . . . . . . . . . . 84
6.5 Exercises . . . . . . . . . . . . . . . . . . . 84

7 Introduction to Cryptography 87

7.1 Private Key Cryptography . . . . . . . . . . . . 87
7.2 Public Key Cryptography . . . . . . . . . . . . . 90
7.3 Reading Questions . . . . . . . . . . . . . . . 93
7.4 Exercises . . . . . . . . . . . . . . . . . . . 93
7.5 Additional Exercises: Primality and Factoring . . . . . 94
7.6 References and Suggested Readings . . . . . . . . . 96

8 Algebraic Coding Theory 97

8.1 Error-Detecting and Correcting Codes . . . . . . . . 97
8.2 Linear Codes . . . . . . . . . . . . . . . . . 104
8.3 Parity-Check and Generator Matrices . . . . . . . . 107
8.4 Efficient Decoding . . . . . . . . . . . . . . . 112
8.5 Reading Questions . . . . . . . . . . . . . . . 115
8.6 Exercises . . . . . . . . . . . . . . . . . . . 115
8.7 Programming Exercises. . . . . . . . . . . . . . 120
8.8 References and Suggested Readings . . . . . . . . . 120

9 Isomorphisms 121

9.1 Definition and Examples . . . . . . . . . . . . . 121
9.2 Direct Products . . . . . . . . . . . . . . . . 125
9.3 Reading Questions . . . . . . . . . . . . . . . 129
9.4 Exercises . . . . . . . . . . . . . . . . . . . 129

10 Normal Subgroups and Factor Groups 133

10.1 Factor Groups and Normal Subgroups . . . . . . . . 133
10.2 The Simplicity of the Alternating Group . . . . . . . 135
10.3 Reading Questions . . . . . . . . . . . . . . . 138
10.4 Exercises . . . . . . . . . . . . . . . . . . . 138



xiii

11 Homomorphisms 141

11.1 Group Homomorphisms . . . . . . . . . . . . . 141
11.2 The Isomorphism Theorems . . . . . . . . . . . . 143
11.3 Reading Questions . . . . . . . . . . . . . . . 146
11.4 Exercises . . . . . . . . . . . . . . . . . . . 146
11.5 Additional Exercises: Automorphisms . . . . . . . . 148

12 Matrix Groups and Symmetry 149

12.1 Matrix Groups . . . . . . . . . . . . . . . . . 149
12.2 Symmetry . . . . . . . . . . . . . . . . . . 156
12.3 Reading Questions . . . . . . . . . . . . . . . 162
12.4 Exercises . . . . . . . . . . . . . . . . . . . 162
12.5 References and Suggested Readings . . . . . . . . . 164

13 The Structure of Groups 165

13.1 Finite Abelian Groups . . . . . . . . . . . . . . 165
13.2 Solvable Groups . . . . . . . . . . . . . . . . 169
13.3 Reading Questions . . . . . . . . . . . . . . . 173
13.4 Exercises . . . . . . . . . . . . . . . . . . . 173
13.5 Programming Exercises. . . . . . . . . . . . . . 174
13.6 References and Suggested Readings . . . . . . . . . 174

14 Group Actions 175

14.1 Groups Acting on Sets . . . . . . . . . . . . . . 175
14.2 The Class Equation . . . . . . . . . . . . . . . 178
14.3 Burnside’s Counting Theorem . . . . . . . . . . . 179
14.4 Reading Questions . . . . . . . . . . . . . . . 186
14.5 Exercises . . . . . . . . . . . . . . . . . . . 186
14.6 Programming Exercise . . . . . . . . . . . . . . 188
14.7 References and Suggested Reading . . . . . . . . . 188

15 The Sylow Theorems 189

15.1 The Sylow Theorems . . . . . . . . . . . . . . 189
15.2 Examples and Applications . . . . . . . . . . . . 192
15.3 Reading Questions . . . . . . . . . . . . . . . 195
15.4 Exercises . . . . . . . . . . . . . . . . . . . 195
15.5 A Project. . . . . . . . . . . . . . . . . . . 197
15.6 References and Suggested Readings . . . . . . . . . 198

16 Rings 199

16.1 Rings . . . . . . . . . . . . . . . . . . . . 199
16.2 Integral Domains and Fields . . . . . . . . . . . . 203
16.3 Ring Homomorphisms and Ideals . . . . . . . . . . 204
16.4 Maximal and Prime Ideals . . . . . . . . . . . . 207
16.5 An Application to Software Design . . . . . . . . . 210
16.6 Reading Questions . . . . . . . . . . . . . . . 213
16.7 Exercises . . . . . . . . . . . . . . . . . . . 213
16.8 Programming Exercise . . . . . . . . . . . . . . 217
16.9 References and Suggested Readings . . . . . . . . . 217



xiv CONTENTS

17 Polynomials 219

17.1 Polynomial Rings . . . . . . . . . . . . . . . . 219
17.2 The Division Algorithm . . . . . . . . . . . . . 222
17.3 Irreducible Polynomials . . . . . . . . . . . . . 225
17.4 Reading Questions . . . . . . . . . . . . . . . 230
17.5 Exercises . . . . . . . . . . . . . . . . . . . 231
17.6 Additional Exercises: Solving the Cubic and Quartic Equa-

tions . . . . . . . . . . . . . . . . . . . . 233

18 Integral Domains 237

18.1 Fields of Fractions . . . . . . . . . . . . . . . 237
18.2 Factorization in Integral Domains . . . . . . . . . . 240
18.3 Reading Questions . . . . . . . . . . . . . . . 248
18.4 Exercises . . . . . . . . . . . . . . . . . . . 248
18.5 References and Suggested Readings . . . . . . . . . 250

19 Lattices and Boolean Algebras 251

19.1 Lattices . . . . . . . . . . . . . . . . . . . 251
19.2 Boolean Algebras . . . . . . . . . . . . . . . . 254
19.3 The Algebra of Electrical Circuits . . . . . . . . . . 259
19.4 Reading Questions . . . . . . . . . . . . . . . 262
19.5 Exercises . . . . . . . . . . . . . . . . . . . 262
19.6 Programming Exercises. . . . . . . . . . . . . . 264
19.7 References and Suggested Readings . . . . . . . . . 264

20 Vector Spaces 265

20.1 Definitions and Examples . . . . . . . . . . . . . 265
20.2 Subspaces . . . . . . . . . . . . . . . . . . 266
20.3 Linear Independence. . . . . . . . . . . . . . . 267
20.4 Reading Questions . . . . . . . . . . . . . . . 269
20.5 Exercises . . . . . . . . . . . . . . . . . . . 270
20.6 References and Suggested Readings . . . . . . . . . 272

21 Fields 275

21.1 Extension Fields . . . . . . . . . . . . . . . . 275
21.2 Splitting Fields. . . . . . . . . . . . . . . . . 284
21.3 Geometric Constructions . . . . . . . . . . . . . 286
21.4 Reading Questions . . . . . . . . . . . . . . . 291
21.5 Exercises . . . . . . . . . . . . . . . . . . . 291
21.6 References and Suggested Readings . . . . . . . . . 293

22 Finite Fields 295

22.1 Structure of a Finite Field . . . . . . . . . . . . 295
22.2 Polynomial Codes. . . . . . . . . . . . . . . . 299
22.3 Reading Questions . . . . . . . . . . . . . . . 306
22.4 Exercises . . . . . . . . . . . . . . . . . . . 306
22.5 Additional Exercises: Error Correction for BCH Codes . .308
22.6 References and Suggested Readings . . . . . . . . . 309



xv

23 Galois Theory 311

23.1 Field Automorphisms . . . . . . . . . . . . . . 311
23.2 The Fundamental Theorem . . . . . . . . . . . . 316
23.3 Applications. . . . . . . . . . . . . . . . . . 322
23.4 Reading Questions . . . . . . . . . . . . . . . 326
23.5 Exercises . . . . . . . . . . . . . . . . . . . 327
23.6 References and Suggested Readings . . . . . . . . . 329

Appendices

A GNU Free Documentation License 331

B Hints and Answers to Selected Exercises 339

C Notation 357

Back Matter

Index 361



xvi CONTENTS



1

Preliminaries

A certain amount of mathematical maturity is necessary to find and study
applications of abstract algebra. A basic knowledge of set theory, math-
ematical induction, equivalence relations, and matrices is a must. Even
more important is the ability to read and understand mathematical proofs.
In this chapter we will outline the background needed for a course in ab-
stract algebra.

1.1 A Short Note on Proofs
Abstract mathematics is different from other sciences. In laboratory sci-
ences such as chemistry and physics, scientists perform experiments to
discover new principles and verify theories. Although mathematics is of-
ten motivated by physical experimentation or by computer simulations,
it is made rigorous through the use of logical arguments. In studying ab-
stract mathematics, we take what is called an axiomatic approach; that
is, we take a collection of objects S and assume some rules about their
structure. These rules are called axioms. Using the axioms for S, we
wish to derive other information about S by using logical arguments. We
require that our axioms be consistent; that is, they should not contradict
one another. We also demand that there not be too many axioms. If
a system of axioms is too restrictive, there will be few examples of the
mathematical structure.

A statement in logic or mathematics is an assertion that is either true
or false. Consider the following examples:

• 3 + 56− 13 + 8/2.

• All cats are black.

• 2 + 3 = 5.

• 2x = 6 exactly when x = 4.

• If ax2 + bx+ c = 0 and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a
.

• x3 − 4x2 + 5x− 6.

1



2 CHAPTER 1. PRELIMINARIES

All but the first and last examples are statements, and must be either
true or false.

A mathematical proof is nothing more than a convincing argument
about the accuracy of a statement. Such an argument should contain
enough detail to convince the audience; for instance, we can see that the
statement “2x = 6 exactly when x = 4” is false by evaluating 2 · 4 and
noting that 6 6= 8, an argument that would satisfy anyone. Of course,
audiences may vary widely: proofs can be addressed to another student,
to a professor, or to the reader of a text. If more detail than needed is
presented in the proof, then the explanation will be either long-winded
or poorly written. If too much detail is omitted, then the proof may not
be convincing. Again it is important to keep the audience in mind. High
school students require much more detail than do graduate students. A
good rule of thumb for an argument in an introductory abstract algebra
course is that it should be written to convince one’s peers, whether those
peers be other students or other readers of the text.

Let us examine different types of statements. A statement could be as
simple as “10/5 = 2;” however, mathematicians are usually interested in
more complex statements such as “If p, then q,” where p and q are both
statements. If certain statements are known or assumed to be true, we
wish to know what we can say about other statements. Here p is called
the hypothesis and q is known as the conclusion. Consider the following
statement: If ax2 + bx+ c = 0 and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a
.

The hypothesis is ax2 + bx+ c = 0 and a 6= 0; the conclusion is

x =
−b±

√
b2 − 4ac

2a
.

Notice that the statement says nothing about whether or not the hypoth-
esis is true. However, if this entire statement is true and we can show
that ax2 + bx + c = 0 with a 6= 0 is true, then the conclusion must be
true. A proof of this statement might simply be a series of equations:

ax2 + bx+ c = 0

x2 +
b

a
x = − c

a

x2 +
b

a
x+

(
b

2a

)2

=

(
b

2a

)2

− c

a(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
=

±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a
.

If we can prove a statement true, then that statement is called a propo-
sition. A proposition of major importance is called a theorem. Sometimes
instead of proving a theorem or proposition all at once, we break the
proof down into modules; that is, we prove several supporting proposi-
tions, which are called lemmas, and use the results of these propositions
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to prove the main result. If we can prove a proposition or a theorem, we
will often, with very little effort, be able to derive other related proposi-
tions called corollaries.

Some Cautions and Suggestions
There are several different strategies for proving propositions. In addition
to using different methods of proof, students often make some common
mistakes when they are first learning how to prove theorems. To aid
students who are studying abstract mathematics for the first time, we
list here some of the difficulties that they may encounter and some of the
strategies of proof available to them. It is a good idea to keep referring
back to this list as a reminder. (Other techniques of proof will become
apparent throughout this chapter and the remainder of the text.)

• A theorem cannot be proved by example; however, the standard
way to show that a statement is not a theorem is to provide a
counterexample.

• Quantifiers are important. Words and phrases such as only, for all,
for every, and for some possess different meanings.

• Never assume any hypothesis that is not explicitly stated in the
theorem. You cannot take things for granted.

• Suppose you wish to show that an object exists and is unique. First
show that there actually is such an object. To show that it is unique,
assume that there are two such objects, say r and s, and then show
that r = s.

• Sometimes it is easier to prove the contrapositive of a statement.
Proving the statement “If p, then q” is exactly the same as proving
the statement “If not q, then not p.”

• Although it is usually better to find a direct proof of a theorem,
this task can sometimes be difficult. It may be easier to assume
that the theorem that you are trying to prove is false, and to hope
that in the course of your argument you are forced to make some
statement that cannot possibly be true.

Remember that one of the main objectives of higher mathematics is prov-
ing theorems. Theorems are tools that make new and productive appli-
cations of mathematics possible. We use examples to give insight into
existing theorems and to foster intuitions as to what new theorems might
be true. Applications, examples, and proofs are tightly interconnected—
much more so than they may seem at first appearance.

1.2 Sets and Equivalence Relations

Set Theory
A set is a well-defined collection of objects; that is, it is defined in such a
manner that we can determine for any given object x whether or not x
belongs to the set. The objects that belong to a set are called its elements
or members. We will denote sets by capital letters, such as A or X; if a
is an element of the set A, we write a ∈ A.



4 CHAPTER 1. PRELIMINARIES

A set is usually specified either by listing all of its elements inside a
pair of braces or by stating the property that determines whether or not
an object x belongs to the set. We might write

X = {x1, x2, . . . , xn}

for a set containing elements x1, x2, . . . , xn or

X = {x : x satisfies P}

if each x in X satisfies a certain property P. For example, if E is the set
of even positive integers, we can describe E by writing either

E = {2, 4, 6, . . .} or E = {x : x is an even integer and x > 0}.

We write 2 ∈ E when we want to say that 2 is in the set E, and −3 /∈ E
to say that −3 is not in the set E.

Some of the more important sets that we will consider are the follow-
ing:

N = {n : n is a natural number} = {1, 2, 3, . . .};
Z = {n : n is an integer} = {. . . ,−1, 0, 1, 2, . . .};

Q = {r : r is a rational number} = {p/q : p, q ∈ Z where q 6= 0};
R = {x : x is a real number};

C = {z : z is a complex number}.

We can find various relations between sets as well as perform opera-
tions on sets. A set A is a subset of B, written A ⊂ B or B ⊃ A, if every
element of A is also an element of B. For example,

{4, 5, 8} ⊂ {2, 3, 4, 5, 6, 7, 8, 9}

and
N ⊂ Z ⊂ Q ⊂ R ⊂ C.

Trivially, every set is a subset of itself. A set B is a proper subset of a
set A if B ⊂ A but B 6= A. If A is not a subset of B, we write A 6⊂ B;
for example, {4, 7, 9} 6⊂ {2, 4, 5, 8, 9}. Two sets are equal, written A = B,
if we can show that A ⊂ B and B ⊂ A.

It is convenient to have a set with no elements in it. This set is called
the empty set and is denoted by ∅. Note that the empty set is a subset
of every set.

To construct new sets out of old sets, we can perform certain opera-
tions: the union A ∪B of two sets A and B is defined as

A ∪B = {x : x ∈ A or x ∈ B};

the intersection of A and B is defined by

A ∩B = {x : x ∈ A and x ∈ B}.

If A = {1, 3, 5} and B = {1, 2, 3, 9}, then

A ∪B = {1, 2, 3, 5, 9} and A ∩B = {1, 3}.
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We can consider the union and the intersection of more than two sets. In
this case we write

n⋃
i=1

Ai = A1 ∪ . . . ∪An

and
n⋂
i=1

Ai = A1 ∩ . . . ∩An

for the union and intersection, respectively, of the sets A1, . . . , An.
When two sets have no elements in common, they are said to be

disjoint; for example, if E is the set of even integers and O is the set of
odd integers, then E and O are disjoint. Two sets A and B are disjoint
exactly when A ∩B = ∅.

Sometimes we will work within one fixed set U , called the universal
set. For any set A ⊂ U , we define the complement of A, denoted by A′,
to be the set

A′ = {x : x ∈ U and x /∈ A}.
We define the difference of two sets A and B to be

A \B = A ∩B′ = {x : x ∈ A and x /∈ B}.
Example 1.1 Let R be the universal set and suppose that

A = {x ∈ R : 0 < x ≤ 3} and B = {x ∈ R : 2 ≤ x < 4}.

Then

A ∩B = {x ∈ R : 2 ≤ x ≤ 3}
A ∪B = {x ∈ R : 0 < x < 4}
A \B = {x ∈ R : 0 < x < 2}

A′ = {x ∈ R : x ≤ 0 or x > 3}.

□
Proposition 1.2 Let A, B, and C be sets. Then

1. A ∪A = A, A ∩A = A, and A \A = ∅;

2. A ∪ ∅ = A and A ∩ ∅ = ∅;

3. A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C;

4. A ∪B = B ∪A and A ∩B = B ∩A;

5. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

6. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
Proof. We will prove (1) and (3) and leave the remaining results to be
proven in the exercises.

(1) Observe that

A ∪A = {x : x ∈ A or x ∈ A}
= {x : x ∈ A}
= A

and

A ∩A = {x : x ∈ A and x ∈ A}
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= {x : x ∈ A}
= A.

Also, A \A = A ∩A′ = ∅.
(3) For sets A, B, and C,

A ∪ (B ∪ C) = A ∪ {x : x ∈ B or x ∈ C}
= {x : x ∈ A or x ∈ B, or x ∈ C}
= {x : x ∈ A or x ∈ B} ∪ C
= (A ∪B) ∪ C.

A similar argument proves that A ∩ (B ∩ C) = (A ∩B) ∩ C. ■
Theorem 1.3 De Morgan’s Laws. Let A and B be sets. Then

1. (A ∪B)′ = A′ ∩B′;

2. (A ∩B)′ = A′ ∪B′.
Proof. (1) If A ∪ B = ∅, then the theorem follows immediately since
both A and B are the empty set. Otherwise, we must show that (A∪B)′ ⊂
A′ ∩ B′ and (A ∪ B)′ ⊃ A′ ∩ B′. Let x ∈ (A ∪ B)′. Then x /∈ A ∪ B. So
x is neither in A nor in B, by the definition of the union of sets. By the
definition of the complement, x ∈ A′ and x ∈ B′. Therefore, x ∈ A′ ∩B′

and we have (A ∪B)′ ⊂ A′ ∩B′.
To show the reverse inclusion, suppose that x ∈ A′ ∩B′. Then x ∈ A′

and x ∈ B′, and so x /∈ A and x /∈ B. Thus x /∈ A∪B and so x ∈ (A∪B)′.
Hence, (A ∪B)′ ⊃ A′ ∩B′ and so (A ∪B)′ = A′ ∩B′.

The proof of (2) is left as an exercise. ■
Example 1.4 Other relations between sets often hold true. For example,

(A \B) ∩ (B \A) = ∅.

To see that this is true, observe that

(A \B) ∩ (B \A) = (A ∩B′) ∩ (B ∩A′)

= A ∩A′ ∩B ∩B′

= ∅.

□

Cartesian Products and Mappings
Given sets A and B, we can define a new set A×B, called the Cartesian
product of A and B, as a set of ordered pairs. That is,

A×B = {(a, b) : a ∈ A and b ∈ B}.
Example 1.5 If A = {x, y}, B = {1, 2, 3}, and C = ∅, then A×B is the
set

{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}

and
A× C = ∅.

□
We define the Cartesian product of n sets to be

A1 × · · · ×An = {(a1, . . . , an) : ai ∈ Ai for i = 1, . . . , n}.
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If A = A1 = A2 = · · · = An, we often write An for A × · · · × A (where
A would be written n times). For example, the set R3 consists of all of
3-tuples of real numbers.

Subsets of A × B are called relations. We will define a mapping or
function f ⊂ A × B from a set A to a set B to be the special type of
relation where each element a ∈ A has a unique element b ∈ B such that
(a, b) ∈ f . Another way of saying this is that for every element in A, f
assigns a unique element in B. We usually write f : A → B or A f→ B.
Instead of writing down ordered pairs (a, b) ∈ A × B, we write f(a) = b
or f : a 7→ b. The set A is called the domain of f and

f(A) = {f(a) : a ∈ A} ⊂ B

is called the range or image of f . We can think of the elements in the
function’s domain as input values and the elements in the function’s range
as output values.

Example 1.6 Suppose A = {1, 2, 3} and B = {a, b, c}. In Figure 1.7, p. 7
we define relations f and g from A to B. The relation f is a mapping,
but g is not because 1 ∈ A is not assigned to a unique element in B; that
is, g(1) = a and g(1) = b.

1

2

3

a

b

c

A B

f

A Bg

1

2

3

a

b

c

Figure 1.7 Mappings and relations
□

Given a function f : A → B, it is often possible to write a list de-
scribing what the function does to each specific element in the domain.
However, not all functions can be described in this manner. For example,
the function f : R → R that sends each real number to its cube is a
mapping that must be described by writing f(x) = x3 or f : x 7→ x3.

Consider the relation f : Q → Z given by f(p/q) = p. We know that
1/2 = 2/4, but is f(1/2) = 1 or 2? This relation cannot be a mapping
because it is not well-defined. A relation is well-defined if each element
in the domain is assigned to a unique element in the range.
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If f : A → B is a map and the image of f is B, i.e., f(A) = B,
then f is said to be onto or surjective. In other words, if there exists
an a ∈ A for each b ∈ B such that f(a) = b, then f is onto. A map is
one-to-one or injective if a1 6= a2 implies f(a1) 6= f(a2). Equivalently, a
function is one-to-one if f(a1) = f(a2) implies a1 = a2. A map that is
both one-to-one and onto is called bijective.

Example 1.8 Let f : Z → Q be defined by f(n) = n/1. Then f is one-to-
one but not onto. Define g : Q → Z by g(p/q) = p where p/q is a rational
number expressed in its lowest terms with a positive denominator. The
function g is onto but not one-to-one. □

Given two functions, we can construct a new function by using the
range of the first function as the domain of the second function. Let
f : A → B and g : B → C be mappings. Define a new map, the
composition of f and g from A to C, by (g ◦ f)(x) = g(f(x)).

A B C

f g

1

2

3

a

b

c

X

Y

Z

A C

g ◦ f

1

2

3

X

Y

Z

Figure 1.9 Composition of maps

Example 1.10 Consider the functions f : A → B and g : B → C that
are defined in Figure 1.9, p. 8 (top). The composition of these functions,
g ◦ f : A→ C, is defined in Figure 1.9, p. 8 (bottom). □

Example 1.11 Let f(x) = x2 and g(x) = 2x+ 5. Then

(f ◦ g)(x) = f(g(x)) = (2x+ 5)2 = 4x2 + 20x+ 25

and
(g ◦ f)(x) = g(f(x)) = 2x2 + 5.

In general, order makes a difference; that is, in most cases f ◦ g 6= g ◦ f .
□

Example 1.12 Sometimes it is the case that f ◦g = g ◦f . Let f(x) = x3

and g(x) = 3
√
x. Then
(f ◦ g)(x) = f(g(x)) = f( 3

√
x ) = ( 3

√
x )3 = x
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and
(g ◦ f)(x) = g(f(x)) = g(x3) =

3
√
x3 = x.

□
Example 1.13 Given a 2× 2 matrix

A =

(
a b

c d

)
,

we can define a map TA : R2 → R2 by

TA(x, y) = (ax+ by, cx+ dy)

for (x, y) in R2. This is actually matrix multiplication; that is,(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
.

Maps from Rn to Rm given by matrices are called linear maps or linear
transformations. □
Example 1.14 Suppose that S = {1, 2, 3}. Define a map π : S → S by

π(1) = 2, π(2) = 1, π(3) = 3.

This is a bijective map. An alternative way to write π is(
1 2 3

π(1) π(2) π(3)

)
=

(
1 2 3

2 1 3

)
.

For any set S, a one-to-one and onto mapping π : S → S is called a
permutation of S. □
Theorem 1.15 Let f : A→ B, g : B → C, and h : C → D. Then

1. The composition of mappings is associative; that is, (h ◦ g) ◦ f =
h ◦ (g ◦ f);

2. If f and g are both one-to-one, then the mapping g◦f is one-to-one;

3. If f and g are both onto, then the mapping g ◦ f is onto;

4. If f and g are bijective, then so is g ◦ f .
Proof. We will prove (1) and (3). Part (2) is left as an exercise. Part
(4) follows directly from (2) and (3).

(1) We must show that

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

For a ∈ A we have

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a))
= h(g(f(a)))

= (h ◦ g)(f(a))
= ((h ◦ g) ◦ f)(a).

(3) Assume that f and g are both onto functions. Given c ∈ C, we
must show that there exists an a ∈ A such that (g ◦ f)(a) = g(f(a)) = c.
However, since g is onto, there is an element b ∈ B such that g(b) = c.



10 CHAPTER 1. PRELIMINARIES

Similarly, there is an a ∈ A such that f(a) = b. Accordingly,

(g ◦ f)(a) = g(f(a)) = g(b) = c.

■
If S is any set, we will use idS or id to denote the identity mapping

from S to itself. Define this map by id(s) = s for all s ∈ S. A map
g : B → A is an inverse mapping of f : A → B if g ◦ f = idA and
f ◦ g = idB ; in other words, the inverse function of a function simply
“undoes” the function. A map is said to be invertible if it has an inverse.
We usually write f−1 for the inverse of f .

Example 1.16 The function f(x) = x3 has inverse f−1(x) = 3
√
x by

Example 1.12, p. 8. □
Example 1.17 The natural logarithm and the exponential functions,
f(x) = lnx and f−1(x) = ex, are inverses of each other provided that we
are careful about choosing domains. Observe that

f(f−1(x)) = f(ex) = ln ex = x

and
f−1(f(x)) = f−1(lnx) = eln x = x

whenever composition makes sense. □
Example 1.18 Suppose that

A =

(
3 1

5 2

)
.

Then A defines a map from R2 to R2 by

TA(x, y) = (3x+ y, 5x+ 2y).

We can find an inverse map of TA by simply inverting the matrix A; that
is, T−1

A = TA−1 . In this example,

A−1 =

(
2 −1

−5 3

)
;

hence, the inverse map is given by

T−1
A (x, y) = (2x− y,−5x+ 3y).

It is easy to check that

T−1
A ◦ TA(x, y) = TA ◦ T−1

A (x, y) = (x, y).

Not every map has an inverse. If we consider the map

TB(x, y) = (3x, 0)

given by the matrix

B =

(
3 0

0 0

)
,

then an inverse map would have to be of the form

T−1
B (x, y) = (ax+ by, cx+ dy)

and
(x, y) = TB ◦ T−1

B (x, y) = (3ax+ 3by, 0)

for all x and y. Clearly this is impossible because y might not be 0. □
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Example 1.19 Given the permutation

π =

(
1 2 3

2 3 1

)
on S = {1, 2, 3}, it is easy to see that the permutation defined by

π−1 =

(
1 2 3

3 1 2

)
is the inverse of π. In fact, any bijective mapping possesses an inverse, as
we will see in the next theorem. □
Theorem 1.20 A mapping is invertible if and only if it is both one-to-one
and onto.
Proof. Suppose first that f : A→ B is invertible with inverse g : B → A.
Then g ◦ f = idA is the identity map; that is, g(f(a)) = a. If a1, a2 ∈ A
with f(a1) = f(a2), then a1 = g(f(a1)) = g(f(a2)) = a2. Consequently,
f is one-to-one. Now suppose that b ∈ B. To show that f is onto, it
is necessary to find an a ∈ A such that f(a) = b, but f(g(b)) = b with
g(b) ∈ A. Let a = g(b).

Conversely, let f be bijective and let b ∈ B. Since f is onto, there
exists an a ∈ A such that f(a) = b. Because f is one-to-one, a must
be unique. Define g by letting g(b) = a. We have now constructed the
inverse of f . ■

Equivalence Relations and Partitions
A fundamental notion in mathematics is that of equality. We can gen-
eralize equality with equivalence relations and equivalence classes. An
equivalence relation on a set X is a relation R ⊂ X ×X such that

• (x, x) ∈ R for all x ∈ X (reflexive property);

• (x, y) ∈ R implies (y, x) ∈ R (symmetric property);

• (x, y) and (y, z) ∈ R imply (x, z) ∈ R (transitive property).

Given an equivalence relation R on a set X, we usually write x ∼ y
instead of (x, y) ∈ R. If the equivalence relation already has an associated
notation such as =, ≡, or ∼=, we will use that notation.
Example 1.21 Let p, q, r, and s be integers, where q and s are nonzero.
Define p/q ∼ r/s if ps = qr. Clearly ∼ is reflexive and symmetric. To
show that it is also transitive, suppose that p/q ∼ r/s and r/s ∼ t/u,
with q, s, and u all nonzero. Then ps = qr and ru = st. Therefore,

psu = qru = qst.

Since s 6= 0, pu = qt. Consequently, p/q ∼ t/u. □
Example 1.22 Suppose that f and g are differentiable functions on R.
We can define an equivalence relation on such functions by letting f(x) ∼
g(x) if f ′(x) = g′(x). It is clear that ∼ is both reflexive and symmetric.
To demonstrate transitivity, suppose that f(x) ∼ g(x) and g(x) ∼ h(x).
From calculus we know that f(x)−g(x) = c1 and g(x)−h(x) = c2, where
c1 and c2 are both constants. Hence,

f(x)− h(x) = (f(x)− g(x)) + (g(x)− h(x)) = c1 + c2
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and f ′(x)− h′(x) = 0. Therefore, f(x) ∼ h(x). □

Example 1.23 For (x1, y1) and (x2, y2) in R2, define (x1, y1) ∼ (x2, y2)
if x21 + y21 = x22 + y22 . Then ∼ is an equivalence relation on R2. □
Example 1.24 Let A and B be 2 × 2 matrices with entries in the real
numbers. We can define an equivalence relation on the set of 2 × 2 ma-
trices, by saying A ∼ B if there exists an invertible matrix P such that
PAP−1 = B. For example, if

A =

(
1 2

−1 1

)
and B =

(
−18 33

−11 20

)
,

then A ∼ B since PAP−1 = B for

P =

(
2 5

1 3

)
.

Let I be the 2× 2 identity matrix; that is,

I =

(
1 0

0 1

)
.

Then IAI−1 = IAI = A; therefore, the relation is reflexive. To show
symmetry, suppose that A ∼ B. Then there exists an invertible matrix
P such that PAP−1 = B. So

A = P−1BP = P−1B(P−1)−1.

Finally, suppose that A ∼ B and B ∼ C. Then there exist invertible
matrices P and Q such that PAP−1 = B and QBQ−1 = C. Since

C = QBQ−1 = QPAP−1Q−1 = (QP )A(QP )−1,

the relation is transitive. Two matrices that are equivalent in this manner
are said to be similar. □

A partition P of a set X is a collection of nonempty sets X1, X2, . . .
such that Xi∩Xj = ∅ for i 6= j and

⋃
kXk = X. Let ∼ be an equivalence

relation on a set X and let x ∈ X. Then [x] = {y ∈ X : y ∼ x} is called
the equivalence class of x. We will see that an equivalence relation gives
rise to a partition via equivalence classes. Also, whenever a partition of
a set exists, there is some natural underlying equivalence relation, as the
following theorem demonstrates.
Theorem 1.25 Given an equivalence relation ∼ on a set X, the equiv-
alence classes of X form a partition of X. Conversely, if P = {Xi} is
a partition of a set X, then there is an equivalence relation on X with
equivalence classes Xi.
Proof. Suppose there exists an equivalence relation ∼ on the set X.
For any x ∈ X, the reflexive property shows that x ∈ [x] and so [x] is
nonempty. Clearly X =

⋃
x∈X [x]. Now let x, y ∈ X. We need to show

that either [x] = [y] or [x] ∩ [y] = ∅. Suppose that the intersection of [x]
and [y] is not empty and that z ∈ [x] ∩ [y]. Then z ∼ x and z ∼ y. By
symmetry and transitivity x ∼ y; hence, [x] ⊂ [y]. Similarly, [y] ⊂ [x]
and so [x] = [y]. Therefore, any two equivalence classes are either disjoint
or exactly the same.

Conversely, suppose that P = {Xi} is a partition of a set X. Let
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two elements be equivalent if they are in the same partition. Clearly, the
relation is reflexive. If x is in the same partition as y, then y is in the
same partition as x, so x ∼ y implies y ∼ x. Finally, if x is in the same
partition as y and y is in the same partition as z, then x must be in the
same partition as z, and transitivity holds. ■
Corollary 1.26 Two equivalence classes of an equivalence relation are
either disjoint or equal.

Let us examine some of the partitions given by the equivalence classes
in the last set of examples.
Example 1.27 In the equivalence relation in Example 1.21, p. 11, two
pairs of integers, (p, q) and (r, s), are in the same equivalence class when
they reduce to the same fraction in its lowest terms. □
Example 1.28 In the equivalence relation in Example 1.22, p. 11, two
functions f(x) and g(x) are in the same partition when they differ by a
constant. □
Example 1.29 We defined an equivalence class on R2 by (x1, y1) ∼
(x2, y2) if x21 + y21 = x22 + y22 . Two pairs of real numbers are in the same
partition when they lie on the same circle about the origin. □
Example 1.30 Let r and s be two integers and suppose that n ∈ N. We
say that r is congruent to s modulo n, or r is congruent to s mod n, if
r − s is evenly divisible by n; that is, r − s = nk for some k ∈ Z. In
this case we write r ≡ s (mod n). For example, 41 ≡ 17 (mod 8) since
41− 17 = 24 is divisible by 8. We claim that congruence modulo n forms
an equivalence relation of Z. Certainly any integer r is equivalent to itself
since r − r = 0 is divisible by n. We will now show that the relation is
symmetric. If r ≡ s (mod n), then r − s = −(s − r) is divisible by n.
So s − r is divisible by n and s ≡ r (mod n). Now suppose that r ≡ s
(mod n) and s ≡ t (mod n). Then there exist integers k and l such that
r − s = kn and s− t = ln. To show transitivity, it is necessary to prove
that r − t is divisible by n. However,

r − t = r − s+ s− t = kn+ ln = (k + l)n,

and so r − t is divisible by n.
If we consider the equivalence relation established by the integers

modulo 3, then

[0] = {. . . ,−3, 0, 3, 6, . . .},
[1] = {. . . ,−2, 1, 4, 7, . . .},
[2] = {. . . ,−1, 2, 5, 8, . . .}.

Notice that [0]∪ [1]∪ [2] = Z and also that the sets are disjoint. The sets
[0], [1], and [2] form a partition of the integers.

The integers modulo n are a very important example in the study
of abstract algebra and will become quite useful in our investigation of
various algebraic structures such as groups and rings. In our discussion
of the integers modulo n we have actually assumed a result known as the
division algorithm, which will be stated and proved in Chapter 2, p. 19.

□

Sage. Sage is a powerful, open source, system for exact, numerical, and
symbolic mathematical computations. Electronic versions of this text
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contain comprehensive introductions to the use of Sage to study abstract
algebra, and include a set of exercises. These can be found at the book’s
website. Due to the format of this version of the text, at the end of each
chapter we have just included brief suggestions of how Sage might be
employed.

1.3 Reading Questions
1. What do relations and mappings have in common?
2. What makes relations and mappings different?
3. State carefully the three defining properties of an equivalence rela-

tion. In other words, do not just name the properties, give their
definitions.

4. What is the big deal about equivalence relations? (Hint: Partitions.)
5. Describe a general technique for proving that two sets are equal.

1.4 Exercises
1. Suppose that

A = {x : x ∈ N and x is even},
B = {x : x ∈ N and x is prime},
C = {x : x ∈ N and x is a multiple of 5}.

Describe each of the following sets.
(a) A ∩B

(b) B ∩ C

(c) A ∪B

(d) A ∩ (B ∪ C)
2. If A = {a, b, c}, B = {1, 2, 3}, C = {x}, and D = ∅, list all of the

elements in each of the following sets.
(a) A×B

(b) B ×A

(c) A×B × C

(d) A×D

3. Find an example of two nonempty sets A and B for which A×B =
B ×A is true.

4. Prove A ∪ ∅ = A and A ∩ ∅ = ∅.
5. Prove A ∪B = B ∪A and A ∩B = B ∩A.
6. Prove A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
7. Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
8. Prove A ⊂ B if and only if A ∩B = A.
9. Prove (A ∩B)′ = A′ ∪B′.
10. Prove A ∪B = (A ∩B) ∪ (A \B) ∪ (B \A).
11. Prove (A ∪B)× C = (A× C) ∪ (B × C).
12. Prove (A ∩B) \B = ∅.
13. Prove (A ∪B) \B = A \B.
14. Prove A \ (B ∪ C) = (A \B) ∩ (A \ C).
15. Prove A ∩ (B \ C) = (A ∩B) \ (A ∩ C).
16. Prove (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).
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17. Which of the following relations f : Q → Q define a mapping? In
each case, supply a reason why f is or is not a mapping.

(a) f(p/q) =
p+ 1

p− 2

(b) f(p/q) =
3p

3q

(c) f(p/q) =
p+ q

q2

(d) f(p/q) =
3p2

7q2
− p

q
18. Determine which of the following functions are one-to-one and which

are onto. If the function is not onto, determine its range.
(a) f : R → R defined by f(x) = ex

(b) f : Z → Z defined by f(n) = n2 + 3

(c) f : R → R defined by f(x) = sinx

(d) f : Z → Z defined by f(x) = x2

19. Let f : A → B and g : B → C be invertible mappings; that is,
mappings such that f−1 and g−1 exist. Show that (g ◦ f)−1 =
f−1 ◦ g−1.

20.
(a) Define a function f : N → N that is one-to-one but not onto.

(b) Define a function f : N → N that is onto but not one-to-one.
21. Prove the relation defined on R2 by (x1, y1) ∼ (x2, y2) if x21 + y21 =

x22 + y22 is an equivalence relation.
22. Let f : A→ B and g : B → C be maps.

(a) If f and g are both one-to-one functions, show that g ◦ f is
one-to-one.

(b) If g ◦ f is onto, show that g is onto.

(c) If g ◦ f is one-to-one, show that f is one-to-one.

(d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one.

(e) If g ◦ f is onto and g is one-to-one, show that f is onto.
23. Define a function on the real numbers by

f(x) =
x+ 1

x− 1
.

What are the domain and range of f? What is the inverse of f?
Compute f ◦ f−1 and f−1 ◦ f .

24. Let f : X → Y be a map with A1, A2 ⊂ X and B1, B2 ⊂ Y .
(a) Prove f(A1 ∪A2) = f(A1) ∪ f(A2).

(b) Prove f(A1 ∩A2) ⊂ f(A1)∩ f(A2). Give an example in which
equality fails.

(c) Prove f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2), where

f−1(B) = {x ∈ X : f(x) ∈ B}.

(d) Prove f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(e) Prove f−1(Y \B1) = X \ f−1(B1).
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25. Determine whether or not the following relations are equivalence
relations on the given set. If the relation is an equivalence relation,
describe the partition given by it. If the relation is not an equivalence
relation, state why it fails to be one.

(a) x ∼ y in R if x ≥ y

(b) m ∼ n in Z if mn > 0

(c) x ∼ y in R if |x− y| ≤ 4

(d) m ∼ n in Z if m ≡ n
(mod 6)

26. Define a relation ∼ on R2 by stating that (a, b) ∼ (c, d) if and only
if a2 + b2 ≤ c2 + d2. Show that ∼ is reflexive and transitive but not
symmetric.

27. Show that an m×n matrix gives rise to a well-defined map from Rn
to Rm.

28. Find the error in the following argument by providing a counterex-
ample. “The reflexive property is redundant in the axioms for an
equivalence relation. If x ∼ y, then y ∼ x by the symmetric prop-
erty. Using the transitive property, we can deduce that x ∼ x.”

29. Projective Real Line. Define a relation on R2 \{(0, 0)} by letting
(x1, y1) ∼ (x2, y2) if there exists a nonzero real number λ such that
(x1, y1) = (λx2, λy2). Prove that ∼ defines an equivalence relation
on R2 \ (0, 0). What are the corresponding equivalence classes? This
equivalence relation defines the projective line, denoted by P(R),
which is very important in geometry.
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2

The Integers

The integers are the building blocks of mathematics. In this chapter
we will investigate the fundamental properties of the integers, including
mathematical induction, the division algorithm, and the Fundamental
Theorem of Arithmetic.

2.1 Mathematical Induction
Suppose we wish to show that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for any natural number n. This formula is easily verified for small num-
bers such as n = 1, 2, 3, or 4, but it is impossible to verify for all natural
numbers on a case-by-case basis. To prove the formula true in general, a
more generic method is required.

Suppose we have verified the equation for the first n cases. We will
attempt to show that we can generate the formula for the (n+ 1)th case
from this knowledge. The formula is true for n = 1 since

1 =
1(1 + 1)

2
.

If we have verified the first n cases, then

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ n+ 1

=
n2 + 3n+ 2

2

=
(n+ 1)[(n+ 1) + 1]

2
.

This is exactly the formula for the (n+ 1)th case.
This method of proof is known as mathematical induction. Instead

of attempting to verify a statement about some subset S of the positive
integers N on a case-by-case basis, an impossible task if S is an infinite
set, we give a specific proof for the smallest integer being considered,
followed by a generic argument showing that if the statement holds for a
given case, then it must also hold for the next case in the sequence. We
summarize mathematical induction in the following axiom.

19
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Principle 2.1 First Principle of Mathematical Induction. Let
S(n) be a statement about integers for n ∈ N and suppose S(n0) is true
for some integer n0. If for all integers k with k ≥ n0, S(k) implies that
S(k+1) is true, then S(n) is true for all integers n greater than or equal
to n0.
Example 2.2 For all integers n ≥ 3, 2n > n+ 4. Since

8 = 23 > 3 + 4 = 7,

the statement is true for n0 = 3. Assume that 2k > k+4 for k ≥ 3. Then
2k+1 = 2 · 2k > 2(k + 4). But

2(k + 4) = 2k + 8 > k + 5 = (k + 1) + 4

since k is positive. Hence, by induction, the statement holds for all inte-
gers n ≥ 3. □
Example 2.3 Every integer 10n+1+3 ·10n+5 is divisible by 9 for n ∈ N.
For n = 1,

101+1 + 3 · 10 + 5 = 135 = 9 · 15

is divisible by 9. Suppose that 10k+1 + 3 · 10k + 5 is divisible by 9 for
k ≥ 1. Then

10(k+1)+1 + 3 · 10k+1 + 5 = 10k+2 + 3 · 10k+1 + 50− 45

= 10(10k+1 + 3 · 10k + 5)− 45

is divisible by 9. □
Example 2.4 We will prove the binomial theorem using mathematical
induction; that is,

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k,

where a and b are real numbers, n ∈ N, and(
n

k

)
=

n!

k!(n− k)!

is the binomial coefficient. We first show that(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

This result follows from(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
(n+ 1)!

k!(n+ 1− k)!

=

(
n+ 1

k

)
.

If n = 1, the binomial theorem is easy to verify. Now assume that the
result is true for n greater than or equal to 1. Then

(a+ b)n+1 = (a+ b)(a+ b)n
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= (a+ b)

(
n∑
k=0

(
n

k

)
akbn−k

)

=

n∑
k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn+1−k

= an+1 +

n∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=1

(
n

k

)
akbn+1−k + bn+1

= an+1 +

n∑
k=1

[(
n

k − 1

)
+

(
n

k

)]
akbn+1−k + bn+1

=

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

□
We have an equivalent statement of the Principle of Mathematical

Induction that is often very useful.
Principle 2.5 Second Principle of Mathematical Induction. Let
S(n) be a statement about integers for n ∈ N and suppose S(n0) is true
for some integer n0. If S(n0), S(n0+1), . . . , S(k) imply that S(k+1) for
k ≥ n0, then the statement S(n) is true for all integers n ≥ n0.

A nonempty subset S of Z is well-ordered if S contains a least element.
Notice that the set Z is not well-ordered since it does not contain a
smallest element. However, the natural numbers are well-ordered.
Principle 2.6 Principle of Well-Ordering. Every nonempty subset
of the natural numbers is well-ordered.

The Principle of Well-Ordering is equivalent to the Principle of Math-
ematical Induction.
Lemma 2.7 The Principle of Mathematical Induction implies that 1 is
the least positive natural number.
Proof. Let S = {n ∈ N : n ≥ 1}. Then 1 ∈ S. Assume that n ∈ S.
Since 0 < 1, it must be the case that n = n + 0 < n + 1. Therefore,
1 ≤ n < n+1. Consequently, if n ∈ S, then n+1 must also be in S, and
by the Principle of Mathematical Induction, and we have S = N. ■
Theorem 2.8 The Principle of Mathematical Induction implies the Prin-
ciple of Well-Ordering. That is, every nonempty subset of N contains a
least element.
Proof. We must show that if S is a nonempty subset of the natural
numbers, then S contains a least element. If S contains 1, then the
theorem is true by Lemma 2.7, p. 21. Assume that if S contains an
integer k such that 1 ≤ k ≤ n, then S contains a least element. We will
show that if a set S contains an integer less than or equal to n+1, then S
has a least element. If S does not contain an integer less than n+1, then
n+1 is the smallest integer in S. Otherwise, since S is nonempty, S must
contain an integer less than or equal to n. In this case, by induction, S
contains a least element. ■

Induction can also be very useful in formulating definitions. For in-
stance, there are two ways to define n!, the factorial of a positive integer
n.

• The explicit definition: n! = 1 · 2 · 3 · · · (n− 1) · n.
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• The inductive or recursive definition: 1! = 1 and n! = n(n− 1)! for
n > 1.

Every good mathematician or computer scientist knows that looking at
problems recursively, as opposed to explicitly, often results in better un-
derstanding of complex issues.

2.2 The Division Algorithm
An application of the Principle of Well-Ordering that we will use often is
the division algorithm.
Theorem 2.9 Division Algorithm. Let a and b be integers, with
b > 0. Then there exist unique integers q and r such that

a = bq + r

where 0 ≤ r < b.
Proof. This is a perfect example of the existence-and-uniqueness type
of proof. We must first prove that the numbers q and r actually exist.
Then we must show that if q′ and r′ are two other such numbers, then
q = q′ and r = r′.

Existence of q and r. Let

S = {a− bk : k ∈ Z and a− bk ≥ 0}.

If 0 ∈ S, then b divides a, and we can let q = a/b and r = 0. If
0 /∈ S, we can use the Well-Ordering Principle. We must first show
that S is nonempty. If a > 0, then a − b · 0 ∈ S. If a < 0, then
a − b(2a) = a(1 − 2b) ∈ S. In either case S 6= ∅. By the Well-Ordering
Principle, S must have a smallest member, say r = a − bq. Therefore,
a = bq + r, r ≥ 0. We now show that r < b. Suppose that r > b. Then

a− b(q + 1) = a− bq − b = r − b > 0.

In this case we would have a−b(q+1) in the set S. But then a−b(q+1) <
a − bq, which would contradict the fact that r = a − bq is the smallest
member of S. So r ≤ b. Since 0 /∈ S, r 6= b and so r < b.

Uniqueness of q and r. Suppose there exist integers r, r′, q, and q′

such that

a = bq + r, 0 ≤ r < b and a = bq′ + r′, 0 ≤ r′ < b.

Then bq+r = bq′+r′. Assume that r′ ≥ r. From the last equation we have
b(q − q′) = r′ − r; therefore, b must divide r′ − r and 0 ≤ r′ − r ≤ r′ < b.
This is possible only if r′ − r = 0. Hence, r = r′ and q = q′. ■

Let a and b be integers. If b = ak for some integer k, we write a | b.
An integer d is called a common divisor of a and b if d | a and d | b. The
greatest common divisor of integers a and b is a positive integer d such
that d is a common divisor of a and b and if d′ is any other common
divisor of a and b, then d′ | d. We write d = gcd(a, b); for example,
gcd(24, 36) = 12 and gcd(120, 102) = 6. We say that two integers a and
b are relatively prime if gcd(a, b) = 1.

Theorem 2.10 Let a and b be nonzero integers. Then there exist integers
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r and s such that
gcd(a, b) = ar + bs.

Furthermore, the greatest common divisor of a and b is unique.
Proof. Let

S = {am+ bn : m,n ∈ Z and am+ bn > 0}.

Clearly, the set S is nonempty; hence, by the Well-Ordering Principle
S must have a smallest member, say d = ar + bs. We claim that d =
gcd(a, b). Write a = dq + r′ where 0 ≤ r′ < d. If r′ > 0, then

r′ = a− dq

= a− (ar + bs)q

= a− arq − bsq

= a(1− rq) + b(−sq),

which is in S. But this would contradict the fact that d is the smallest
member of S. Hence, r′ = 0 and d divides a. A similar argument shows
that d divides b. Therefore, d is a common divisor of a and b.

Suppose that d′ is another common divisor of a and b, and we want
to show that d′ | d. If we let a = d′h and b = d′k, then

d = ar + bs = d′hr + d′ks = d′(hr + ks).

So d′ must divide d. Hence, d must be the unique greatest common divisor
of a and b. ■
Corollary 2.11 Let a and b be two integers that are relatively prime.
Then there exist integers r and s such that ar + bs = 1.

The Euclidean Algorithm
Among other things, Theorem 2.10, p. 22 allows us to compute the great-
est common divisor of two integers.
Example 2.12 Let us compute the greatest common divisor of 945 and
2415. First observe that

2415 = 945 · 2 + 525

945 = 525 · 1 + 420

525 = 420 · 1 + 105

420 = 105 · 4 + 0.

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945,
and 105 divides 2415. Hence, 105 divides both 945 and 2415. If d were
another common divisor of 945 and 2415, then d would also have to divide
105. Therefore, gcd(945, 2415) = 105.

If we work backward through the above sequence of equations, we can
also obtain numbers r and s such that 945r+2415s = 105. Observe that

105 = 525 + (−1) · 420
= 525 + (−1) · [945 + (−1) · 525]
= 2 · 525 + (−1) · 945
= 2 · [2415 + (−2) · 945] + (−1) · 945
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= 2 · 2415 + (−5) · 945.

So r = −5 and s = 2. Notice that r and s are not unique, since r = 41
and s = −16 would also work. □

To compute gcd(a, b) = d, we are using repeated divisions to obtain a
decreasing sequence of positive integers r1 > r2 > · · · > rn = d; that is,

b = aq1 + r1

a = r1q2 + r2

r1 = r2q3 + r3

...
rn−2 = rn−1qn + rn

rn−1 = rnqn+1.

To find r and s such that ar + bs = d, we begin with this last equation
and substitute results obtained from the previous equations:

d = rn

= rn−2 − rn−1qn

= rn−2 − qn(rn−3 − qn−1rn−2)

= −qnrn−3 + (1 + qnqn−1)rn−2

...
= ra+ sb.

The algorithm that we have just used to find the greatest common divisor
d of two integers a and b and to write d as the linear combination of a
and b is known as the Euclidean algorithm.

Prime Numbers
Let p be an integer such that p > 1. We say that p is a prime number,
or simply p is prime, if the only positive numbers that divide p are 1 and
p itself. An integer n > 1 that is not prime is said to be composite.
Lemma 2.13 Euclid. Let a and b be integers and p be a prime number.
If p | ab, then either p | a or p | b.
Proof. Suppose that p does not divide a. We must show that p | b.
Since gcd(a, p) = 1, there exist integers r and s such that ar+ps = 1. So

b = b(ar + ps) = (ab)r + p(bs).

Since p divides both ab and itself, p must divide b = (ab)r + p(bs). ■
Theorem 2.14 Euclid. There exist an infinite number of primes.
Proof. We will prove this theorem by contradiction. Suppose that
there are only a finite number of primes, say p1, p2, . . . , pn. Let P =
p1p2 · · · pn + 1. Then P must be divisible by some pi for 1 ≤ i ≤ n.
In this case, pi must divide P − p1p2 · · · pn = 1, which is a contradiction.
Hence, either P is prime or there exists an additional prime number p 6= pi
that divides P . ■
Theorem 2.15 Fundamental Theorem of Arithmetic. Let n be an
integer such that n > 1. Then

n = p1p2 · · · pk,
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where p1, . . . , pk are primes (not necessarily distinct). Furthermore, this
factorization is unique; that is, if

n = q1q2 · · · ql,

then k = l and the qi’s are just the pi’s rearranged.
Proof. Uniqueness. To show uniqueness we will use induction on n.
The theorem is certainly true for n = 2 since in this case n is prime. Now
assume that the result holds for all integers m such that 1 ≤ m < n, and

n = p1p2 · · · pk = q1q2 · · · ql,

where p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ ql. By Lemma 2.13, p. 24,
p1 | qi for some i = 1, . . . , l and q1 | pj for some j = 1, . . . , k. Since all
of the pi’s and qi’s are prime, p1 = qi and q1 = pj . Hence, p1 = q1 since
p1 ≤ pj = q1 ≤ qi = p1. By the induction hypothesis,

n′ = p2 · · · pk = q2 · · · ql

has a unique factorization. Hence, k = l and qi = pi for i = 1, . . . , k.
Existence. To show existence, suppose that there is some integer that

cannot be written as the product of primes. Let S be the set of all such
numbers. By the Principle of Well-Ordering, S has a smallest number,
say a. If the only positive factors of a are a and 1, then a is prime, which
is a contradiction. Hence, a = a1a2 where 1 < a1 < a and 1 < a2 < a.
Neither a1 ∈ S nor a2 ∈ S, since a is the smallest element in S. So

a1 = p1 · · · pr
a2 = q1 · · · qs.

Therefore,
a = a1a2 = p1 · · · prq1 · · · qs.

So a /∈ S, which is a contradiction. ■

Historical Note
Prime numbers were first studied by the ancient Greeks. Two impor-
tant results from antiquity are Euclid’s proof that an infinite number of
primes exist and the Sieve of Eratosthenes, a method of computing all of
the prime numbers less than a fixed positive integer n. One problem in
number theory is to find a function f such that f(n) is prime for each
integer n. Pierre Fermat (1601?–1665) conjectured that 22n+1 was prime
for all n, but later it was shown by Leonhard Euler (1707–1783) that

22
5

+ 1 = 4,294,967,297

is a composite number. One of the many unproven conjectures about
prime numbers is Goldbach’s Conjecture. In a letter to Euler in 1742,
Christian Goldbach stated the conjecture that every even integer with
the exception of 2 seemed to be the sum of two primes: 4 = 2 + 2,
6 = 3 + 3, 8 = 3 + 5, . . .. Although the conjecture has been verified for
the numbers up through 4×1018, it has yet to be proven in general. Since
prime numbers play an important role in public key cryptography, there
is currently a great deal of interest in determining whether or not a large
number is prime.



26 CHAPTER 2. THE INTEGERS

Sage. Sage’s original purpose was to support research in number theory,
so it is perfect for the types of computations with the integers that we
have in this chapter.

2.3 Reading Questions
1. Use Sage to express 123456792 as a product of prime numbers.
2. Find the greatest common divisor of 84 and 52.
3. Find integers r and s so that r(84) + s(52) = gcd(84, 52).
4. Explain the use of the term “induction hypothesis.”
5. What is Goldbach’s Conjecture? And why is it called a “conjecture”?

2.4 Exercises
1. Prove that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for n ∈ N.
2. Prove that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4

for n ∈ N.
3. Prove that n! > 2n for n ≥ 4.
4. Prove that

x+ 4x+ 7x+ · · ·+ (3n− 2)x =
n(3n− 1)x

2

for n ∈ N.
5. Prove that 10n+1 + 10n + 1 is divisible by 3 for n ∈ N.
6. Prove that 4 · 102n + 9 · 102n−1 + 5 is divisible by 99 for n ∈ N.
7. Show that

n
√
a1a2 · · · an ≤ 1

n

n∑
k=1

ak.

8. Prove the Leibniz rule for f (n)(x), where f (n) is the nth derivative
of f ; that is, show that

(fg)(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x).

9. Use induction to prove that 1 + 2 + 22 + · · · + 2n = 2n+1 − 1 for
n ∈ N.

10. Prove that
1

2
+

1

6
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1

for n ∈ N.
11. If x is a nonnegative real number, then show that (1+ x)n− 1 ≥ nx

for n = 0, 1, 2, . . ..



SECTION 2.4. EXERCISES 27

12. Power Sets. Let X be a set. Define the power set of X, denoted
P(X), to be the set of all subsets of X. For example,

P({a, b}) = {∅, {a}, {b}, {a, b}}.

For every positive integer n, show that a set with exactly n elements
has a power set with exactly 2n elements.

13. Prove that the two principles of mathematical induction stated in
Section 2.1, p. 19 are equivalent.

14. Show that the Principle of Well-Ordering for the natural numbers
implies that 1 is the smallest natural number. Use this result to
show that the Principle of Well-Ordering implies the Principle of
Mathematical Induction; that is, show that if S ⊂ N such that 1 ∈ S
and n+ 1 ∈ S whenever n ∈ S, then S = N.

15. For each of the following pairs of numbers a and b, calculate gcd(a, b)
and find integers r and s such that gcd(a, b) = ra+ sb.

(a) 14 and 39

(b) 234 and 165

(c) 1739 and 9923

(d) 471 and 562

(e) 23771 and 19945

(f) −4357 and 3754

16. Let a and b be nonzero integers. If there exist integers r and s such
that ar + bs = 1, show that a and b are relatively prime.

17. Fibonacci Numbers. The Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, . . . .

We can define them inductively by f1 = 1, f2 = 1, and fn+2 =
fn+1 + fn for n ∈ N.

(a) Prove that fn < 2n.

(b) Prove that fn+1fn−1 = f2n + (−1)n, n ≥ 2.

(c) Prove that fn = [(1 +
√
5 )n − (1−

√
5 )n]/2n

√
5.

(d) Show that ϕ = limn→∞ fn+1/fn = (
√
5 + 1)/2. The constant

ϕ is known as the golden ratio.

(e) Prove that fn and fn+1 are relatively prime.
18. Let a and b be integers such that gcd(a, b) = 1. Let r and s be

integers such that ar + bs = 1. Prove that

gcd(a, s) = gcd(r, b) = gcd(r, s) = 1.
19. Let x, y ∈ N be relatively prime. If xy is a perfect square, prove that

x and y must both be perfect squares.
20. Using the division algorithm, show that every perfect square is of

the form 4k or 4k + 1 for some nonnegative integer k.
21. Suppose that a, b, r, s are pairwise relatively prime and that

a2 + b2 = r2

a2 − b2 = s2.

Prove that a, r, and s are odd and b is even.
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22. Let n ∈ N. Use the division algorithm to prove that every integer
is congruent mod n to precisely one of the integers 0, 1, . . . , n − 1.
Conclude that if r is an integer, then there is exactly one s in Z
such that 0 ≤ s < n and [r] = [s]. Hence, the integers are indeed
partitioned by congruence mod n.

23. Define the least common multiple of two nonzero integers a and b,
denoted by lcm(a, b), to be the nonnegative integer m such that both
a and b divide m, and if a and b divide any other integer n, then m
also divides n. Prove there exists a unique least common multiple
for any two integers a and b.

24. If d = gcd(a, b) and m = lcm(a, b), prove that dm = |ab|.
25. Show that lcm(a, b) = ab if and only if gcd(a, b) = 1.
26. Prove that gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1 for

integers a, b, and c.
27. Let a, b, c ∈ Z. Prove that if gcd(a, b) = 1 and a | bc, then a | c.
28. Let p ≥ 2. Prove that if 2p − 1 is prime, then p must also be prime.
29. Prove that there are an infinite number of primes of the form 6n+5.
30. Prove that there are an infinite number of primes of the form 4n−1.
31. Using the fact that 2 is prime, show that there do not exist integers

p and q such that p2 = 2q2. Demonstrate that therefore
√
2 cannot

be a rational number.

2.5 Programming Exercises
1. The Sieve of Eratosthenes. One method of computing all of the

prime numbers less than a certain fixed positive integer N is to list
all of the numbers n such that 1 < n < N . Begin by eliminating all
of the multiples of 2. Next eliminate all of the multiples of 3. Now
eliminate all of the multiples of 5. Notice that 4 has already been
crossed out. Continue in this manner, noticing that we do not have
to go all the way to N ; it suffices to stop at

√
N . Using this method,

compute all of the prime numbers less than N = 250. We can also
use this method to find all of the integers that are relatively prime
to an integer N . Simply eliminate the prime factors of N and all of
their multiples. Using this method, find all of the numbers that are
relatively prime to N = 120. Using the Sieve of Eratosthenes, write
a program that will compute all of the primes less than an integer
N .

2. Let N0 = N ∪ {0}. Ackermann’s function is the function A : N0 ×
N0 → N0 defined by the equations

A(0, y) = y + 1,

A(x+ 1, 0) = A(x, 1),

A(x+ 1, y + 1) = A(x,A(x+ 1, y)).

Use this definition to compute A(3, 1). Write a program to evaluate
Ackermann’s function. Modify the program to count the number of
statements executed in the program when Ackermann’s function is
evaluated. How many statements are executed in the evaluation of
A(4, 1)? What about A(5, 1)?
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3. Write a computer program that will implement the Euclidean algo-
rithm. The program should accept two positive integers a and b as
input and should output gcd(a, b) as well as integers r and s such
that

gcd(a, b) = ra+ sb.

2.6 References and Suggested Readings
[1] Brookshear, J. G. Theory of Computation: Formal Languages, Au-

tomata, and Complexity. Benjamin/Cummings, Redwood City, CA,
1989. Shows the relationships of the theoretical aspects of computer
science to set theory and the integers.

[2] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of
Numbers. 6th ed. Oxford University Press, New York, 2008.

[3] Niven, I. and Zuckerman, H. S. An Introduction to the Theory of
Numbers. 5th ed. Wiley, New York, 1991.

[4] Vanden Eynden, C. Elementary Number Theory. 2nd ed. Waveland
Press, Long Grove IL, 2001.
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3

Groups

We begin our study of algebraic structures by investigating sets associated
with single operations that satisfy certain reasonable axioms; that is, we
want to define an operation on a set in a way that will generalize such
familiar structures as the integers Z together with the single operation of
addition, or invertible 2×2 matrices together with the single operation of
matrix multiplication. The integers and the 2×2 matrices, together with
their respective single operations, are examples of algebraic structures
known as groups.

The theory of groups occupies a central position in mathematics. Mod-
ern group theory arose from an attempt to find the roots of a polynomial
in terms of its coefficients. Groups now play a central role in such areas
as coding theory, counting, and the study of symmetries; many areas of
biology, chemistry, and physics have benefited from group theory.

3.1 Integer Equivalence Classes and Symme-
tries

Let us now investigate some mathematical structures that can be viewed
as sets with single operations.

The Integers mod n

The integers mod n have become indispensable in the theory and applica-
tions of algebra. In mathematics they are used in cryptography, coding
theory, and the detection of errors in identification codes.

We have already seen that two integers a and b are equivalent mod n
if n divides a − b. The integers mod n also partition Z into n different
equivalence classes; we will denote the set of these equivalence classes by
Zn. Consider the integers modulo 12 and the corresponding partition of
the integers:

[0] = {. . . ,−12, 0, 12, 24, . . .},
[1] = {. . . ,−11, 1, 13, 25, . . .},

...
[11] = {. . . ,−1, 11, 23, 35, . . .}.

31
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When no confusion can arise, we will use 0, 1, . . . , 11 to indicate the equiv-
alence classes [0], [1], . . . , [11] respectively. We can do arithmetic on Zn.
For two integers a and b, define addition modulo n to be (a+ b) (mod n);
that is, the remainder when a + b is divided by n. Similarly, multipli-
cation modulo n is defined as (ab) (mod n), the remainder when ab is
divided by n.
Example 3.1 The following examples illustrate integer arithmetic mod-
ulo n:

7 + 4 ≡ 1 (mod 5) 7 · 3 ≡ 1 (mod 5)

3 + 5 ≡ 0 (mod 8) 3 · 5 ≡ 7 (mod 8)

3 + 4 ≡ 7 (mod 12) 3 · 4 ≡ 0 (mod 12).

In particular, notice that it is possible that the product of two nonzero
numbers modulo n can be equivalent to 0 modulo n. □
Example 3.2 Most, but not all, of the usual laws of arithmetic hold
for addition and multiplication in Zn. For instance, it is not necessarily
true that there is a multiplicative inverse. Consider the multiplication
table for Z8 in Figure 3.3, p. 32. Notice that 2, 4, and 6 do not have
multiplicative inverses; that is, for n = 2, 4, or 6, there is no integer k
such that kn ≡ 1 (mod 8).

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

Figure 3.3 Multiplication table for Z8

□
Proposition 3.4 Let Zn be the set of equivalence classes of the integers
mod n and a, b, c ∈ Zn.

1. Addition and multiplication are commutative:

a+ b ≡ b+ a (mod n)

ab ≡ ba (mod n).

2. Addition and multiplication are associative:

(a+ b) + c ≡ a+ (b+ c) (mod n)

(ab)c ≡ a(bc) (mod n).

3. There are both additive and multiplicative identities:

a+ 0 ≡ a (mod n)

a · 1 ≡ a (mod n).

4. Multiplication distributes over addition:

a(b+ c) ≡ ab+ ac (mod n).
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5. For every integer a there is an additive inverse −a:

a+ (−a) ≡ 0 (mod n).

6. Let a be a nonzero integer. Then gcd(a, n) = 1 if and only if there
exists a multiplicative inverse b for a (mod n); that is, a nonzero
integer b such that

ab ≡ 1 (mod n).
Proof. We will prove (1) and (6) and leave the remaining properties to
be proven in the exercises.

(1) Addition and multiplication are commutative modulo n since the
remainder of a + b divided by n is the same as the remainder of b + a
divided by n.

(6) Suppose that gcd(a, n) = 1. Then there exist integers r and s such
that ar + ns = 1. Since ns = 1 − ar, it must be the case that ar ≡ 1
(mod n). Letting b be the equivalence class of r, ab ≡ 1 (mod n).

Conversely, suppose that there exists an integer b such that ab ≡ 1
(mod n). Then n divides ab−1, so there is an integer k such that ab−nk =
1. Let d = gcd(a, n). Since d divides ab−nk, d must also divide 1; hence,
d = 1. ■

Symmetries
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Figure 3.5 Rigid motions of a rectangle
A symmetry of a geometric figure is a rearrangement of the figure



34 CHAPTER 3. GROUPS

preserving the arrangement of its sides and vertices as well as its distances
and angles. A map from the plane to itself preserving the symmetry of an
object is called a rigid motion. For example, if we look at the rectangle
in Figure 3.5, p. 33, it is easy to see that a rotation of 180◦ or 360◦

returns a rectangle in the plane with the same orientation as the original
rectangle and the same relationship among the vertices. A reflection of
the rectangle across either the vertical axis or the horizontal axis can also
be seen to be a symmetry. However, a 90◦ rotation in either direction
cannot be a symmetry unless the rectangle is a square.
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Figure 3.6 Symmetries of a triangle
Let us find the symmetries of the equilateral triangle 4ABC. To

find a symmetry of 4ABC, we must first examine the permutations of
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the vertices A, B, and C and then ask if a permutation extends to a
symmetry of the triangle. Recall that a permutation of a set S is a
one-to-one and onto map π : S → S. The three vertices have 3! = 6
permutations, so the triangle has at most six symmetries. To see that
there are six permutations, observe there are three different possibilities
for the first vertex, and two for the second, and the remaining vertex is
determined by the placement of the first two. So we have 3 ·2 ·1 = 3! = 6
different arrangements. To denote the permutation of the vertices of an
equilateral triangle that sends A to B, B to C, and C to A, we write the
array (

A B C

B C A

)
.

Notice that this particular permutation corresponds to the rigid motion
of rotating the triangle by 120◦ in a clockwise direction. In fact, every
permutation gives rise to a symmetry of the triangle. All of these sym-
metries are shown in Figure 3.6, p. 34.

A natural question to ask is what happens if one motion of the triangle
4ABC is followed by another. Which symmetry is µ1ρ1; that is, what
happens when we do the permutation ρ1 and then the permutation µ1?
Remember that we are composing functions here. Although we usually
multiply left to right, we compose functions right to left. We have

(µ1ρ1)(A) = µ1(ρ1(A)) = µ1(B) = C

(µ1ρ1)(B) = µ1(ρ1(B)) = µ1(C) = B

(µ1ρ1)(C) = µ1(ρ1(C)) = µ1(A) = A.

This is the same symmetry as µ2. Suppose we do these motions in the
opposite order, ρ1 then µ1. It is easy to determine that this is the same
as the symmetry µ3; hence, ρ1µ1 6= µ1ρ1. A multiplication table for the
symmetries of an equilateral triangle 4ABC is given in Figure 3.7, p. 35.

Notice that in the multiplication table for the symmetries of an equi-
lateral triangle, for every motion of the triangle α there is another motion
β such that αβ = id; that is, for every motion there is another motion
that takes the triangle back to its original orientation.

◦ id ρ1 ρ2 µ1 µ2 µ3

id id ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 id µ3 µ1 µ2

ρ2 ρ2 id ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 id ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 id ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 id

Figure 3.7 Symmetries of an equilateral triangle

3.2 Definitions and Examples
The integers mod n and the symmetries of a triangle or a rectangle are
examples of groups. A binary operation or law of composition on a set
G is a function G × G → G that assigns to each pair (a, b) ∈ G × G a
unique element a ◦ b, or ab in G, called the composition of a and b. A
group (G, ◦) is a set G together with a law of composition (a, b) 7→ a ◦ b
that satisfies the following axioms.
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• The law of composition is associative. That is,

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for a, b, c ∈ G.

• There exists an element e ∈ G, called the identity element, such
that for any element a ∈ G

e ◦ a = a ◦ e = a.

• For each element a ∈ G, there exists an inverse element in G, de-
noted by a−1, such that

a ◦ a−1 = a−1 ◦ a = e.

A group G with the property that a◦ b = b◦a for all a, b ∈ G is called
abelian or commutative. Groups not satisfying this property are said to
be nonabelian or noncommutative.
Example 3.8 The integers Z = {. . . ,−1, 0, 1, 2, . . .} form a group under
the operation of addition. The binary operation on two integers m,n ∈ Z
is just their sum. Since the integers under addition already have a well-
established notation, we will use the operator + instead of ◦; that is, we
shall write m + n instead of m ◦ n. The identity is 0, and the inverse of
n ∈ Z is written as −n instead of n−1. Notice that the set of integers
under addition have the additional property that m + n = n + m and
therefore form an abelian group. □

Most of the time we will write ab instead of a◦b; however, if the group
already has a natural operation such as addition in the integers, we will
use that operation. That is, if we are adding two integers, we still write
m+ n, −n for the inverse, and 0 for the identity as usual. We also write
m− n instead of m+ (−n).

It is often convenient to describe a group in terms of an addition or
multiplication table. Such a table is called a Cayley table.
Example 3.9 The integers mod n form a group under addition modulo
n. Consider Z5, consisting of the equivalence classes of the integers 0, 1,
2, 3, and 4. We define the group operation on Z5 by modular addition.
We write the binary operation on the group additively; that is, we write
m + n. The element 0 is the identity of the group and each element in
Z5 has an inverse. For instance, 2+ 3 = 3+ 2 = 0. Figure 3.10, p. 36 is a
Cayley table for Z5. By Proposition 3.4, p. 32, Zn = {0, 1, . . . , n− 1} is a
group under the binary operation of addition mod n.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Figure 3.10 Cayley table for (Z5,+)

□
Example 3.11 Not every set with a binary operation is a group. For
example, if we let modular multiplication be the binary operation on Zn,
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then Zn fails to be a group. The element 1 acts as a group identity since
1 · k = k · 1 = k for any k ∈ Zn; however, a multiplicative inverse for 0
does not exist since 0 ·k = k ·0 = 0 for every k in Zn. Even if we consider
the set Zn \ {0}, we still may not have a group. For instance, let 2 ∈ Z6.
Then 2 has no multiplicative inverse since

0 · 2 = 0 1 · 2 = 2

2 · 2 = 4 3 · 2 = 0

4 · 2 = 2 5 · 2 = 4.

By Proposition 3.4, p. 32, every nonzero k does have an inverse in Zn if
k is relatively prime to n. Denote the set of all such nonzero elements
in Zn by U(n). Then U(n) is a group called the group of units of Zn.
Figure 3.12, p. 37 is a Cayley table for the group U(8).

· 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

Figure 3.12 Multiplication table for U(8)

□
Example 3.13 The symmetries of an equilateral triangle described in
Section 3.1, p. 31 form a nonabelian group. As we observed, it is not nec-
essarily true that αβ = βα for two symmetries α and β. Using Figure 3.7,
p. 35, which is a Cayley table for this group, we can easily check that the
symmetries of an equilateral triangle are indeed a group. We will denote
this group by either S3 or D3, for reasons that will be explained later. □
Example 3.14 We use M2(R) to denote the set of all 2×2 matrices. Let
GL2(R) be the subset of M2(R) consisting of invertible matrices; that is,
a matrix

A =

(
a b

c d

)
is in GL2(R) if there exists a matrix A−1 such that AA−1 = A−1A =
I, where I is the 2 × 2 identity matrix. For A to have an inverse is
equivalent to requiring that the determinant of A be nonzero; that is,
detA = ad− bc 6= 0. The set of invertible matrices forms a group called
the general linear group. The identity of the group is the identity matrix

I =

(
1 0

0 1

)
.

The inverse of A ∈ GL2(R) is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

The product of two invertible matrices is again invertible. Matrix multi-
plication is associative, satisfying the other group axiom. For matrices it
is not true in general that AB = BA; hence, GL2(R) is another example
of a nonabelian group. □
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Example 3.15 Let

1 =

(
1 0

0 1

)
I =

(
0 1

−1 0

)
J =

(
0 i

i 0

)
K =

(
i 0

0 −i

)
,

where i2 = −1. Then the relations I2 = J2 = K2 = −1, IJ = K,
JK = I, KI = J , JI = −K, KJ = −I, and IK = −J hold. The set
Q8 = {±1,±I,±J,±K} is a group called the quaternion group. Notice
that Q8 is noncommutative. □
Example 3.16 Let C∗ be the set of nonzero complex numbers. Under
the operation of multiplication C∗ forms a group. The identity is 1. If
z = a+ bi is a nonzero complex number, then

z−1 =
a− bi

a2 + b2

is the inverse of z. It is easy to see that the remaining group axioms hold.
□

A group is finite, or has finite order, if it contains a finite number of
elements; otherwise, the group is said to be infinite or to have infinite
order. The order of a finite group is the number of elements that it
contains. If G is a group containing n elements, we write |G| = n. The
group Z5 is a finite group of order 5; the integers Z form an infinite group
under addition, and we sometimes write |Z| = ∞.

Basic Properties of Groups
Proposition 3.17 The identity element in a group G is unique; that is,
there exists only one element e ∈ G such that eg = ge = g for all g ∈ G.
Proof. Suppose that e and e′ are both identities in G. Then eg = ge = g
and e′g = ge′ = g for all g ∈ G. We need to show that e = e′. If we think
of e as the identity, then ee′ = e′; but if e′ is the identity, then ee′ = e.
Combining these two equations, we have e = ee′ = e′. ■

Inverses in a group are also unique. If g′ and g′′ are both inverses of
an element g in a group G, then gg′ = g′g = e and gg′′ = g′′g = e. We
want to show that g′ = g′′, but g′ = g′e = g′(gg′′) = (g′g)g′′ = eg′′ = g′′.
We summarize this fact in the following proposition.
Proposition 3.18 If g is any element in a group G, then the inverse of
g, denoted by g−1, is unique.

Proposition 3.19 Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.
Proof. Let a, b ∈ G. Then abb−1a−1 = aea−1 = aa−1 = e. Similarly,
b−1a−1ab = e. But by the previous proposition, inverses are unique;
hence, (ab)−1 = b−1a−1. ■

Proposition 3.20 Let G be a group. For any a ∈ G, (a−1)−1 = a.
Proof. Observe that a−1(a−1)−1 = e. Consequently, multiplying both
sides of this equation by a, we have

(a−1)−1 = e(a−1)−1 = aa−1(a−1)−1 = ae = a.

■
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It makes sense to write equations with group elements and group
operations. If a and b are two elements in a group G, does there exist an
element x ∈ G such that ax = b? If such an x does exist, is it unique?
The following proposition answers both of these questions positively.
Proposition 3.21 Let G be a group and a and b be any two elements in
G. Then the equations ax = b and xa = b have unique solutions in G.
Proof. Suppose that ax = b. We must show that such an x exists. We
can multiply both sides of ax = b by a−1 to find x = ex = a−1ax = a−1b.

To show uniqueness, suppose that x1 and x2 are both solutions of
ax = b; then ax1 = b = ax2. So x1 = a−1ax1 = a−1ax2 = x2. The proof
for the existence and uniqueness of the solution of xa = b is similar. ■
Proposition 3.22 If G is a group and a, b, c ∈ G, then ba = ca implies
b = c and ab = ac implies b = c.

This proposition tells us that the right and left cancellation laws are
true in groups. We leave the proof as an exercise.

We can use exponential notation for groups just as we do in ordinary
algebra. If G is a group and g ∈ G, then we define g0 = e. For n ∈ N, we
define

gn = g · g · · · g︸ ︷︷ ︸
n times

and
g−n = g−1 · g−1 · · · g−1︸ ︷︷ ︸

n times

.

Theorem 3.23 In a group, the usual laws of exponents hold; that is, for
all g, h ∈ G,

1. gmgn = gm+n for all m,n ∈ Z;

2. (gm)n = gmn for all m,n ∈ Z;

3. (gh)n = (h−1g−1)−n for all n ∈ Z. Furthermore, if G is abelian,
then (gh)n = gnhn.

We will leave the proof of this theorem as an exercise. Notice that
(gh)n 6= gnhn in general, since the group may not be abelian. If the group
is Z or Zn, we write the group operation additively and the exponential
operation multiplicatively; that is, we write ng instead of gn. The laws
of exponents now become

1. mg + ng = (m+ n)g for all m,n ∈ Z;

2. m(ng) = (mn)g for all m,n ∈ Z;

3. m(g + h) = mg +mh for all n ∈ Z.

It is important to realize that the last statement can be made only
because Z and Zn are commutative groups.

Historical Note
Although the first clear axiomatic definition of a group was not given
until the late 1800s, group-theoretic methods had been employed before
this time in the development of many areas of mathematics, including
geometry and the theory of algebraic equations.
Joseph-Louis Lagrange used group-theoretic methods in a 1770–1771
memoir to study methods of solving polynomial equations. Later,
Évariste Galois (1811–1832) succeeded in developing the mathematics nec-
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essary to determine exactly which polynomial equations could be solved
in terms of the coefficients of the polynomial. Galois’ primary tool was
group theory.
The study of geometry was revolutionized in 1872 when Felix Klein pro-
posed that geometric spaces should be studied by examining those prop-
erties that are invariant under a transformation of the space. Sophus Lie,
a contemporary of Klein, used group theory to study solutions of partial
differential equations. One of the first modern treatments of group theory
appeared in William Burnside’s The Theory of Groups of Finite Order
[1], first published in 1897.

3.3 Subgroups

Definitions and Examples
Sometimes we wish to investigate smaller groups sitting inside a larger
group. The set of even integers 2Z = {. . . ,−2, 0, 2, 4, . . .} is a group under
the operation of addition. This smaller group sits naturally inside of the
group of integers under addition. We define a subgroup H of a group
G to be a subset H of G such that when the group operation of G is
restricted to H, H is a group in its own right. Observe that every group
G with at least two elements will always have at least two subgroups, the
subgroup consisting of the identity element alone and the entire group
itself. The subgroup H = {e} of a group G is called the trivial subgroup.
A subgroup that is a proper subset of G is called a proper subgroup. In
many of the examples that we have investigated up to this point, there
exist other subgroups besides the trivial and improper subgroups.
Example 3.24 Consider the set of nonzero real numbers, R∗, with the
group operation of multiplication. The identity of this group is 1 and the
inverse of any element a ∈ R∗ is just 1/a. We will show that

Q∗ = {p/q : p and q are nonzero integers}

is a subgroup of R∗. The identity of R∗ is 1; however, 1 = 1/1 is the
quotient of two nonzero integers. Hence, the identity of R∗ is in Q∗.
Given two elements in Q∗, say p/q and r/s, their product pr/qs is also in
Q∗. The inverse of any element p/q ∈ Q∗ is again in Q∗ since (p/q)−1 =
q/p. Since multiplication in R∗ is associative, multiplication in Q∗ is
associative. □
Example 3.25 Recall that C∗ is the multiplicative group of nonzero
complex numbers. Let H = {1,−1, i,−i}. Then H is a subgroup of C∗.
It is quite easy to verify that H is a group under multiplication and that
H ⊂ C∗. □
Example 3.26 Let SL2(R) be the subset of GL2(R) consisting of matri-
ces of determinant one; that is, a matrix

A =

(
a b

c d

)
is in SL2(R) exactly when ad−bc = 1. To show that SL2(R) is a subgroup
of the general linear group, we must show that it is a group under matrix
multiplication. The 2 × 2 identity matrix is in SL2(R), as is the inverse
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of the matrix A:
A−1 =

(
d −b
−c a

)
.

It remains to show that multiplication is closed; that is, that the product
of two matrices of determinant one also has determinant one. We will
leave this task as an exercise. The group SL2(R) is called the special
linear group. □
Example 3.27 It is important to realize that a subset H of a group G
can be a group without being a subgroup of G. For H to be a subgroup
of G, it must inherit the binary operation of G. The set of all 2 × 2
matrices, M2(R), forms a group under the operation of addition. The
2 × 2 general linear group is a subset of M2(R) and is a group under
matrix multiplication, but it is not a subgroup of M2(R). If we add two
invertible matrices, we do not necessarily obtain another invertible matrix.
Observe that (

1 0

0 1

)
+

(
−1 0

0 −1

)
=

(
0 0

0 0

)
,

but the zero matrix is not in GL2(R). □
Example 3.28 One way of telling whether or not two groups are the
same is by examining their subgroups. Other than the trivial subgroup
and the group itself, the group Z4 has a single subgroup consisting of the
elements 0 and 2. From the group Z2, we can form another group of four
elements as follows. As a set this group is Z2×Z2. We perform the group
operation coordinatewise; that is, (a, b)+(c, d) = (a+c, b+d). Figure 3.29,
p. 41 is an addition table for Z2 × Z2. Since there are three nontrivial
proper subgroups of Z2 × Z2, H1 = {(0, 0), (0, 1)}, H2 = {(0, 0), (1, 0)},
and H3 = {(0, 0), (1, 1)}, Z4 and Z2 × Z2 must be different groups.

+ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)

(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)

(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Figure 3.29 Addition table for Z2 × Z2

□

Some Subgroup Theorems
Let us examine some criteria for determining exactly when a subset of a
group is a subgroup.
Proposition 3.30 A subset H of G is a subgroup if and only if it satisfies
the following conditions.

1. The identity e of G is in H.

2. If h1, h2 ∈ H, then h1h2 ∈ H.

3. If h ∈ H, then h−1 ∈ H.
Proof. First suppose that H is a subgroup of G. We must show that
the three conditions hold. Since H is a group, it must have an identity eH .
We must show that eH = e, where e is the identity of G. We know that
eHeH = eH and that eeH = eHe = eH ; hence, eeH = eHeH . By right-
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hand cancellation, e = eH . The second condition holds since a subgroup
H is a group. To prove the third condition, let h ∈ H. Since H is a group,
there is an element h′ ∈ H such that hh′ = h′h = e. By the uniqueness
of the inverse in G, h′ = h−1.

Conversely, if the three conditions hold, we must show that H is a
group under the same operation as G; however, these conditions plus the
associativity of the binary operation are exactly the axioms stated in the
definition of a group. ■
Proposition 3.31 Let H be a subset of a group G. Then H is a subgroup
of G if and only if H 6= ∅, and whenever g, h ∈ H then gh−1 is in H.
Proof. First assume that H is a subgroup of G. We wish to show
that gh−1 ∈ H whenever g and h are in H. Since h is in H, its inverse
h−1 must also be in H. Because of the closure of the group operation,
gh−1 ∈ H.

Conversely, suppose that H ⊂ G such that H 6= ∅ and gh−1 ∈ H
whenever g, h ∈ H. If g ∈ H, then gg−1 = e is in H. If g ∈ H, then
eg−1 = g−1 is also in H. Now let h1, h2 ∈ H. We must show that their
product is also in H. However, h1(h−1

2 )−1 = h1h2 ∈ H. Hence, H is a
subgroup of G. ■

Sage. The first half of this text is about group theory. Sage includes
Groups, Algorithms and Programming (gap), a program designed pri-
marly for just group theory, and in continuous development since 1986.
Many of Sage’s computations for groups ultimately are performed by
GAP.

3.4 Reading Questions
1. In the group Z8 compute, (a) 6 + 7, and (b) 2−1.
2. In the group U(16) compute, (a) 5 · 7, and (b) 3−1.
3. State the definition of a group.
4. Explain a single method that will decide if a subset of a group is

itself a subgroup.
5. Explain the origin of the term “abelian” for a commutative group.
6. Give an example of a group you have seen in your previous mathe-

matical experience, but that is not an example in this chapter.

3.5 Exercises
1. Find all x ∈ Z satisfying each of the following equations.

(a) 3x ≡ 2 (mod 7)

(b) 5x+ 1 ≡ 13 (mod 23)

(c) 5x+ 1 ≡ 13 (mod 26)

(d) 9x ≡ 3 (mod 5)

(e) 5x ≡ 1 (mod 6)

(f) 3x ≡ 1 (mod 6)

2. Which of the following multiplication tables defined on the set G =
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{a, b, c, d} form a group? Support your answer in each case.
(a)

◦ a b c d

a a c d a

b b b c d

c c d a b

d d a b c

(b)
◦ a b c d

a a b c d

b b a d c

c c d a b

d d c b a

(c)
◦ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

(d)
◦ a b c d

a a b c d

b b a c d

c c b a d

d d d b c
3. Write out Cayley tables for groups formed by the symmetries of a

rectangle and for (Z4,+). How many elements are in each group?
Are the groups the same? Why or why not?

4. Describe the symmetries of a rhombus and prove that the set of sym-
metries forms a group. Give Cayley tables for both the symmetries
of a rectangle and the symmetries of a rhombus. Are the symmetries
of a rectangle and those of a rhombus the same?

5. Describe the symmetries of a square and prove that the set of sym-
metries is a group. Give a Cayley table for the symmetries. How
many ways can the vertices of a square be permuted? Is each permu-
tation necessarily a symmetry of the square? The symmetry group
of the square is denoted by D4.

6. Give a multiplication table for the group U(12).
7. Let S = R \ {−1} and define a binary operation on S by a ∗ b =

a+ b+ ab. Prove that (S, ∗) is an abelian group.
8. Give an example of two elements A and B in GL2(R) with AB 6= BA.
9. Prove that the product of two matrices in SL2(R) has determinant

one.
10. Prove that the set of matrices of the form1 x y

0 1 z

0 0 1


is a group under matrix multiplication. This group, known as the
Heisenberg group, is important in quantum physics. Matrix multi-
plication in the Heisenberg group is defined by1 x y

0 1 z

0 0 1

1 x′ y′

0 1 z′

0 0 1

 =

1 x+ x′ y + y′ + xz′

0 1 z + z′

0 0 1

 .

11. Prove that det(AB) = det(A)det(B) in GL2(R). Use this result to
show that the binary operation in the group GL2(R) is closed; that
is, if A and B are in GL2(R), then AB ∈ GL2(R).

12. Let Zn2 = {(a1, a2, . . . , an) : ai ∈ Z2}. Define a binary operation on
Zn2 by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).



44 CHAPTER 3. GROUPS

Prove that Zn2 is a group under this operation. This group is impor-
tant in algebraic coding theory.

13. Show that R∗ = R \ {0} is a group under the operation of multipli-
cation.

14. Given the groups R∗ and Z, let G = R∗ × Z. Define a binary opera-
tion ◦ on G by (a,m) ◦ (b, n) = (ab,m+ n). Show that G is a group
under this operation.

15. Prove or disprove that every group containing six elements is abelian.
16. Give a specific example of some group G and elements g, h ∈ G

where (gh)n 6= gnhn.
17. Give an example of three different groups with eight elements. Why

are the groups different?
18. Show that there are n! permutations of a set containing n items.
19. Show that

0 + a ≡ a+ 0 ≡ a (mod n)

for all a ∈ Zn.
20. Prove that there is a multiplicative identity for the integers modulo

n:
a · 1 ≡ a (mod n).

21. For each a ∈ Zn find an element b ∈ Zn such that

a+ b ≡ b+ a ≡ 0 (mod n).
22. Show that addition and multiplication mod n are well defined op-

erations. That is, show that the operations do not depend on the
choice of the representative from the equivalence classes mod n.

23. Show that addition and multiplication mod n are associative opera-
tions.

24. Show that multiplication distributes over addition modulo n:

a(b+ c) ≡ ab+ ac (mod n).
25. Let a and b be elements in a group G. Prove that abna−1 = (aba−1)n

for n ∈ Z.
26. Let U(n) be the group of units in Zn. If n > 2, prove that there is

an element k ∈ U(n) such that k2 = 1 and k 6= 1.
27. Prove that the inverse of g1g2 · · · gn is g−1

n g−1
n−1 · · · g

−1
1 .

28. Prove the remainder of Proposition 3.21, p. 39: if G is a group and
a, b ∈ G, then the equation xa = b has a unique solution in G.

29. Prove Theorem 3.23, p. 39.
30. Prove the right and left cancellation laws for a group G; that is, show

that in the group G, ba = ca implies b = c and ab = ac implies b = c
for elements a, b, c ∈ G.

31. Show that if a2 = e for all elements a in a group G, then G must be
abelian.

32. Show that if G is a finite group of even order, then there is an a ∈ G
such that a is not the identity and a2 = e.

33. Let G be a group and suppose that (ab)2 = a2b2 for all a and b in
G. Prove that G is an abelian group.
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34. Find all the subgroups of Z3×Z3. Use this information to show that
Z3 ×Z3 is not the same group as Z9. (See Example 3.28, p. 41 for a
short description of the product of groups.)

35. Find all the subgroups of the symmetry group of an equilateral tri-
angle.

36. Compute the subgroups of the symmetry group of a square.
37. Let H = {2k : k ∈ Z}. Show that H is a subgroup of Q∗.
38. Let n = 0, 1, 2, . . . and nZ = {nk : k ∈ Z}. Prove that nZ is a

subgroup of Z. Show that these subgroups are the only subgroups
of Z.

39. Let T = {z ∈ C∗ : |z| = 1}. Prove that T is a subgroup of C∗.
40. Let G consist of the 2× 2 matrices of the form(

cos θ − sin θ
sin θ cos θ

)
,

where θ ∈ R. Prove that G is a subgroup of SL2(R).
41. Prove that

G = {a+ b
√
2 : a, b ∈ Q and a and b are not both zero}

is a subgroup of R∗ under the group operation of multiplication.
42. Let G be the group of 2× 2 matrices under addition and

H =

{(
a b

c d

)
: a+ d = 0

}
.

Prove that H is a subgroup of G.
43. Prove or disprove: SL2(Z), the set of 2 × 2 matrices with integer

entries and determinant one, is a subgroup of SL2(R).
44. List the subgroups of the quaternion group, Q8.
45. Prove that the intersection of two subgroups of a group G is also a

subgroup of G.
46. Prove or disprove: If H and K are subgroups of a group G, then

H ∪K is a subgroup of G.
47. Prove or disprove: If H and K are subgroups of a group G, then

HK = {hk : h ∈ H and k ∈ K} is a subgroup of G. What if G is
abelian?

48. Let G be a group and g ∈ G. Show that

Z(G) = {x ∈ G : gx = xg for all g ∈ G}

is a subgroup of G. This subgroup is called the center of G.
49. Let a and b be elements of a group G. If a4b = ba and a3 = e, prove

that ab = ba.
50. Give an example of an infinite group in which every nontrivial sub-

group is infinite.
51. If xy = x−1y−1 for all x and y in G, prove that G must be abelian.
52. Prove or disprove: Every proper subgroup of a nonabelian group is

nonabelian.
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53. Let H be a subgroup of G and

C(H) = {g ∈ G : gh = hg for all h ∈ H}.

Prove C(H) is a subgroup of G. This subgroup is called the central-
izer of H in G.

54. Let H be a subgroup of G. If g ∈ G, show that gHg−1 = {ghg−1 :
h ∈ H} is also a subgroup of G.

3.6 Additional Exercises: Detecting Errors
1. UPC Symbols. Universal Product Code (upc) symbols are found

on most products in grocery and retail stores. The upc symbol
is a 12-digit code identifying the manufacturer of a product and
the product itself (Figure 3.32, p. 46). The first 11 digits contain
information about the product; the twelfth digit is used for error
detection. If d1d2 · · · d12 is a valid upc number, then

3 · d1 + 1 · d2 + 3 · d3 + · · ·+ 3 · d11 + 1 · d12 ≡ 0 (mod 10).

(a) Show that the upc number 0-50000-30042-6, which appears in
Figure 3.32, p. 46, is a valid upc number.

(b) Show that the number 0-50000-30043-6 is not a valid upc num-
ber.

(c) Write a formula to calculate the check digit, d12, in the upc
number.

(d) The upc error detection scheme can detect most transposition
errors; that is, it can determine if two digits have been inter-
changed. Show that the transposition error 0-05000-30042-6 is
not detected. Find a transposition error that is detected. Can
you find a general rule for the types of transposition errors that
can be detected?

(e) Write a program that will determine whether or not a upc
number is valid.

Figure 3.32 A upc code
2. It is often useful to use an inner product notation for this type of

error detection scheme; hence, we will use the notion

(d1, d2, . . . , dk) · (w1, w2, . . . , wk) ≡ 0 (mod n)

to mean
d1w1 + d2w2 + · · ·+ dkwk ≡ 0 (mod n).

Suppose that (d1, d2, . . . , dk) ·(w1, w2, . . . , wk) ≡ 0 (mod n) is an
error detection scheme for the k-digit identification number d1d2 · · · dk,
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where 0 ≤ di < n. Prove that all single-digit errors are detected if
and only if gcd(wi, n) = 1 for 1 ≤ i ≤ k.

3. Let (d1, d2, . . . , dk) · (w1, w2, . . . , wk) ≡ 0 (mod n) be an error detec-
tion scheme for the k-digit identification number d1d2 · · · dk, where
0 ≤ di < n. Prove that all transposition errors of two digits di and
dj are detected if and only if gcd(wi−wj , n) = 1 for i and j between
1 and k.

4. ISBN Codes. Every book has an International Standard Book
Number (isbn) code. This is a 10-digit code indicating the book’s
publisher and title. The tenth digit is a check digit satisfying

(d1, d2, . . . , d10) · (10, 9, . . . , 1) ≡ 0 (mod 11).

One problem is that d10 might have to be a 10 to make the inner
product zero; in this case, 11 digits would be needed to make this
scheme work. Therefore, the character X is used for the eleventh
digit. So isbn 3-540-96035-X is a valid isbn code.

(a) Is isbn 0-534-91500-0 a valid isbn code? What about isbn
0-534-91700-0 and isbn 0-534-19500-0?

(b) Does this method detect all single-digit errors? What about
all transposition errors?

(c) How many different isbn codes are there?

(d) Write a computer program that will calculate the check digit
for the first nine digits of an isbn code.

(e) A publisher has houses in Germany and the United States. Its
German prefix is 3-540. If its United States prefix will be 0-
abc, find abc such that the rest of the isbn code will be the
same for a book printed in Germany and in the United States.
Under the isbn coding method the first digit identifies the
language; German is 3 and English is 0. The next group of
numbers identifies the publisher, and the last group identifies
the specific book.

3.7 References and Suggested Readings
[1] Burnside, W. Theory of Groups of Finite Order. 2nd ed. Cambridge

University Press, Cambridge, 1911; Dover, New York, 1953. A
classic. Also available at books.google.com.

[2] Gallian, J. A. and Winters, S. “Modular Arithmetic in the Market-
place,” The American Mathematical Monthly 95 (1988): 548–51.

[3] Gallian, J. A. Contemporary Abstract Algebra. 7th ed. Brooks/
Cole, Belmont, CA, 2009.

[4] Hall, M. Theory of Groups. 2nd ed. American Mathematical Soci-
ety, Providence, 1959.

[5] Kurosh, A. E. The Theory of Groups, vols. I and II. American
Mathematical Society, Providence, 1979.

[6] Rotman, J. J. An Introduction to the Theory of Groups. 4th ed.
Springer, New York, 1995.



48 CHAPTER 3. GROUPS



4

Cyclic Groups

The groups Z and Zn, which are among the most familiar and easily un-
derstood groups, are both examples of what are called cyclic groups. In
this chapter we will study the properties of cyclic groups and cyclic sub-
groups, which play a fundamental part in the classification of all abelian
groups.

4.1 Cyclic Subgroups
Often a subgroup will depend entirely on a single element of the group;
that is, knowing that particular element will allow us to compute any
other element in the subgroup.
Example 4.1 Suppose that we consider 3 ∈ Z and look at all multiples
(both positive and negative) of 3. As a set, this is

3Z = {. . . ,−3, 0, 3, 6, . . .}.

It is easy to see that 3Z is a subgroup of the integers. This subgroup is
completely determined by the element 3 since we can obtain all of the
other elements of the group by taking multiples of 3. Every element in
the subgroup is “generated” by 3. □
Example 4.2 If H = {2n : n ∈ Z}, then H is a subgroup of the multi-
plicative group of nonzero rational numbers, Q∗. If a = 2m and b = 2n

are in H, then ab−1 = 2m2−n = 2m−n is also in H. By Proposition 3.31,
p. 42, H is a subgroup of Q∗ determined by the element 2. □
Theorem 4.3 Let G be a group and a be any element in G. Then the
set

〈a〉 = {ak : k ∈ Z}

is a subgroup of G. Furthermore, 〈a〉 is the smallest subgroup of G that
contains a.
Proof. The identity is in 〈a〉 since a0 = e. If g and h are any two
elements in 〈a〉, then by the definition of 〈a〉 we can write g = am and
h = an for some integers m and n. So gh = aman = am+n is again in 〈a〉.
Finally, if g = an in 〈a〉, then the inverse g−1 = a−n is also in 〈a〉. Clearly,
any subgroup H of G containing a must contain all the powers of a by
closure; hence, H contains 〈a〉. Therefore, 〈a〉 is the smallest subgroup of
G containing a. ■

49
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Remark 4.4 If we are using the “+” notation, as in the case of the
integers under addition, we write 〈a〉 = {na : n ∈ Z}.

For a ∈ G, we call 〈a〉 the cyclic subgroup generated by a. If G
contains some element a such that G = 〈a〉, then G is a cyclic group. In
this case a is a generator of G. If a is an element of a group G, we define
the order of a to be the smallest positive integer n such that an = e, and
we write |a| = n. If there is no such integer n, we say that the order of a
is infinite and write |a| = ∞ to denote the order of a.

Example 4.5 Notice that a cyclic group can have more than a single
generator. Both 1 and 5 generate Z6; hence, Z6 is a cyclic group. Not
every element in a cyclic group is necessarily a generator of the group. The
order of 2 ∈ Z6 is 3. The cyclic subgroup generated by 2 is 〈2〉 = {0, 2, 4}.

□
The groups Z and Zn are cyclic groups. The elements 1 and −1 are

generators for Z. We can certainly generate Zn with 1 although there
may be other generators of Zn, as in the case of Z6.

Example 4.6 The group of units, U(9), in Z9 is a cyclic group. As a set,
U(9) is {1, 2, 4, 5, 7, 8}. The element 2 is a generator for U(9) since

21 = 2 22 = 4

23 = 8 24 = 7

25 = 5 26 = 1.

□
Example 4.7 Not every group is a cyclic group. Consider the symmetry
group of an equilateral triangle S3. The multiplication table for this group
is Figure 3.7, p. 35. The subgroups of S3 are shown in Figure 4.8, p. 50.
Notice that every subgroup is cyclic; however, no single element generates
the entire group.

S3

{id, ρ1, ρ2} {id, µ1} {id, µ2} {id, µ3}

{id}

Figure 4.8 Subgroups of S3

□
Theorem 4.9 Every cyclic group is abelian.
Proof. Let G be a cyclic group and a ∈ G be a generator for G. If g
and h are in G, then they can be written as powers of a, say g = ar and
h = as. Since

gh = aras = ar+s = as+r = asar = hg,

G is abelian. ■
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Subgroups of Cyclic Groups
We can ask some interesting questions about cyclic subgroups of a group
and subgroups of a cyclic group. If G is a group, which subgroups of G
are cyclic? If G is a cyclic group, what type of subgroups does G possess?
Theorem 4.10 Every subgroup of a cyclic group is cyclic.
Proof. The main tools used in this proof are the division algorithm and
the Principle of Well-Ordering. Let G be a cyclic group generated by a
and suppose that H is a subgroup of G. If H = {e}, then trivially H is
cyclic. Suppose that H contains some other element g distinct from the
identity. Then g can be written as an for some integer n. Since H is a
subgroup, g−1 = a−n must also be in H. Since either n or −n is positive,
we can assume that H contains positive powers of a and n > 0. Let m
be the smallest natural number such that am ∈ H. Such an m exists by
the Principle of Well-Ordering.

We claim that h = am is a generator for H. We must show that every
h′ ∈ H can be written as a power of h. Since h′ ∈ H and H is a subgroup
of G, h′ = ak for some integer k. Using the division algorithm, we can
find numbers q and r such that k = mq + r where 0 ≤ r < m; hence,

ak = amq+r = (am)qar = hqar.

So ar = akh−q. Since ak and h−q are in H, ar must also be in H.
However, m was the smallest positive number such that am was in H;
consequently, r = 0 and so k = mq. Therefore,

h′ = ak = amq = hq

and H is generated by h. ■
Corollary 4.11 The subgroups of Z are exactly nZ for n = 0, 1, 2, . . ..
Proposition 4.12 Let G be a cyclic group of order n and suppose that a
is a generator for G. Then ak = e if and only if n divides k.
Proof. First suppose that ak = e. By the division algorithm, k = nq+r
where 0 ≤ r < n; hence,

e = ak = anq+r = anqar = ear = ar.

Since the smallest positive integer m such that am = e is n, r = 0.
Conversely, if n divides k, then k = ns for some integer s. Conse-

quently,
ak = ans = (an)s = es = e.

■
Theorem 4.13 Let G be a cyclic group of order n and suppose that a ∈ G
is a generator of the group. If b = ak, then the order of b is n/d, where
d = gcd(k, n).
Proof. We wish to find the smallest integer m such that e = bm = akm.
By Proposition 4.12, p. 51, this is the smallest integer m such that n
divides km or, equivalently, n/d divides m(k/d). Since d is the greatest
common divisor of n and k, n/d and k/d are relatively prime. Hence, for
n/d to divide m(k/d) it must divide m. The smallest such m is n/d. ■
Corollary 4.14 The generators of Zn are the integers r such that 1 ≤
r < n and gcd(r, n) = 1.
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Example 4.15 Let us examine the group Z16. The numbers 1, 3, 5, 7,
9, 11, 13, and 15 are the elements of Z16 that are relatively prime to 16.
Each of these elements generates Z16. For example,

1 · 9 = 9 2 · 9 = 2 3 · 9 = 11

4 · 9 = 4 5 · 9 = 13 6 · 9 = 6

7 · 9 = 15 8 · 9 = 8 9 · 9 = 1

10 · 9 = 10 11 · 9 = 3 12 · 9 = 12

13 · 9 = 5 14 · 9 = 14 15 · 9 = 7.

□

4.2 Multiplicative Group of Complex Num-
bers

The complex numbers are defined as

C = {a+ bi : a, b ∈ R},

where i2 = −1. If z = a + bi, then a is the real part of z and b is the
imaginary part of z.

To add two complex numbers z = a+ bi and w = c+ di, we just add
the corresponding real and imaginary parts:

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

Remembering that i2 = −1, we multiply complex numbers just like poly-
nomials. The product of z and w is

(a+ bi)(c+ di) = ac+ bdi2 + adi+ bci = (ac− bd) + (ad+ bc)i.

Every nonzero complex number z = a+bi has a multiplicative inverse;
that is, there exists a z−1 ∈ C∗ such that zz−1 = z−1z = 1. If z = a+ bi,
then

z−1 =
a− bi

a2 + b2
.

The complex conjugate of a complex number z = a+ bi is defined to be
z = a− bi. The absolute value or modulus of z = a+ bi is |z| =

√
a2 + b2.

Example 4.16 Let z = 2 + 3i and w = 1− 2i. Then

z + w = (2 + 3i) + (1− 2i) = 3 + i

and
zw = (2 + 3i)(1− 2i) = 8− i.

Also,

z−1 =
2

13
− 3

13
i

|z| =
√
13

z = 2− 3i.

□
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y

x0

z1 = 2 + 3i

z3 = −3 + 2i

z2 = 1− 2i

Figure 4.17 Rectangular coordinates of a complex number
There are several ways of graphically representing complex numbers.

We can represent a complex number z = a+bi as an ordered pair on the xy
plane where a is the x (or real) coordinate and b is the y (or imaginary)
coordinate. This is called the rectangular or Cartesian representation.
The rectangular representations of z1 = 2 + 3i, z2 = 1 − 2i, and z3 =
−3 + 2i are depicted in Figure 4.17, p. 53.

y

x0

a+ bi

r

θ

Figure 4.18 Polar coordinates of a complex number
Nonzero complex numbers can also be represented using polar coor-

dinates. To specify any nonzero point on the plane, it suffices to give an
angle θ from the positive x axis in the counterclockwise direction and a
distance r from the origin, as in Figure 4.18, p. 53. We can see that

z = a+ bi = r(cos θ + i sin θ).

Hence,
r = |z| =

√
a2 + b2
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and

a = r cos θ
b = r sin θ.

We sometimes abbreviate r(cos θ + i sin θ) as r cis θ. To assure that the
representation of z is well-defined, we also require that 0◦ ≤ θ < 360◦. If
the measurement is in radians, then 0 ≤ θ < 2π.
Example 4.19 Suppose that z = 2 cis 60◦. Then

a = 2 cos 60◦ = 1

and
b = 2 sin 60◦ =

√
3.

Hence, the rectangular representation is z = 1 +
√
3 i.

Conversely, if we are given a rectangular representation of a complex
number, it is often useful to know the number’s polar representation. If
z = 3

√
2− 3

√
2 i, then

r =
√
a2 + b2 =

√
36 = 6

and
θ = arctan

(
b

a

)
= arctan(−1) = 315◦,

so 3
√
2− 3

√
2 i = 6 cis 315◦. □

The polar representation of a complex number makes it easy to find
products and powers of complex numbers. The proof of the following
proposition is straightforward and is left as an exercise.
Proposition 4.20 Let z = r cis θ and w = s cisϕ be two nonzero complex
numbers. Then

zw = rs cis(θ + ϕ).

Example 4.21 If z = 3 cis(π/3) and w = 2 cis(π/6), then zw = 6 cis(π/2) =
6i. □
Theorem 4.22 DeMoivre. Let z = r cis θ be a nonzero complex
number. Then

[r cis θ]n = rn cis(nθ)

for n = 1, 2, . . ..
Proof. We will use induction on n. For n = 1 the theorem is trivial.
Assume that the theorem is true for all k such that 1 ≤ k ≤ n. Then

zn+1 = znz

= rn(cosnθ + i sinnθ)r(cos θ + i sin θ)
= rn+1[(cosnθ cos θ − sinnθ sin θ) + i(sinnθ cos θ + cosnθ sin θ)]
= rn+1[cos(nθ + θ) + i sin(nθ + θ)]

= rn+1[cos(n+ 1)θ + i sin(n+ 1)θ].

■
Example 4.23 Suppose that z = 1 + i and we wish to compute z10.
Rather than computing (1 + i)10 directly, it is much easier to switch to
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polar coordinates and calculate z10 using DeMoivre’s Theorem:

z10 = (1 + i)10

=
(√

2 cis
(π
4

))10
= (

√
2 )10 cis

(
5π

2

)
= 32 cis

(π
2

)
= 32i.

□

The Circle Group and the Roots of Unity
The multiplicative group of the complex numbers, C∗, possesses some
interesting subgroups. Whereas Q∗ and R∗ have no interesting subgroups
of finite order, C∗ has many. We first consider the circle group,

T = {z ∈ C : |z| = 1}.

The following proposition is a direct result of Proposition 4.20, p. 54.
Proposition 4.24 The circle group is a subgroup of C∗.

Although the circle group has infinite order, it has many interesting
finite subgroups. Suppose that H = {1,−1, i,−i}. Then H is a subgroup
of the circle group. Also, 1, −1, i, and −i are exactly those complex num-
bers that satisfy the equation z4 = 1. The complex numbers satisfying
the equation zn = 1 are called the nth roots of unity.
Theorem 4.25 If zn = 1, then the nth roots of unity are

z = cis
(
2kπ

n

)
,

where k = 0, 1, . . . , n − 1. Furthermore, the nth roots of unity form a
cyclic subgroup of T of order n
Proof. By DeMoivre’s Theorem,

zn = cis
(
n
2kπ

n

)
= cis(2kπ) = 1.

The z’s are distinct since the numbers 2kπ/n are all distinct and are
greater than or equal to 0 but less than 2π. The fact that these are all of
the roots of the equation zn = 1 follows from from Corollary 17.9, p. 224,
which states that a polynomial of degree n can have at most n roots. We
will leave the proof that the nth roots of unity form a cyclic subgroup of
T as an exercise. ■

A generator for the group of the nth roots of unity is called a primitive
nth root of unity.
Example 4.26 The 8th roots of unity can be represented as eight equally
spaced points on the unit circle (Figure 4.27, p. 56). The primitive 8th
roots of unity are

ω =

√
2

2
+

√
2

2
i
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ω3 = −
√
2

2
+

√
2

2
i

ω5 = −
√
2

2
−

√
2

2
i

ω7 =

√
2

2
−

√
2

2
i.

y

x
0

1

ω

i

ω3

−1

ω5

−i

ω7

Figure 4.27 8th roots of unity
□

4.3 The Method of Repeated Squares
Computing large powers can be very time-consuming. Just as anyone can
compute 22 or 28, everyone knows how to compute

22
1,000,000

.

However, such numbers are so large that we do not want to attempt the
calculations; moreover, past a certain point the computations would not
be feasible even if we had every computer in the world at our disposal.
Even writing down the decimal representation of a very large number
may not be reasonable. It could be thousands or even millions of digits
long. However, if we could compute something like

237,398,332 (mod 46,389),

we could very easily write the result down since it would be a number
between 0 and 46,388. If we want to compute powers modulo n quickly
and efficiently, we will have to be clever.4

The first thing to notice is that any number a can be written as the
sum of distinct powers of 2; that is, we can write

a = 2k1 + 2k2 + · · ·+ 2kn ,
4The results in this section are needed only in Chapter 7, p. 87
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where k1 < k2 < · · · < kn. This is just the binary representation of a.
For example, the binary representation of 57 is 111001, since we can write
57 = 20 + 23 + 24 + 25.

The laws of exponents still work in Zn; that is, if b ≡ ax (mod n) and
c ≡ ay (mod n), then bc ≡ ax+y (mod n). We can compute a2k (mod n)
in k multiplications by computing

a2
0

(mod n)

a2
1

(mod n)

...

a2
k

(mod n).

Each step involves squaring the answer obtained in the previous step,
dividing by n, and taking the remainder.

Example 4.28 We will compute 271321 (mod 481). Notice that

321 = 20 + 26 + 28;

hence, computing 271321 (mod 481) is the same as computing

2712
0+26+28 ≡ 2712

0

· 2712
6

· 2712
8

(mod 481).

So it will suffice to compute 2712
i

(mod 481) where i = 0, 6, 8. It is very
easy to see that

2712
1

= 73,441 ≡ 329 (mod 481).

We can square this result to obtain a value for 2712
2

(mod 481):

2712
2

≡ (2712
1

)2 (mod 481)

≡ (329)2 (mod 481)

≡ 108,241 (mod 481)

≡ 16 (mod 481).

We are using the fact that (a2
n

)2 ≡ a2·2
n ≡ a2

n+1

(mod n). Continuing,
we can calculate

2712
6

≡ 419 (mod 481)

and
2712

8

≡ 16 (mod 481).

Therefore,

271321 ≡ 2712
0+26+28 (mod 481)

≡ 2712
0

· 2712
6

· 2712
8

(mod 481)

≡ 271 · 419 · 16 (mod 481)

≡ 1,816,784 (mod 481)

≡ 47 (mod 481).

□
The method of repeated squares will prove to be a very useful tool

when we explore rsa cryptography in Chapter 7, p. 87. To encode and
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decode messages in a reasonable manner under this scheme, it is necessary
to be able to quickly compute large powers of integers mod n.

Sage. Sage support for cyclic groups is a little spotty — but we can
still make effective use of Sage and perhaps this situation could change
soon.

4.4 Reading Questions
1. What is the order of the element 3 in U(20)?
2. What is the order of the element 5 in U(23)?
3. Find three generators of Z8.
4. Find three generators of the 5th roots of unity.
5. Show how to compute 1540 (mod 23) efficiently by hand. Check your

answer with Sage.

4.5 Exercises
1. Prove or disprove each of the following statements.

(a) All of the generators of Z60 are prime.

(b) U(8) is cyclic.

(c) Q is cyclic.

(d) If every proper subgroup of a group G is cyclic, then G is a
cyclic group.

(e) A group with a finite number of subgroups is finite.
2. Find the order of each of the following elements.

(a) 5 ∈ Z12

(b)
√
3 ∈ R

(c)
√
3 ∈ R∗

(d) −i ∈ C∗

(e) 72 ∈ Z240

(f) 312 ∈ Z471

3. List all of the elements in each of the following subgroups.
(a) The subgroup of Z generated by 7

(b) The subgroup of Z24 generated by 15

(c) All subgroups of Z12

(d) All subgroups of Z60

(e) All subgroups of Z13

(f) All subgroups of Z48

(g) The subgroup generated by 3 in U(20)

(h) The subgroup generated by 5 in U(18)

(i) The subgroup of R∗ generated by 7

(j) The subgroup of C∗ generated by i where i2 = −1
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(k) The subgroup of C∗ generated by 2i

(l) The subgroup of C∗ generated by (1 + i)/
√
2

(m) The subgroup of C∗ generated by (1 +
√
3 i)/2

4. Find the subgroups of GL2(R) generated by each of the following
matrices.

(a)
(

0 1

−1 0

)

(b)
(
0 1/3

3 0

)
(c)

(
1 −1

1 0

)

(d)
(
1 −1

0 1

)
(e)

(
1 −1

−1 0

)

(f)
(√

3/2 1/2

−1/2
√
3/2

)
5. Find the order of every element in Z18.
6. Find the order of every element in the symmetry group of the square,

D4.
7. What are all of the cyclic subgroups of the quaternion group, Q8?
8. List all of the cyclic subgroups of U(30).
9. List every generator of each subgroup of order 8 in Z32.
10. Find all elements of finite order in each of the following groups. Here

the “∗” indicates the set with zero removed.
(a) Z (b) Q∗ (c) R∗

11. If a24 = e in a group G, what are the possible orders of a?
12. Find a cyclic group with exactly one generator. Can you find cyclic

groups with exactly two generators? Four generators? How about n
generators?

13. For n ≤ 20, which groups U(n) are cyclic? Make a conjecture as to
what is true in general. Can you prove your conjecture?

14. Let
A =

(
0 1

−1 0

)
and B =

(
0 −1

1 −1

)
be elements in GL2(R). Show that A and B have finite orders but
AB does not.

15. Evaluate each of the following.
(a) (3− 2i) + (5i− 6)

(b) (4− 5i)− (4i− 4)

(c) (5− 4i)(7 + 2i)

(d) (9− i)(9− i)

(e) i45

(f) (1 + i) + (1 + i)

16. Convert the following complex numbers to the form a+ bi.
(a) 2 cis(π/6)

(b) 5 cis(9π/4)

(c) 3 cis(π)

(d) cis(7π/4)/2
17. Change the following complex numbers to polar representation.

(a) 1− i

(b) −5

(c) 2 + 2i

(d)
√
3 + i

(e) −3i

(f) 2i+ 2
√
3

18. Calculate each of the following expressions.
(a) (1 + i)−1

(b) (1− i)6

(c) (
√
3 + i)5

(d) (−i)10

(e) ((1− i)/2)4

(f) (−
√
2−

√
2 i)12

(g) (−2 + 2i)−5
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19. Prove each of the following statements.
(a) |z| = |z|

(b) zz = |z|2

(c) z−1 = z/|z|2

(d) |z + w| ≤ |z|+ |w|

(e) |z − w| ≥ ||z| − |w||

(f) |zw| = |z||w|
20. List and graph the 6th roots of unity. What are the generators of

this group? What are the primitive 6th roots of unity?
21. List and graph the 5th roots of unity. What are the generators of

this group? What are the primitive 5th roots of unity?
22. Calculate each of the following.

(a) 2923171 (mod 582)

(b) 2557341 (mod 5681)

(c) 20719521 (mod 4724)

(d) 971321 (mod 765)

23. Let a, b ∈ G. Prove the following statements.
(a) The order of a is the same as the order of a−1.

(b) For all g ∈ G, |a| = |g−1ag|.

(c) The order of ab is the same as the order of ba.
24. Let p and q be distinct primes. How many generators does Zpq have?
25. Let p be prime and r be a positive integer. How many generators

does Zpr have?
26. Prove that Zp has no nontrivial subgroups if p is prime.
27. If g and h have orders 15 and 16 respectively in a group G, what is

the order of 〈g〉 ∩ 〈h〉?
28. Let a be an element in a group G. What is a generator for the

subgroup 〈am〉 ∩ 〈an〉?
29. Prove that Zn has an even number of generators for n > 2.
30. Suppose that G is a group and let a, b ∈ G. Prove that if |a| = m

and |b| = n with gcd(m,n) = 1, then 〈a〉 ∩ 〈b〉 = {e}.
31. Let G be an abelian group. Show that the elements of finite order

in G form a subgroup. This subgroup is called the torsion subgroup
of G.

32. Let G be a finite cyclic group of order n generated by x. Show that
if y = xk where gcd(k, n) = 1, then y must be a generator of G.

33. If G is an abelian group that contains a pair of cyclic subgroups of
order 2, show that G must contain a subgroup of order 4. Does this
subgroup have to be cyclic?

34. Let G be an abelian group of order pq where gcd(p, q) = 1. If G
contains elements a and b of order p and q respectively, then show
that G is cyclic.

35. Prove that the subgroups of Z are exactly nZ for n = 0, 1, 2, . . ..
36. Prove that the generators of Zn are the integers r such that 1 ≤ r < n

and gcd(r, n) = 1.
37. Prove that if G has no proper nontrivial subgroups, then G is a cyclic

group.
38. Prove that the order of an element in a cyclic group G must divide

the order of the group.
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39. Prove that if G is a cyclic group of order m and d | m, then G must
have a subgroup of order d.

40. For what integers n is −1 an nth root of unity?
41. If z = r(cos θ + i sin θ) and w = s(cosϕ + i sinϕ) are two nonzero

complex numbers, show that

zw = rs[cos(θ + ϕ) + i sin(θ + ϕ)].
42. Prove that the circle group is a subgroup of C∗.
43. Prove that the nth roots of unity form a cyclic subgroup of T of

order n.
44. Let α ∈ T. Prove that αm = 1 and αn = 1 if and only if αd = 1 for

d = gcd(m,n).
45. Let z ∈ C∗. If |z| 6= 1, prove that the order of z is infinite.
46. Let z = cos θ + i sin θ be in T where θ ∈ Q. Prove that the order of

z is infinite.

4.6 Programming Exercises
1. Write a computer program that will write any decimal number as

the sum of distinct powers of 2. What is the largest integer that
your program will handle?

2. Write a computer program to calculate ax (mod n) by the method
of repeated squares. What are the largest values of n and x that
your program will accept?

4.7 References and Suggested Readings
[1] Koblitz, N. A Course in Number Theory and Cryptography. 2nd ed.

Springer, New York, 1994.
[2] Pomerance, C. “Cryptology and Computational Number Theory—

An Introduction,” in Cryptology and Computational Number The-
ory, Pomerance, C., ed. Proceedings of Symposia in Applied Math-
ematics, vol. 42, American Mathematical Society, Providence, RI,
1990. This book gives an excellent account of how the method of
repeated squares is used in cryptography.
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5

Permutation Groups

Permutation groups are central to the study of geometric symmetries and
to Galois theory, the study of finding solutions of polynomial equations.
They also provide abundant examples of nonabelian groups.

Let us recall for a moment the symmetries of the equilateral triangle
4ABC from Chapter 3, p. 31. The symmetries actually consist of permu-
tations of the three vertices, where a permutation of the set S = {A,B,C}
is a one-to-one and onto map π : S → S. The three vertices have the
following six permutations.(

A B C

A B C

) (
A B C

C A B

) (
A B C

B C A

)
(
A B C

A C B

) (
A B C

C B A

) (
A B C

B A C

)
We have used the array (

A B C

B C A

)
to denote the permutation that sends A to B, B to C, and C to A. That
is,

A 7→ B

B 7→ C

C 7→ A.

The symmetries of a triangle form a group. In this chapter we will study
groups of this type.

5.1 Definitions and Notation
In general, the permutations of a set X form a group SX . If X is a finite
set, we can assume X = {1, 2, . . . , n}. In this case we write Sn instead of
SX . The following theorem says that Sn is a group. We call this group
the symmetric group on n letters.
Theorem 5.1 The symmetric group on n letters, Sn, is a group with n!
elements, where the binary operation is the composition of maps.

63
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Proof. The identity of Sn is just the identity map that sends 1 to 1,
2 to 2, . . ., n to n. If f : Sn → Sn is a permutation, then f−1 exists,
since f is one-to-one and onto; hence, every permutation has an inverse.
Composition of maps is associative, which makes the group operation
associative. We leave the proof that |Sn| = n! as an exercise. ■

A subgroup of Sn is called a permutation group.
Example 5.2 Consider the subgroup G of S5 consisting of the identity
permutation id and the permutations

σ =

(
1 2 3 4 5

1 2 3 5 4

)
τ =

(
1 2 3 4 5

3 2 1 4 5

)
µ =

(
1 2 3 4 5

3 2 1 5 4

)
.

The following table tells us how to multiply elements in the permutation
group G.

◦ id σ τ µ

id id σ τ µ

σ σ id µ τ

τ τ µ id σ

µ µ τ σ id
□

Remark 5.3 Though it is natural to multiply elements in a group from
left to right, functions are composed from right to left. Let σ and τ be
permutations on a set X. To compose σ and τ as functions, we calculate
(σ ◦ τ)(x) = σ(τ(x)). That is, we do τ first, then σ. There are several
ways to approach this inconsistency. We will adopt the convention of
multiplying permutations right to left. To compute στ , do τ first and
then σ. That is, by στ(x) we mean σ(τ(x)). (Another way of solving
this problem would be to write functions on the right; that is, instead of
writing σ(x), we could write (x)σ. We could also multiply permutations
left to right to agree with the usual way of multiplying elements in a
group. Certainly all of these methods have been used.
Example 5.4 Permutation multiplication is not usually commutative.
Let

σ =

(
1 2 3 4

4 1 2 3

)
τ =

(
1 2 3 4

2 1 4 3

)
.

Then
στ =

(
1 2 3 4

1 4 3 2

)
,

but
τσ =

(
1 2 3 4

3 2 1 4

)
.

□



SECTION 5.1. DEFINITIONS AND NOTATION 65

Cycle Notation
The notation that we have used to represent permutations up to this
point is cumbersome, to say the least. To work effectively with permu-
tation groups, we need a more streamlined method of writing down and
manipulating permutations.

A permutation σ ∈ SX is a cycle of length k if there exist elements
a1, a2, . . . , ak ∈ X such that

σ(a1) = a2

σ(a2) = a3

...
σ(ak) = a1

and σ(x) = x for all other elements x ∈ X. We will write (a1, a2, . . . , ak)
to denote the cycle σ. Cycles are the building blocks of all permutations.
Example 5.5 The permutation

σ =

(
1 2 3 4 5 6 7

6 3 5 1 4 2 7

)
= (1 6 2 3 5 4)

is a cycle of length 6, whereas

τ =

(
1 2 3 4 5 6

1 4 2 3 5 6

)
= (2 4 3)

is a cycle of length 3.
Not every permutation is a cycle. Consider the permutation(

1 2 3 4 5 6

2 4 1 3 6 5

)
= (1 2 4 3)(5 6).

This permutation actually contains a cycle of length 2 and a cycle of
length 4. □
Example 5.6 It is very easy to compute products of cycles. Suppose
that

σ = (1 3 5 2) and τ = (2 5 6).

If we think of σ as

1 7→ 3, 3 7→ 5, 5 7→ 2, 2 7→ 1,

and τ as
2 7→ 5, 5 7→ 6, 6 7→ 2,

then for στ remembering that we apply τ first and then σ, it must be the
case that

1 7→ 3, 3 7→ 5, 5 7→ 6, 6 7→ 2 7→ 1,

or στ = (1 3 5 6). If µ = (1 6 3 4), then σµ = (1 6 5 2)(3 4). □
Two cycles in SX , σ = (a1, a2, . . . , ak) and τ = (b1, b2, . . . , bl), are

disjoint if ai 6= bj for all i and j.

Example 5.7 The cycles (1 3 5) and (2 7) are disjoint; however, the cycles
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(1 3 5) and (3 4 7) are not. Calculating their products, we find that

(1 3 5)(2 7) = (1 3 5)(2 7)

(1 3 5)(3 4 7) = (1 3 4 7 5).

The product of two cycles that are not disjoint may reduce to something
less complicated; the product of disjoint cycles cannot be simplified. □
Proposition 5.8 Let σ and τ be two disjoint cycles in SX . Then στ = τσ.
Proof. Let σ = (a1, a2, . . . , ak) and τ = (b1, b2, . . . , bl). We must show
that στ(x) = τσ(x) for all x ∈ X. If x is neither in {a1, a2, . . . , ak} nor
{b1, b2, . . . , bl}, then both σ and τ fix x. That is, σ(x) = x and τ(x) = x.
Hence,

στ(x) = σ(τ(x)) = σ(x) = x = τ(x) = τ(σ(x)) = τσ(x).

Do not forget that we are multiplying permutations right to left, which
is the opposite of the order in which we usually multiply group elements.
Now suppose that x ∈ {a1, a2, . . . , ak}. Then σ(ai) = a(i mod k)+1; that
is,

a1 7→ a2

a2 7→ a3

...
ak−1 7→ ak

ak 7→ a1.

However, τ(ai) = ai since σ and τ are disjoint. Therefore,

στ(ai) = σ(τ(ai))

= σ(ai)

= a(i mod k)+1

= τ(a(i mod k)+1)

= τ(σ(ai))

= τσ(ai).

Similarly, if x ∈ {b1, b2, . . . , bl}, then σ and τ also commute. ■
Theorem 5.9 Every permutation in Sn can be written as the product of
disjoint cycles.
Proof. We can assume that X = {1, 2, . . . , n}. If σ ∈ Sn and we define
X1 to be {σ(1), σ2(1), . . .}, then the set X1 is finite since X is finite.
Now let i be the first integer in X that is not in X1 and define X2 by
{σ(i), σ2(i), . . .}. Again, X2 is a finite set. Continuing in this manner,
we can define finite disjoint sets X3, X4, . . .. Since X is a finite set, we
are guaranteed that this process will end and there will be only a finite
number of these sets, say r. If σi is the cycle defined by

σi(x) =

{
σ(x) x ∈ Xi

x x /∈ Xi

,

then σ = σ1σ2 · · ·σr. Since the sets X1, X2, . . . , Xr are disjoint, the cycles
σ1, σ2, . . . , σr must also be disjoint. ■
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Example 5.10 Let

σ =

(
1 2 3 4 5 6

6 4 3 1 5 2

)
τ =

(
1 2 3 4 5 6

3 2 1 5 6 4

)
.

Using cycle notation, we can write

σ = (1 6 2 4)

τ = (1 3)(4 5 6)

στ = (1 3 6)(2 4 5)

τσ = (1 4 3)(2 5 6).

□
Remark 5.11 From this point forward we will find it convenient to use
cycle notation to represent permutations. When using cycle notation, we
often denote the identity permutation by (1).

Transpositions
The simplest permutation is a cycle of length 2. Such cycles are called
transpositions. Since

(a1, a2, . . . , an) = (a1, an)(a1, an−1) · · · (a1, a3)(a1, a2),

any cycle can be written as the product of transpositions, leading to the
following proposition.
Proposition 5.12 Any permutation of a finite set containing at least two
elements can be written as the product of transpositions.
Example 5.13 Consider the permutation

(1 6)(2 5 3) = (1 6)(2 3)(2 5) = (1 6)(4 5)(2 3)(4 5)(2 5).

As we can see, there is no unique way to represent permutation as the
product of transpositions. For instance, we can write the identity per-
mutation as (1 2)(1 2), as (1 3)(2 4)(1 3)(2 4), and in many other ways.
However, as it turns out, no permutation can be written as the product
of both an even number of transpositions and an odd number of transpo-
sitions. For instance, we could represent the permutation (1 6) by

(2 3)(1 6)(2 3)

or by
(3 5)(1 6)(1 3)(1 6)(1 3)(3 5)(5 6),

but (1 6) will always be the product of an odd number of transpositions.
□

Lemma 5.14 If the identity is written as the product of r transpositions,

id = τ1τ2 · · · τr,

then r is an even number.
Proof. We will employ induction on r. A transposition cannot be the
identity; hence, r > 1. If r = 2, then we are done. Suppose that r > 2.
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In this case the product of the last two transpositions, τr−1τr, must be
one of the following cases:

(a, b)(a, b) = id
(b, c)(a, b) = (a, c)(b, c)

(c, d)(a, b) = (a, b)(c, d)

(a, c)(a, b) = (a, b)(b, c),

where a, b, c, and d are distinct.
The first equation simply says that a transposition is its own inverse.

If this case occurs, delete τr−1τr from the product to obtain

id = τ1τ2 · · · τr−3τr−2.

By induction r − 2 is even; hence, r must be even.
In each of the other three cases, we can replace τr−1τr with the right-

hand side of the corresponding equation to obtain a new product of r
transpositions for the identity. In this new product the last occurrence
of a will be in the next-to-the-last transposition. We can continue this
process with τr−2τr−1 to obtain either a product of r − 2 transpositions
or a new product of r transpositions where the last occurrence of a is in
τr−2. If the identity is the product of r − 2 transpositions, then again
we are done, by our induction hypothesis; otherwise, we will repeat the
procedure with τr−3τr−2.

At some point either we will have two adjacent, identical transposi-
tions canceling each other out or a will be shuffled so that it will appear
only in the first transposition. However, the latter case cannot occur, be-
cause the identity would not fix a in this instance. Therefore, the identity
permutation must be the product of r − 2 transpositions and, again by
our induction hypothesis, we are done. ■
Theorem 5.15 If a permutation σ can be expressed as the product of an
even number of transpositions, then any other product of transpositions
equaling σ must also contain an even number of transpositions. Similarly,
if σ can be expressed as the product of an odd number of transpositions,
then any other product of transpositions equaling σ must also contain an
odd number of transpositions.
Proof. Suppose that

σ = σ1σ2 · · ·σm = τ1τ2 · · · τn,

where m is even. We must show that n is also an even number. The
inverse of σ is σm · · ·σ1. Since

id = σσm · · ·σ1 = τ1 · · · τnσm · · ·σ1,

n must be even by Lemma 5.14, p. 67. The proof for the case in which σ
can be expressed as an odd number of transpositions is left as an exercise.

■
In light of Theorem 5.15, p. 68, we define a permutation to be even if

it can be expressed as an even number of transpositions and odd if it can
be expressed as an odd number of transpositions.
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The Alternating Groups
One of the most important subgroups of Sn is the set of all even permu-
tations, An. The group An is called the alternating group on n letters.

Theorem 5.16 The set An is a subgroup of Sn.
Proof. Since the product of two even permutations must also be an
even permutation, An is closed. The identity is an even permutation and
therefore is in An. If σ is an even permutation, then

σ = σ1σ2 · · ·σr,

where σi is a transposition and r is even. Since the inverse of any trans-
position is itself,

σ−1 = σrσr−1 · · ·σ1
is also in An. ■
Proposition 5.17 The number of even permutations in Sn, n ≥ 2, is
equal to the number of odd permutations; hence, the order of An is n!/2.
Proof. Let An be the set of even permutations in Sn and Bn be the set of
odd permutations. If we can show that there is a bijection between these
sets, they must contain the same number of elements. Fix a transposition
σ in Sn. Since n ≥ 2, such a σ exists. Define

λσ : An → Bn

by
λσ(τ) = στ .

Suppose that λσ(τ) = λσ(µ). Then στ = σµ and so

τ = σ−1στ = σ−1σµ = µ.

Therefore, λσ is one-to-one. We will leave the proof that λσ is surjective
to the reader. ■
Example 5.18 The group A4 is the subgroup of S4 consisting of even
permutations. There are twelve elements in A4:

(1) (1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

(1 2 3) (1 3 2) (1 2 4) (1 4 2)

(1 3 4) (1 4 3) (2 3 4) (2 4 3).

One of the end-of-chapter exercises will be to write down all the subgroups
of A4. You will find that there is no subgroup of order 6. Does this
surprise you? □

Historical Note
Lagrange first thought of permutations as functions from a set to itself,
but it was Cauchy who developed the basic theorems and notation for
permutations. He was the first to use cycle notation. Augustin-Louis
Cauchy (1789–1857) was born in Paris at the height of the French Revo-
lution. His family soon left Paris for the village of Arcueil to escape the
Reign of Terror. One of the family’s neighbors there was Pierre-Simon
Laplace (1749–1827), who encouraged him to seek a career in mathemat-
ics. Cauchy began his career as a mathematician by solving a problem
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in geometry given to him by Lagrange. Cauchy wrote over 800 papers
on such diverse topics as differential equations, finite groups, applied
mathematics, and complex analysis. He was one of the mathematicians
responsible for making calculus rigorous. Perhaps more theorems and
concepts in mathematics have the name Cauchy attached to them than
that of any other mathematician.

5.2 Dihedral Groups
Another special type of permutation group is the dihedral group. Recall
the symmetry group of an equilateral triangle in Chapter 3, p. 31. Such
groups consist of the rigid motions of a regular n-sided polygon or n-gon.
For n = 3, 4, . . ., we define the nth dihedral group to be the group of rigid
motions of a regular n-gon. We will denote this group by Dn. We can
number the vertices of a regular n-gon by 1, 2, . . . , n (Figure 5.19, p. 70).
Notice that there are exactly n choices to replace the first vertex. If we
replace the first vertex by k, then the second vertex must be replaced
either by vertex k + 1 or by vertex k − 1; hence, there are 2n possible
rigid motions of the n-gon. We summarize these results in the following
theorem.

1
2

3

4
5

n− 1

n

Figure 5.19 A regular n-gon

Theorem 5.20 The dihedral group, Dn, is a subgroup of Sn of order 2n.
Theorem 5.21 The group Dn, n ≥ 3, consists of all products of the two
elements r and s, where r has order n and s has order 2, and these two
elements satisfy the relation srs = r−1.
Proof. The possible motions of a regular n-gon are either reflections or
rotations (Figure 5.22, p. 71). There are exactly n possible rotations:

id, 360
◦

n
, 2 · 360

◦

n
, . . . , (n− 1) · 360

◦

n
.

We will denote the rotation 360◦/n by r. The rotation r generates all of
the other rotations. That is,

rk = k · 360
◦

n
.
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Figure 5.22 Rotations and reflections of a regular n-gon
Label the n reflections s1, s2, . . . , sn, where sk is the reflection that

leaves vertex k fixed. There are two cases of reflections, depending on
whether n is even or odd. If there are an even number of vertices,
then two vertices are left fixed by a reflection, and s1 = sn/2+1, s2 =
sn/2+2, . . . , sn/2 = sn. If there are an odd number of vertices, then only
a single vertex is left fixed by a reflection and s1, s2, . . . , sn are distinct
(Figure 5.23, p. 72). In either case, the order of each sk is two. Let s = s1.
Then s2 = 1 and rn = 1. Since any rigid motion t of the n-gon replaces
the first vertex by the vertex k, the second vertex must be replaced by
either k + 1 or by k − 1. If the second vertex is replaced by k + 1, then
t = rk. If the second vertex is replaced by k− 1, then t = rks.5 Hence, r
and s generate Dn. That is, Dn consists of all finite products of r and s,

Dn = {1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

We will leave the proof that srs = r−1 as an exercise.
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Figure 5.23 Types of reflections of a regular n-gon
■

Example 5.24 The group of rigid motions of a square, D4, consists of
eight elements. With the vertices numbered 1, 2, 3, 4 (Figure 5.25, p. 73),
the rotations are

r = (1 2 3 4)

r2 = (1 3)(2 4)

r3 = (1 4 3 2)

r4 = (1)

and the reflections are

s1 = (2 4)

s2 = (1 3).

The order of D4 is 8. The remaining two elements are

rs1 = (1 2)(3 4)

r3s1 = (1 4)(2 3).
5Since we are in an abstract group, we will adopt the convention that group elements

are multiplied left to right.
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1 2

34
Figure 5.25 The group D4

□

The Motion Group of a Cube
We can investigate the groups of rigid motions of geometric objects other
than a regular n-sided polygon to obtain interesting examples of permu-
tation groups. Let us consider the group of rigid motions of a cube. By
rigid motion, we mean a rotation with the axis of rotation about opposing
faces, edges, or vertices. One of the first questions that we can ask about
this group is “what is its order?” A cube has 6 sides. If a particular side
is facing upward, then there are four possible rotations of the cube that
will preserve the upward-facing side. Hence, the order of the group is
6 · 4 = 24. We have just proved the following proposition.
Proposition 5.26 The group of rigid motions of a cube contains 24
elements.
Theorem 5.27 The group of rigid motions of a cube is S4.
Proof. From Proposition 5.26, p. 73, we already know that the motion
group of the cube has 24 elements, the same number of elements as there
are in S4. There are exactly four diagonals in the cube. If we label these
diagonals 1, 2, 3, and 4, we must show that the motion group of the
cube will give us any permutation of the diagonals (Figure 5.28, p. 74).
If we can obtain all of these permutations, then S4 and the group of
rigid motions of the cube must be the same. To obtain a transposition
we can rotate the cube 180◦ about the axis joining the midpoints of
opposite edges (Figure 5.29, p. 74). There are six such axes, giving all
transpositions in S4. Since every element in S4 is the product of a finite
number of transpositions, the motion group of a cube must be S4.



74 CHAPTER 5. PERMUTATION GROUPS

12

3 4

1 2

34

Figure 5.28 The motion group of a cube
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Figure 5.29 Transpositions in the motion group of a cube
■

Sage. A permutation group is a very concrete representation of a group,
and Sage support for permutations groups is very good — making Sage
a natural place for beginners to learn about group theory.

5.3 Reading Questions
1. Express (1 3 4)(3 5 4) as a cycle, or a product of disjoint cycles. (In-

terpret the composition of functions in the order used by Sage, which
is the reverse of the order used in the book.)

2. What is a transposition?
3. What does it mean for a permutation to be even or odd?
4. Describe another group that is fundamentally the same as A3.
5. Write the elements of the symmetry group of a pentagon using per-

mutations in cycle notation. Do this exercise by hand, and without
the assistance of Sage.
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5.4 Exercises
1. Write the following permutations in cycle notation.

(a) (
1 2 3 4 5

2 4 1 5 3

)

(b) (
1 2 3 4 5

4 2 5 1 3

)

(c) (
1 2 3 4 5

3 5 1 4 2

)

(d) (
1 2 3 4 5

1 4 3 2 5

)
2. Compute each of the following.

(a) (1 3 4 5)(2 3 4)

(b) (1 2)(1 2 5 3)

(c) (1 4 3)(2 3)(2 4)

(d) (1 4 2 3)(3 4)(5 6)(1 3 2 4)

(e) (1 2 5 4)(1 3)(2 5)

(f) (1 2 5 4)(1 3)(2 5)2

(g) (1 2 5 4)−1(1 2 3)(4 5)(1 2 5 4)

(h) (1 2 5 4)2(1 2 3)(4 5)

(i) (1 2 3)(4 5)(1 2 5 4)−2

(j) (1 2 5 4)100

(k) |(1 2 5 4)|

(l) |(1 2 5 4)2|

(m) (1 2)−1

(n) (1 2 5 3 7)−1

(o) [(1 2)(3 4)(1 2)(4 7)]−1

(p) [(1 2 3 5)(4 6 7)]−1

3. Express the following permutations as products of transpositions and
identify them as even or odd.

(a) (1 4 3 5 6)

(b) (1 5 6)(2 3 4)

(c) (1 4 2 6)(1 4 2)

(d) (1 7 2 5 4)(1 4 2 3)(1 5 4 6 3 2)

(e) (1 4 2 6 3 7)

4. Find (a1, a2, . . . , an)
−1.

5. List all of the subgroups of S4. Find each of the following sets:
(a) {σ ∈ S4 : σ(1) = 3}

(b) {σ ∈ S4 : σ(2) = 2}

(c) {σ ∈ S4 : σ(1) = 3 and σ(2) = 2}.

Are any of these sets subgroups of S4?
6. Find all of the subgroups in A4. What is the order of each subgroup?
7. Find all possible orders of elements in S7 and A7.
8. Show that A10 contains an element of order 15.
9. Does A8 contain an element of order 26?
10. Find an element of largest order in Sn for n = 3, . . . , 10.
11. What are the possible cycle structures of elements of A5? What

about A6?
12. Let σ ∈ Sn have order n. Show that for all integers i and j, σi = σj

if and only if i ≡ j (mod n).
13. Let σ = σ1 · · ·σm ∈ Sn be the product of disjoint cycles. Prove that

the order of σ is the least common multiple of the lengths of the
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cycles σ1, . . . , σm.
14. Using cycle notation, list the elements in D5. What are r and s?

Write every element as a product of r and s.
15. If the diagonals of a cube are labeled as Figure 5.28, p. 74, to which

motion of the cube does the permutation (12)(34) correspond? What
about the other permutations of the diagonals?

16. Find the group of rigid motions of a tetrahedron. Show that this is
the same group as A4.

17. Prove that Sn is nonabelian for n ≥ 3.
18. Show that An is nonabelian for n ≥ 4.
19. Prove that Dn is nonabelian for n ≥ 3.
20. Let σ ∈ Sn be a cycle. Prove that σ can be written as the product

of at most n− 1 transpositions.
21. Let σ ∈ Sn. If σ is not a cycle, prove that σ can be written as the

product of at most n− 2 transpositions.
22. If σ can be expressed as an odd number of transpositions, show that

any other product of transpositions equaling σ must also be odd.
23. If σ is a cycle of odd length, prove that σ2 is also a cycle.
24. Show that a 3-cycle is an even permutation.
25. Prove that in An with n ≥ 3, any permutation is a product of cycles

of length 3.
26. Prove that any element in Sn can be written as a finite product of

the following permutations.
(a) (1 2), (1 3), . . . , (1n)

(b) (1 2), (2 3), . . . , (n− 1, n)

(c) (1 2), (1 2 . . . n)

27. Let G be a group and define a map λg : G → G by λg(a) = ga.
Prove that λg is a permutation of G.

28. Prove that there exist n! permutations of a set containing n elements.
29. Recall that the center of a group G is

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.

Find the center of D8. What about the center of D10? What is the
center of Dn?

30. Let τ = (a1, a2, . . . , ak) be a cycle of length k.
(a) Prove that if σ is any permutation, then

στσ−1 = (σ(a1), σ(a2), . . . , σ(ak))

is a cycle of length k.

(b) Let µ be a cycle of length k. Prove that there is a permutation
σ such that στσ−1 = µ.

31. For α and β in Sn, define α ∼ β if there exists an σ ∈ Sn such that
σασ−1 = β. Show that ∼ is an equivalence relation on Sn.

32. Let σ ∈ SX . If σn(x) = y for some n ∈ Z, we will say that x ∼ y.
(a) Show that ∼ is an equivalence relation on X.
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(b) Define the orbit of x ∈ X under σ ∈ SX to be the set

Ox,σ = {y : x ∼ y}.

Compute the orbits of each element in {1, 2, 3, 4, 5} under each
of the following elements in S5:

α = (1 2 5 4)

β = (1 2 3)(4 5)

γ = (1 3)(2 5).

(c) If Ox,σ ∩ Oy,σ 6= ∅, prove that Ox,σ = Oy,σ. The orbits under
a permutation σ are the equivalence classes corresponding to
the equivalence relation ∼.

(d) A subgroup H of SX is transitive if for every x, y ∈ X, there
exists a σ ∈ H such that σ(x) = y. Prove that 〈σ〉 is transitive
if and only if Ox,σ = X for some x ∈ X.

33. Let α ∈ Sn for n ≥ 3. If αβ = βα for all β ∈ Sn, prove that α must
be the identity permutation; hence, the center of Sn is the trivial
subgroup.

34. If α is even, prove that α−1 is also even. Does a corresponding result
hold if α is odd?

35. If σ ∈ An and τ ∈ Sn, show that τ−1στ ∈ An.
36. Show that α−1β−1αβ is even for α, β ∈ Sn.
37. Let r and s be the elements in Dn described in Theorem 5.21, p. 70

(a) Show that srs = r−1.

(b) Show that rks = sr−k in Dn.

(c) Prove that the order of rk ∈ Dn is n/ gcd(k, n).
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6

Cosets and Lagrange’s Theorem

Lagrange’s Theorem, one of the most important results in finite group
theory, states that the order of a subgroup must divide the order of the
group. This theorem provides a powerful tool for analyzing finite groups;
it gives us an idea of exactly what type of subgroups we might expect a
finite group to possess. Central to understanding Lagranges’s Theorem
is the notion of a coset.

6.1 Cosets
Let G be a group and H a subgroup of G. Define a left coset of H with
representative g ∈ G to be the set

gH = {gh : h ∈ H}.

Right cosets can be defined similarly by

Hg = {hg : h ∈ H}.

If left and right cosets coincide or if it is clear from the context to which
type of coset that we are referring, we will use the word coset without
specifying left or right.
Example 6.1 Let H be the subgroup of Z6 consisting of the elements 0
and 3. The cosets are

0 +H = 3 +H = {0, 3}
1 +H = 4 +H = {1, 4}
2 +H = 5 +H = {2, 5}.

We will always write the cosets of subgroups of Z and Zn with the additive
notation we have used for cosets here. In a commutative group, left and
right cosets are always identical. □
Example 6.2 Let H be the subgroup of S3 defined by the permutations
{(1), (1 2 3), (1 3 2)}. The left cosets of H are

(1)H = (1 2 3)H = (1 3 2)H = {(1), (1 2 3), (1 3 2)}
(1 2)H = (1 3)H = (2 3)H = {(1 2), (1 3), (2 3)}.

79
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The right cosets of H are exactly the same as the left cosets:

H(1) = H(1 2 3) = H(1 3 2) = {(1), (1 2 3), (1 3 2)}
H(1 2) = H(1 3) = H(2 3) = {(1 2), (1 3), (2 3)}.

It is not always the case that a left coset is the same as a right coset.
Let K be the subgroup of S3 defined by the permutations {(1), (1 2)}.
Then the left cosets of K are

(1)K = (1 2)K = {(1), (1 2)}
(1 3)K = (1 2 3)K = {(1 3), (1 2 3)}
(2 3)K = (1 3 2)K = {(2 3), (1 3 2)};

however, the right cosets of K are

K(1) = K(1 2) = {(1), (1 2)}
K(1 3) = K(1 3 2) = {(1 3), (1 3 2)}
K(2 3) = K(1 2 3) = {(2 3), (1 2 3)}.

□
The following lemma is quite useful when dealing with cosets. (We

leave its proof as an exercise.)

Lemma 6.3 Let H be a subgroup of a group G and suppose that g1, g2 ∈ G.
The following conditions are equivalent.

1. g1H = g2H;

2. Hg−1
1 = Hg−1

2 ;

3. g1H ⊂ g2H;

4. g2 ∈ g1H;

5. g−1
1 g2 ∈ H.

In all of our examples the cosets of a subgroup H partition the larger
group G. The following theorem proclaims that this will always be the
case.
Theorem 6.4 Let H be a subgroup of a group G. Then the left cosets of
H in G partition G. That is, the group G is the disjoint union of the left
cosets of H in G.
Proof. Let g1H and g2H be two cosets of H in G. We must show that
either g1H ∩ g2H = ∅ or g1H = g2H. Suppose that g1H ∩ g2H 6= ∅ and
a ∈ g1H ∩ g2H. Then by the definition of a left coset, a = g1h1 = g2h2
for some elements h1 and h2 in H. Hence, g1 = g2h2h

−1
1 or g1 ∈ g2H. By

Lemma 6.3, p. 80, g1H = g2H. ■
Remark 6.5 There is nothing special in this theorem about left cosets.
Right cosets also partition G; the proof of this fact is exactly the same
as the proof for left cosets except that all group multiplications are done
on the opposite side of H.

Let G be a group and H be a subgroup of G. Define the index of H
in G to be the number of left cosets of H in G. We will denote the index
by [G : H].

Example 6.6 Let G = Z6 and H = {0, 3}. Then [G : H] = 3. □
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Example 6.7 Suppose that G = S3, H = {(1), (1 2 3), (1 3 2)}, and K =
{(1), (1 2)}. Then [G : H] = 2 and [G : K] = 3. □
Theorem 6.8 Let H be a subgroup of a group G. The number of left
cosets of H in G is the same as the number of right cosets of H in G.
Proof. Let LH and RH denote the set of left and right cosets of H
in G, respectively. If we can define a bijective map ϕ : LH → RH ,
then the theorem will be proved. If gH ∈ LH , let ϕ(gH) = Hg−1. By
Lemma 6.3, p. 80, the map ϕ is well-defined; that is, if g1H = g2H, then
Hg−1

1 = Hg−1
2 . To show that ϕ is one-to-one, suppose that

Hg−1
1 = ϕ(g1H) = ϕ(g2H) = Hg−1

2 .

Again by Lemma 6.3, p. 80, g1H = g2H. The map ϕ is onto since
ϕ(g−1H) = Hg. ■

6.2 Lagrange’s Theorem
Proposition 6.9 Let H be a subgroup of G with g ∈ G and define a map
ϕ : H → gH by ϕ(h) = gh. The map ϕ is bijective; hence, the number of
elements in H is the same as the number of elements in gH.
Proof. We first show that the map ϕ is one-to-one. Suppose that
ϕ(h1) = ϕ(h2) for elements h1, h2 ∈ H. We must show that h1 = h2, but
ϕ(h1) = gh1 and ϕ(h2) = gh2. So gh1 = gh2, and by left cancellation
h1 = h2. To show that ϕ is onto is easy. By definition every element of
gH is of the form gh for some h ∈ H and ϕ(h) = gh. ■
Theorem 6.10 Lagrange. Let G be a finite group and let H be a
subgroup of G. Then |G|/|H| = [G : H] is the number of distinct left
cosets of H in G. In particular, the number of elements in H must divide
the number of elements in G.
Proof. The group G is partitioned into [G : H] distinct left cosets. Each
left coset has |H| elements; therefore, |G| = [G : H]|H|. ■
Corollary 6.11 Suppose that G is a finite group and g ∈ G. Then the
order of g must divide the number of elements in G.
Corollary 6.12 Let |G| = p with p a prime number. Then G is cyclic
and any g ∈ G such that g 6= e is a generator.
Proof. Let g be in G such that g 6= e. Then by Corollary 6.11, p. 81,
the order of g must divide the order of the group. Since |〈g〉| > 1, it must
be p. Hence, g generates G. ■

Corollary 6.12, p. 81 suggests that groups of prime order p must some-
how look like Zp.

Corollary 6.13 Let H and K be subgroups of a finite group G such that
G ⊃ H ⊃ K. Then

[G : K] = [G : H][H : K].
Proof. Observe that

[G : K] =
|G|
|K|

=
|G|
|H|

· |H|
|K|

= [G : H][H : K].

■
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Remark 6.14 The converse of Lagrange’s Theorem is false. The
group A4 has order 12; however, it can be shown that it does not possess
a subgroup of order 6. According to Lagrange’s Theorem, subgroups of
a group of order 12 can have orders of either 1, 2, 3, 4, or 6. However,
we are not guaranteed that subgroups of every possible order exist. To
prove that A4 has no subgroup of order 6, we will assume that it does
have such a subgroup H and show that a contradiction must occur. Since
A4 contains eight 3-cycles, we know that H must contain a 3-cycle. We
will show that if H contains one 3-cycle, then it must contain more than
6 elements.
Proposition 6.15 The group A4 has no subgroup of order 6.
Proof. Since [A4 : H] = 2, there are only two cosets of H in A4. Inas-
much as one of the cosets is H itself, right and left cosets must coincide;
therefore, gH = Hg or gHg−1 = H for every g ∈ A4. Since there are
eight 3-cycles in A4, at least one 3-cycle must be in H. Without loss of
generality, assume that (1 2 3) is in H. Then (1 2 3)−1 = (1 3 2) must also
be in H. Since ghg−1 ∈ H for all g ∈ A4 and all h ∈ H and

(1 2 4)(1 2 3)(1 2 4)−1 = (1 2 4)(1 2 3)(1 4 2) = (2 4 3)

(2 4 3)(1 2 3)(2 4 3)−1 = (2 4 3)(1 2 3)(2 3 4) = (1 4 2)

we can conclude that H must have at least seven elements

(1), (1 2 3), (1 3 2), (2 4 3), (2 4 3)−1 = (2 3 4), (1 4 2), (1 4 2)−1 = (1 2 4).

Therefore, A4 has no subgroup of order 6. ■
In fact, we can say more about when two cycles have the same length.

Theorem 6.16 Two cycles τ and µ in Sn have the same length if and
only if there exists a σ ∈ Sn such that µ = στσ−1.
Proof. Suppose that

τ = (a1, a2, . . . , ak)

µ = (b1, b2, . . . , bk).

Define σ to be the permutation

σ(a1) = b1

σ(a2) = b2

...
σ(ak) = bk.

Then µ = στσ−1.
Conversely, suppose that τ = (a1, a2, . . . , ak) is a k-cycle and σ ∈ Sn.

If σ(ai) = b and σ(a(i mod k)+1) = b′, then µ(b) = b′. Hence,

µ = (σ(a1), σ(a2), . . . , σ(ak)).

Since σ is one-to-one and onto, µ is a cycle of the same length as τ . ■
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6.3 Fermat’s and Euler’s Theorems
The Euler ϕ-function is the map ϕ : N → N defined by ϕ(n) = 1 for
n = 1, and, for n > 1, ϕ(n) is the number of positive integers m with
1 ≤ m < n and gcd(m,n) = 1.

From Proposition 3.4, p. 32, we know that the order of U(n), the
group of units in Zn, is ϕ(n). For example, |U(12)| = ϕ(12) = 4 since
the numbers that are relatively prime to 12 are 1, 5, 7, and 11. For any
prime p, ϕ(p) = p− 1. We state these results in the following theorem.

Theorem 6.17 Let U(n) be the group of units in Zn. Then |U(n)| =
ϕ(n).

The following theorem is an important result in number theory, due
to Leonhard Euler.
Theorem 6.18 Euler’s Theorem. Let a and n be integers such that
n > 0 and gcd(a, n) = 1. Then aϕ(n) ≡ 1 (mod n).
Proof. By Theorem 6.17, p. 83 the order of U(n) is ϕ(n). Consequently,
aϕ(n) = 1 for all a ∈ U(n); or aϕ(n) − 1 is divisible by n. Therefore,
aϕ(n) ≡ 1 (mod n). ■

If we consider the special case of Euler’s Theorem in which n = p is
prime and recall that ϕ(p) = p− 1, we obtain the following result, due to
Pierre de Fermat.
Theorem 6.19 Fermat’s Little Theorem. Let p be any prime number
and suppose that p ∤ a (p does not divide a). Then

ap−1 ≡ 1 (mod p).

Furthermore, for any integer b, bp ≡ b (mod p).

Sage. Sage can create all the subgroups of a group, so long as the group
is not too large. It can also create the cosets of a subgroup.

Historical Note
Joseph-Louis Lagrange (1736–1813), born in Turin, Italy, was of French
and Italian descent. His talent for mathematics became apparent at an
early age. Leonhard Euler recognized Lagrange’s abilities when Lagrange,
who was only 19, communicated to Euler some work that he had done
in the calculus of variations. That year he was also named a professor at
the Royal Artillery School in Turin. At the age of 23 he joined the Berlin
Academy. Frederick the Great had written to Lagrange proclaiming that
the “greatest king in Europe” should have the “greatest mathematician
in Europe” at his court. For 20 years Lagrange held the position va-
cated by his mentor, Euler. His works include contributions to number
theory, group theory, physics and mechanics, the calculus of variations,
the theory of equations, and differential equations. Along with Laplace
and Lavoisier, Lagrange was one of the people responsible for design-
ing the metric system. During his life Lagrange profoundly influenced
the development of mathematics, leaving much to the next generation of
mathematicians in the form of examples and new problems to be solved.
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6.4 Reading Questions

1. State Lagrange’s Theorem in your own words.
2. Determine the left cosets of 〈3〉 in Z9.
3. The set {(), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is a subgroup of S4. What

is its index in S4?
4. Suppose G is a group of order 29. Describe G.
5. The number p = 137909 is prime. Explain how to compute 57137909

(mod 137909) without a calculator.

6.5 Exercises
1. Suppose that G is a finite group with an element g of order 5 and

an element h of order 7. Why must |G| ≥ 35?
2. Suppose that G is a finite group with 60 elements. What are the

orders of possible subgroups of G?
3. Prove or disprove: Every subgroup of the integers has finite index.
4. Prove or disprove: Every subgroup of the integers has finite order.
5. List the left and right cosets of the subgroups in each of the following.

(a) 〈8〉 in Z24

(b) 〈3〉 in U(8)

(c) 3Z in Z

(d) A4 in S4

(e) An in Sn

(f) D4 in S4

(g) T in C∗

(h) H = {(1), (1 2 3), (1 3 2)} in
S4

6. Describe the left cosets of SL2(R) in GL2(R). What is the index of
SL2(R) in GL2(R)?

7. Verify Euler’s Theorem for n = 15 and a = 4.
8. Use Fermat’s Little Theorem to show that if p = 4n + 3 is prime,

there is no solution to the equation x2 ≡ −1 (mod p).
9. Show that the integers have infinite index in the additive group of

rational numbers.
10. Show that the additive group of real numbers has infinite index in

the additive group of the complex numbers.
11. Let H be a subgroup of a group G and suppose that g1, g2 ∈ G.

Prove that the following conditions are equivalent.
(a) g1H = g2H

(b) Hg−1
1 = Hg−1

2

(c) g1H ⊂ g2H

(d) g2 ∈ g1H

(e) g−1
1 g2 ∈ H

12. If ghg−1 ∈ H for all g ∈ G and h ∈ H, show that right cosets are
identical to left cosets. That is, show that gH = Hg for all g ∈ G.
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13. What fails in the proof of Theorem 6.8, p. 81 if ϕ : LH → RH is
defined by ϕ(gH) = Hg?

14. Suppose that gn = e. Show that the order of g divides n.
15. The cycle structure of a permutation σ is defined as the unordered

list of the sizes of the cycles in the cycle decomposition σ. For
example, the permutation σ = (1 2)(3 4 5)(7 8)(9) has cycle structure
(2, 3, 2, 1) which can also be written as (1, 2, 2, 3).

Show that any two permutations α, β ∈ Sn have the same cycle
structure if and only if there exists a permutation γ such that β =
γαγ−1. If β = γαγ−1 for some γ ∈ Sn, then α and β are conjugate.

16. If |G| = 2n, prove that the number of elements of order 2 is odd.
Use this result to show that G must contain a subgroup of order 2.

17. Suppose that [G : H] = 2. If a and b are not in H, show that ab ∈ H.
18. If [G : H] = 2, prove that gH = Hg.
19. Let H and K be subgroups of a group G. Prove that gH ∩ gK is a

coset of H ∩K in G.
20. Let H and K be subgroups of a group G. Define a relation ∼ on G

by a ∼ b if there exists an h ∈ H and a k ∈ K such that hak = b.
Show that this relation is an equivalence relation. The corresponding
equivalence classes are called double cosets. Compute the double
cosets of H = {(1), (1 2 3), (1 3 2)} in A4.

21. Let G be a cyclic group of order n. Show that there are exactly ϕ(n)
generators for G.

22. Let n = pe11 p
e2
2 · · · pekk , where p1, p2, . . . , pk are distinct primes. Prove

that
ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
.

23. Show that
n =

∑
d|n

ϕ(d)

for all positive integers n.
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7

Introduction to Cryptography

Cryptography is the study of sending and receiving secret messages. The
aim of cryptography is to send messages across a channel so that only
the intended recipient of the message can read it. In addition, when a
message is received, the recipient usually requires some assurance that
the message is authentic; that is, that it has not been sent by someone
who is trying to deceive the recipient. Modern cryptography is heavily
dependent on abstract algebra and number theory.

The message to be sent is called the plaintext message. The disguised
message is called the ciphertext. The plaintext and the ciphertext are
both written in an alphabet, consisting of letters or characters. Charac-
ters can include not only the familiar alphabetic characters A, . . ., Z and
a, . . ., z but also digits, punctuation marks, and blanks. A cryptosys-
tem, or cipher, has two parts: encryption, the process of transforming a
plaintext message to a ciphertext message, and decryption, the reverse
transformation of changing a ciphertext message into a plaintext message.

There are many different families of cryptosystems, each distinguished
by a particular encryption algorithm. Cryptosystems in a specified cryp-
tographic family are distinguished from one another by a parameter to
the encryption function called a key. A classical cryptosystem has a sin-
gle key, which must be kept secret, known only to the sender and the
receiver of the message. If person A wishes to send secret messages to
two different people B and C, and does not wish to have B understand
C’s messages or vice versa, A must use two separate keys, so one cryp-
tosystem is used for exchanging messages with B, and another is used for
exchanging messages with C.

Systems that use two separate keys, one for encoding and another for
decoding, are called public key cryptosystems. Since knowledge of the
encoding key does not allow anyone to guess at the decoding key, the
encoding key can be made public. A public key cryptosystem allows A
and B to send messages to C using the same encoding key. Anyone is
capable of encoding a message to be sent to C, but only C knows how to
decode such a message.

7.1 Private Key Cryptography
In single or private key cryptosystems the same key is used for both
encrypting and decrypting messages. To encrypt a plaintext message, we

87
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apply to the message some function which is kept secret, say f . This
function will yield an encrypted message. Given the encrypted form of
the message, we can recover the original message by applying the inverse
transformation f−1. The transformation f must be relatively easy to
compute, as must f−1; however, f must be extremely difficult to guess
from available examples of coded messages.
Example 7.1 One of the first and most famous private key cryptosystems
was the shift code used by Julius Caesar. We first digitize the alphabet
by letting A = 00,B = 01, . . . ,Z = 25. The encoding function will be

f(p) = p+ 3 mod 26;

that is, A 7→ D,B 7→ E, . . . , Z 7→ C. The decoding function is then

f−1(p) = p− 3 mod 26 = p+ 23 mod 26.

Suppose we receive the encoded message DOJHEUD. To decode this mes-
sage, we first digitize it:

3, 14, 9, 7, 4, 20, 3.

Next we apply the inverse transformation to get

0, 11, 6, 4, 1, 17, 0,

or ALGEBRA. Notice here that there is nothing special about either of
the numbers 3 or 26. We could have used a larger alphabet or a different
shift. □

Cryptanalysis is concerned with deciphering a received or intercepted
message. Methods from probability and statistics are great aids in de-
ciphering an intercepted message; for example, the frequency analysis
of the characters appearing in the intercepted message often makes its
decryption possible.
Example 7.2 Suppose we receive a message that we know was encrypted
by using a shift transformation on single letters of the 26-letter alphabet.
To find out exactly what the shift transformation was, we must compute
b in the equation f(p) = p + b mod 26. We can do this using frequency
analysis. The letter E = 04 is the most commonly occurring letter in the
English language. Suppose that S = 18 is the most commonly occurring
letter in the ciphertext. Then we have good reason to suspect that 18 =
4+ b mod 26, or b = 14. Therefore, the most likely encrypting function is

f(p) = p+ 14 mod 26.

The corresponding decrypting function is

f−1(p) = p+ 12 mod 26.

It is now easy to determine whether or not our guess is correct. □
Simple shift codes are examples of monoalphabetic cryptosystems. In

these ciphers a character in the enciphered message represents exactly
one character in the original message. Such cryptosystems are not very
sophisticated and are quite easy to break. In fact, in a simple shift as
described in Example 7.1, p. 88, there are only 26 possible keys. It would
be quite easy to try them all rather than to use frequency analysis.
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Let us investigate a slightly more sophisticated cryptosystem. Sup-
pose that the encoding function is given by

f(p) = ap+ b mod 26.

We first need to find out when a decoding function f−1 exists. Such a
decoding function exists when we can solve the equation

c = ap+ b mod 26

for p. By Proposition 3.4, p. 32, this is possible exactly when a has an
inverse or, equivalently, when gcd(a, 26) = 1. In this case

f−1(p) = a−1p− a−1b mod 26.

Such a cryptosystem is called an affine cryptosystem.

Example 7.3 Let us consider the affine cryptosystem f(p) = ap+ b mod
26. For this cryptosystem to work we must choose an a ∈ Z26 that is
invertible. This is only possible if gcd(a, 26) = 1. Recognizing this fact,
we will let a = 5 since gcd(5, 26) = 1. It is easy to see that a−1 = 21.
Therefore, we can take our encryption function to be f(p) = 5p+3 mod 26.
Thus, ALGEBRA is encoded as 3, 6, 7, 23, 8, 10, 3, or DGHXIKD. The
decryption function will be

f−1(p) = 21p− 21 · 3 mod 26 = 21p+ 15 mod 26.

□
A cryptosystem would be more secure if a ciphertext letter could

represent more than one plaintext letter. To give an example of this type
of cryptosystem, called a polyalphabetic cryptosystem, we will generalize
affine codes by using matrices. The idea works roughly the same as before;
however, instead of encrypting one letter at a time we will encrypt pairs
of letters. We can store a pair of letters p1 and p2 in a vector

p =

(
p1
p2

)
.

Let A be a 2× 2 invertible matrix with entries in Z26. We can define an
encoding function by

f(p) = Ap + b,
where b is a fixed column vector and matrix operations are performed in
Z26. The decoding function must be

f−1(p) = A−1p −A−1b.

Example 7.4 Suppose that we wish to encode the word HELP. The
corresponding digit string is 7, 4, 11, 15. If

A =

(
3 5

1 2

)
,

then
A−1 =

(
2 21

25 3

)
.

If b = (2, 2)t, then our message is encrypted as RRGR. The encrypted
letter R represents more than one plaintext letter. □
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Frequency analysis can still be performed on a polyalphabetic cryp-
tosystem, because we have a good understanding of how pairs of letters
appear in the English language. The pair th appears quite often; the pair
qz never appears. To avoid decryption by a third party, we must use a
larger matrix than the one we used in Example 7.4, p. 89.

7.2 Public Key Cryptography
If traditional cryptosystems are used, anyone who knows enough to en-
code a message will also know enough to decode an intercepted message.
In 1976, W. Diffie and M. Hellman proposed public key cryptography,
which is based on the observation that the encryption and decryption
procedures need not have the same key. This removes the requirement
that the encoding key be kept secret. The encoding function f must be
relatively easy to compute, but f−1 must be extremely difficult to com-
pute without some additional information, so that someone who knows
only the encrypting key cannot find the decrypting key without prohib-
itive computation. It is interesting to note that to date, no system has
been proposed that has been proven to be “one-way;” that is, for any
existing public key cryptosystem, it has never been shown to be com-
putationally prohibitive to decode messages with only knowledge of the
encoding key.

The RSA Cryptosystem
The rsa cryptosystem introduced by R. Rivest, A. Shamir, and L. Adle-
man in 1978, is based on the difficulty of factoring large numbers. Though
it is not a difficult task to find two large random primes and multiply
them together, factoring a 150-digit number that is the product of two
large primes would take 100 million computers operating at 10 million in-
structions per second about 50 million years under the fastest algorithms
available in the early 1990s. Although the algorithms have improved,
factoring a number that is a product of two large primes is still compu-
tationally prohibitive.

The rsa cryptosystem works as follows. Suppose that we choose two
random 150-digit prime numbers p and q. Next, we compute the product
n = pq and also compute ϕ(n) = m = (p − 1)(q − 1), where ϕ is the
Euler ϕ-function. Now we start choosing random integers E until we
find one that is relatively prime to m; that is, we choose E such that
gcd(E,m) = 1. Using the Euclidean algorithm, we can find a number
D such that DE ≡ 1 (mod m). The numbers n and E are now made
public.

Suppose now that person B (Bob) wishes to send person A (Alice) a
message over a public line. Since E and n are known to everyone, anyone
can encode messages. Bob first digitizes the message according to some
scheme, say A = 00,B = 02, . . . ,Z = 25. If necessary, he will break the
message into pieces such that each piece is a positive integer less than n.
Suppose x is one of the pieces. Bob forms the number y = xE mod n
and sends y to Alice. For Alice to recover x, she need only compute
x = yD mod n. Only Alice knows D.
Example 7.5 Before exploring the theory behind the rsa cryptosystem
or attempting to use large integers, we will use some small integers just
to see that the system does indeed work. Suppose that we wish to send
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some message, which when digitized is 25. Let p = 23 and q = 29. Then

n = pq = 667

and
ϕ(n) = m = (p− 1)(q − 1) = 616.

We can let E = 487, since gcd(616, 487) = 1. The encoded message is
computed to be

25487 mod 667 = 169.

This computation can be reasonably done by using the method of re-
peated squares as described in Chapter 4, p. 49. Using the Euclidean
algorithm, we determine that 191E = 1 + 151m; therefore, the decrypt-
ing key is (n,D) = (667, 191). We can recover the original message by
calculating

169191 mod 667 = 25.

□
Now let us examine why the rsa cryptosystem works. We know that

DE ≡ 1 (mod m); hence, there exists a k such that

DE = km+ 1 = kϕ(n) + 1.

There are two cases to consider. In the first case assume that gcd(x, n) =
1. Then by Theorem 6.18, p. 83,

yD = (xE)D = xDE = xkm+1 = (xϕ(n))kx = (1)kx = x mod n.

So we see that Alice recovers the original message x when she computes
yD mod n.

For the other case, assume that gcd(x, n) 6= 1. Since n = pq and
x < n, we know x is a multiple of p or a multiple of q, but not both. We
will describe the first possibility only, since the second is entirely similar.
There is then an integer r, with r < q and x = rp. Note that we have
gcd(x, q) = 1 and that m = ϕ(n) = (p − 1)(q − 1) = ϕ(p)ϕ(q). Then,
using Theorem 6.18, p. 83, but now mod q,

xkm = xkϕ(p)ϕ(q) = (xϕ(q))kϕ(p) = (1)kϕ(p) = 1 mod q.

So there is an integer t such that xkm = 1+ tq. Thus, Alice also recovers
the message in this case,

yD = xkm+1 = xkmx = (1 + tq)x = x+ tq(rp) = x+ trn = x mod n.

We can now ask how one would go about breaking the rsa cryptosys-
tem. To find D given n and E, we simply need to factor n and solve for
D by using the Euclidean algorithm. If we had known that 667 = 23 · 29
in Example 7.5, p. 90, we could have recovered D.

Message Verification
There is a problem of message verification in public key cryptosystems.
Since the encoding key is public knowledge, anyone has the ability to send
an encoded message. If Alice receives a message from Bob, she would
like to be able to verify that it was Bob who actually sent the message.
Suppose that Bob’s encrypting key is (n′, E′) and his decrypting key
is (n′, D′). Also, suppose that Alice’s encrypting key is (n,E) and her
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decrypting key is (n,D). Since encryption keys are public information,
they can exchange coded messages at their convenience. Bob wishes to
assure Alice that the message he is sending is authentic. Before Bob
sends the message x to Alice, he decrypts x with his own key:

x′ = xD
′

mod n′.

Anyone can change x′ back to x just by encryption, but only Bob has the
ability to form x′. Now Bob encrypts x′ with Alice’s encryption key to
form

y′ = x′
E mod n,

a message that only Alice can decode. Alice decodes the message and
then encodes the result with Bob’s key to read the original message, a
message that could have only been sent by Bob.

Historical Note
Encrypting secret messages goes as far back as ancient Greece and Rome.
As we know, Julius Caesar used a simple shift code to send and receive
messages. However, the formal study of encoding and decoding mes-
sages probably began with the Arabs in the 1400s. In the fifteenth and
sixteenth centuries mathematicians such as Alberti and Viete discovered
that monoalphabetic cryptosystems offered no real security. In the 1800s,
F. W. Kasiski established methods for breaking ciphers in which a cipher-
text letter can represent more than one plaintext letter, if the same key
was used several times. This discovery led to the use of cryptosystems
with keys that were used only a single time. Cryptography was placed
on firm mathematical foundations by such people as W. Friedman and L.
Hill in the early part of the twentieth century.
The period after World War I saw the development of special-purpose ma-
chines for encrypting and decrypting messages, and mathematicians were
very active in cryptography during World War II. Efforts to penetrate
the cryptosystems of the Axis nations were organized in England and in
the United States by such notable mathematicians as Alan Turing and A.
A. Albert. The Allies gained a tremendous advantage in World War II
by breaking the ciphers produced by the German Enigma machine and
the Japanese Purple ciphers.
By the 1970s, interest in commercial cryptography had begun to take
hold. There was a growing need to protect banking transactions, com-
puter data, and electronic mail. In the early 1970s, ibm developed and
implemented luzifer, the forerunner of the National Bureau of Stan-
dards’ Data Encryption Standard (DES).
The concept of a public key cryptosystem, due to Diffie and Hellman,
is very recent (1976). It was further developed by Rivest, Shamir,
and Adleman with the rsa cryptosystem (1978). It is not known how
secure any of these systems are. The trapdoor knapsack cryptosys-
tem, developed by Merkle and Hellman, has been broken. It is still
an open question whether or not the rsa system can be broken. In
1991, rsa Laboratories published a list of semiprimes (numbers with ex-
actly two prime factors) with a cash prize for whoever was able to pro-
vide a factorization (http://www.emc.com/emc-plus/rsa-labs/historical/
the-rsa-challenge-numbers.htma). Although the challenge ended in 2007,
many of these numbers have not yet been factored.
There been a great deal of controversy about research in cryptography
and cryptography itself. In 1929, when Henry Stimson, Secretary of State

http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
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under Herbert Hoover, dismissed the Black Chamber (the State Depart-
ment’s cryptography division) on the ethical grounds that “gentlemen do
not read each other’s mail.” During the last two decades of the twenti-
eth century, the National Security Agency wanted to keep information
about cryptography secret, whereas the academic community fought for
the right to publish basic research. Currently, research in mathemati-
cal cryptography and computational number theory is very active, and
mathematicians are free to publish their results in these areas.

awww.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.
htm

Sage. Sage’s early development featured powerful routines for number
theory, and later included significant support for algebraic structures and
other areas of discrete mathematics. So it is a natural tool for the study
of cryptology, including topics like RSA, elliptic curve cryptography, and
AES (Advanced Encryption Standard).

7.3 Reading Questions
1. Use the euler_phi()function in Sage to compute ϕ(893 456 123).
2. Use the power_mod()function in Sage to compute 7324 (mod 895).
3. Explain the mathematical basis for saying: encrypting a message

using an rsa public key is very simple computationally, while de-
crypting a communication without the private key is very hard com-
putationally.

4. Explain how in rsa message encoding differs from message verifica-
tion.

5. Explain how one could be justified in saying that Diffie and Hell-
man’s proposal in 1976 was “revolutionary.”

7.4 Exercises
1. Encode IXLOVEXMATH using the cryptosystem in Example 7.1, p. 88.
2. Decode ZLOOA WKLVA EHARQ WKHA ILQDO, which was encoded using

the cryptosystem in Example 7.1, p. 88.
3. Assuming that monoalphabetic code was used to encode the follow-

ing secret message, what was the original message?
APHUO EGEHP PEXOV FKEUH CKVUE CHKVE APHUO
EGEHU EXOVL EXDKT VGEFT EHFKE UHCKF TZEXO
VEZDT TVKUE XOVKV ENOHK ZFTEH TEHKQ LEROF
PVEHP PEXOV ERYKP GERYT GVKEG XDRTE RGAGA

What is the significance of this message in the history of cryptogra-
phy?

4. What is the total number of possible monoalphabetic cryptosystems?
How secure are such cryptosystems?

5. Prove that a 2 × 2 matrix A with entries in Z26 is invertible if and
only if gcd(det(A), 26) = 1.
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6. Given the matrix
A =

(
3 4

2 3

)
,

use the encryption function f(p) = Ap + b to encode the message
CRYPTOLOGY, where b = (2, 5)t. What is the decoding function?

7. Encrypt each of the following rsa messages x so that x is divided
into blocks of integers of length 2; that is, if x = 142528, encode 14,
25, and 28 separately.

(a) n = 3551, E = 629, x = 31

(b) n = 2257, E = 47, x = 23

(c) n = 120979, E = 13251, x = 142371

(d) n = 45629, E = 781, x = 231561

8. Compute the decoding key D for each of the encoding keys in Exer-
cise 7.4.7, p. 94.

9. Decrypt each of the following rsa messages y.
(a) n = 3551, D = 1997, y = 2791

(b) n = 5893, D = 81, y = 34

(c) n = 120979, D = 27331, y = 112135

(d) n = 79403, D = 671, y = 129381

10. For each of the following encryption keys (n,E) in the rsa cryp-
tosystem, compute D.

(a) (n,E) = (451, 231)

(b) (n,E) = (3053, 1921)

(c) (n,E) = (37986733, 12371)

(d) (n,E) = (16394854313, 34578451)

11. Encrypted messages are often divided into blocks of n letters. A
message such as THE WORLD WONDERS WHY might be encrypted as JIW
OCFRJ LPOEVYQ IOC but sent as JIW OCF RJL POE VYQ IOC. What
are the advantages of using blocks of n letters?

12. Find integers n, E, and X such that

XE ≡ X (mod n).

Is this a potential problem in the rsa cryptosystem?
13. Every person in the class should construct an rsa cryptosystem

using primes that are 10 to 15 digits long. Hand in (n,E) and an
encoded message. Keep D secret. See if you can break one another’s
codes.

7.5 Additional Exercises: Primality and Fac-
toring

In the rsa cryptosystem it is important to be able to find large prime
numbers easily. Also, this cryptosystem is not secure if we can factor a
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composite number that is the product of two large primes. The solutions
to both of these problems are quite easy. To find out if a number n is
prime or to factor n, we can use trial division. We simply divide n by
d = 2, 3, . . . ,

√
n. Either a factorization will be obtained, or n is prime if

no d divides n. The problem is that such a computation is prohibitively
time-consuming if n is very large.
1. A better algorithm for factoring odd positive integers is Fermat’s

factorization algorithm.
(a) Let n = ab be an odd composite number. Prove that n can be

written as the difference of two perfect squares:

n = x2 − y2 = (x− y)(x+ y).

Consequently, a positive odd integer can be factored exactly
when we can find integers x and y such that n = x2 − y2.

(b) Write a program to implement the following factorization al-
gorithm based on the observation in part (a). The expression
ceiling(sqrt(n)) means the smallest integer greater than or
equal to the square root of n. Write another program to do
factorization using trial division and compare the speed of the
two algorithms. Which algorithm is faster and why?

x := ceiling(sqrt(n))
y := 1

1 : while x^2 - y^2 > n do
y := y + 1

if x^2 - y^2 < n then
x := x + 1
y := 1
goto 1

else if x^2 - y^2 = 0 then
a := x - y
b := x + y
write n = a * b

2. Primality Testing. Recall Fermat’s Little Theorem from Chap-
ter 6, p. 79. Let p be prime with gcd(a, p) = 1. Then ap−1 ≡ 1
(mod p). We can use Fermat’s Little Theorem as a screening test for
primes. For example, 15 cannot be prime since

215−1 ≡ 214 ≡ 4 (mod 15).

However, 17 is a potential prime since

217−1 ≡ 216 ≡ 1 (mod 17).

We say that an odd composite number n is a pseudoprime if

2n−1 ≡ 1 (mod n).

Which of the following numbers are primes and which are pseudo-
primes?

(a) 342

(b) 811

(c) 601

(d) 561

(e) 771

(f) 631
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3. Let n be an odd composite number and b be a positive integer such
that gcd(b, n) = 1. If bn−1 ≡ 1 (mod n), then n is a pseudoprime
base b. Show that 341 is a pseudoprime base 2 but not a pseudoprime
base 3.

4. Write a program to determine all primes less than 2000 using trial
division. Write a second program that will determine all numbers
less than 2000 that are either primes or pseudoprimes. Compare the
speed of the two programs. How many pseudoprimes are there below
2000?

There exist composite numbers that are pseudoprimes for all
bases to which they are relatively prime. These numbers are called
Carmichael numbers. The first Carmichael number is 561 = 3·11·17.
In 1992, Alford, Granville, and Pomerance proved that there are an
infinite number of Carmichael numbers [4]. However, Carmichael
numbers are very rare. There are only 2163 Carmichael numbers
less than 25 × 109. For more sophisticated primality tests, see [1],
[6], or [7].
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8

Algebraic Coding Theory

Coding theory is an application of algebra that has become increasingly
important over the last several decades. When we transmit data, we are
concerned about sending a message over a channel that could be affected
by “noise.” We wish to be able to encode and decode the information in
a manner that will allow the detection, and possibly the correction, of
errors caused by noise. This situation arises in many areas of communi-
cations, including radio, telephone, television, computer communications,
and digital media technology. Probability, combinatorics, group theory,
linear algebra, and polynomial rings over finite fields all play important
roles in coding theory.

8.1 Error-Detecting and Correcting Codes
Let us examine a simple model of a communications system for transmit-
ting and receiving coded messages (Figure 8.1, p. 98).

97



98 CHAPTER 8. ALGEBRAIC CODING THEORY

m-digit message

Encoder

n-digit code word

Transmitter

Noise

Receiver

n-digit received word

Decoder

m-digit received message or error

Figure 8.1 Encoding and decoding messages
Uncoded messages may be composed of letters or characters, but typ-

ically they consist of binary m-tuples. These messages are encoded into
codewords, consisting of binary n-tuples, by a device called an encoder.
The message is transmitted and then decoded. We will consider the occur-
rence of errors during transmission. An error occurs if there is a change
in one or more bits in the codeword. A decoding scheme is a method that
either converts an arbitrarily received n-tuple into a meaningful decoded
message or gives an error message for that n-tuple. If the received mes-
sage is a codeword (one of the special n-tuples allowed to be transmitted),
then the decoded message must be the unique message that was encoded
into the codeword. For received non-codewords, the decoding scheme
will give an error indication, or, if we are more clever, will actually try
to correct the error and reconstruct the original message. Our goal is to
transmit error-free messages as cheaply and quickly as possible.
Example 8.2 One possible coding scheme would be to send a message
several times and to compare the received copies with one another. Sup-
pose that the message to be encoded is a binary n-tuple (x1, x2, . . . , xn).
The message is encoded into a binary 3n-tuple by simply repeating the
message three times:

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn, x1, x2, . . . , xn, x1, x2, . . . , xn).

To decode the message, we choose as the ith digit the one that appears
in the ith place in at least two of the three transmissions. For example,
if the original message is (0110), then the transmitted message will be
(0110 0110 0110). If there is a transmission error in the fifth digit, then
the received codeword will be (0110 1110 0110), which will be correctly
decoded as (0110).6 This triple-repetition method will automatically de-
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tect and correct all single errors, but it is slow and inefficient: to send a
message consisting of n bits, 2n extra bits are required, and we can only
detect and correct single errors. We will see that it is possible to find an
encoding scheme that will encode a message of n bits into m bits with m
much smaller than 3n. □
Example 8.3 Even parity, a commonly used coding scheme, is much
more efficient than the simple repetition scheme. The ascii (American
Standard Code for Information Interchange) coding system uses binary
8-tuples, yielding 28 = 256 possible 8-tuples. However, only seven bits
are needed since there are only 27 = 128 ascii characters. What can or
should be done with the extra bit? Using the full eight bits, we can detect
single transmission errors. For example, the ascii codes for A, B, and C
are

A = 6510 = 010000012,

B = 6610 = 010000102,

C = 6710 = 010000112.

Notice that the leftmost bit is always set to 0; that is, the 128 ascii
characters have codes

000000002 = 010,

...
011111112 = 12710.

The bit can be used for error checking on the other seven bits. It is set
to either 0 or 1 so that the total number of 1 bits in the representation
of a character is even. Using even parity, the codes for A, B, and C now
become

A = 010000012,

B = 010000102,

C = 110000112.

Suppose an A is sent and a transmission error in the sixth bit is caused by
noise over the communication channel so that (0100 0101) is received. We
know an error has occurred since the received word has an odd number
of 1s, and we can now request that the codeword be transmitted again.
When used for error checking, the leftmost bit is called a parity check bit.

By far the most common error-detecting codes used in computers
are based on the addition of a parity bit. Typically, a computer stores
information in m-tuples called words. Common word lengths are 8, 16,
and 32 bits. One bit in the word is set aside as the parity check bit, and is
not used to store information. This bit is set to either 0 or 1, depending
on the number of 1s in the word.

Adding a parity check bit allows the detection of all single errors
because changing a single bit either increases or decreases the number
of 1s by one, and in either case the parity has been changed from even
to odd, so the new word is not a codeword. (We could also construct
an error detection scheme based on odd parity; that is, we could set the
parity check bit so that a codeword always has an odd number of 1s.) □

7We will adopt the convention that bits are numbered left to right in binary n-
tuples.
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The even parity system is easy to implement, but has two drawbacks.
First, multiple errors are not detectable. Suppose an A is sent and the
first and seventh bits are changed from 0 to 1. The received word is
a codeword, but will be decoded into a C instead of an A. Second, we
do not have the ability to correct errors. If the 8-tuple (1001 1000) is
received, we know that an error has occurred, but we have no idea which
bit has been changed. We will now investigate a coding scheme that will
not only allow us to detect transmission errors but will actually correct
the errors.
Example 8.4 Suppose that our original message is either a 0 or a 1,
and that 0 encodes to (000) and 1 encodes to (111). If only a single
error occurs during transmission, we can detect and correct the error.
For example, if a (101) is received, then the second bit must have been
changed from a 1 to a 0. The originally transmitted codeword must have
been (111). This method will detect and correct all single errors.

Table 8.5 A repetition code

Transmitted Received Word
Codeword 000 001 010 011 100 101 110 111

000 0 1 1 2 1 2 2 3

111 3 2 2 1 2 1 1 0

In Table 8.5, p. 100, we present all possible words that might be re-
ceived for the transmitted codewords (000) and (111). Table 8.5, p. 100
also shows the number of bits by which each received 3-tuple differs from
each original codeword. □

Maximum-Likelihood Decoding
The coding scheme presented in Example 8.4, p. 100 is not a complete
solution to the problem because it does not account for the possibility of
multiple errors. For example, either a (000) or a (111) could be sent and
a (001) received. We have no means of deciding from the received word
whether there was a single error in the third bit or two errors, one in the
first bit and one in the second. No matter what coding scheme is used,
an incorrect message could be received. We could transmit a (000), have
errors in all three bits, and receive the codeword (111). It is important
to make explicit assumptions about the likelihood and distribution of
transmission errors so that, in a particular application, it will be known
whether a given error detection scheme is appropriate. We will assume
that transmission errors are rare, and, that when they do occur, they
occur independently in each bit; that is, if p is the probability of an error
in one bit and q is the probability of an error in a different bit, then
the probability of errors occurring in both of these bits at the same time
is pq. We will also assume that a received n-tuple is decoded into a
codeword that is closest to it; that is, we assume that the receiver uses
maximum-likelihood decoding. 7

7This section requires a knowledge of probability, but can be skipped without loss
of continuity.
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Figure 8.6 Binary symmetric channel
A binary symmetric channel is a model that consists of a transmitter

capable of sending a binary signal, either a 0 or a 1, together with a
receiver. Let p be the probability that the signal is correctly received.
Then q = 1− p is the probability of an incorrect reception. If a 1 is sent,
then the probability that a 1 is received is p and the probability that
a 0 is received is q (Figure 8.6, p. 101). The probability that no errors
occur during the transmission of a binary codeword of length n is pn. For
example, if p = 0.999 and a message consisting of 10,000 bits is sent, then
the probability of a perfect transmission is

(0.999)10,000 ≈ 0.00005.

Theorem 8.7 If a binary n-tuple (x1, . . . , xn) is transmitted across a
binary symmetric channel with probability p that no error will occur in
each coordinate, then the probability that there are errors in exactly k
coordinates is (

n

k

)
qkpn−k.

Proof. Fix k different coordinates. We first compute the probability
that an error has occurred in this fixed set of coordinates. The probability
of an error occurring in a particular one of these k coordinates is q; the
probability that an error will not occur in any of the remaining n − k
coordinates is p. The probability of each of these n independent events
is qkpn−k. The number of possible error patterns with exactly k errors
occurring is equal to (

n

k

)
=

n!

k!(n− k)!
,

the number of combinations of n things taken k at a time. Each of these
error patterns has probability qkpn−k of occurring; hence, the probability
of all of these error patterns is(

n

k

)
qkpn−k.

■
Example 8.8 Suppose that p = 0.995 and a 500-bit message is sent. The
probability that the message was sent error-free is

pn = (0.995)500 ≈ 0.082.

The probability of exactly one error occurring is(
n

1

)
qpn−1 = 500(0.005)(0.995)499 ≈ 0.204.
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The probability of exactly two errors is(
n

2

)
q2pn−2 =

500 · 499
2

(0.005)2(0.995)498 ≈ 0.257.

The probability of more than two errors is approximately

1− 0.082− 0.204− 0.257 = 0.457.

□

Block Codes
If we are to develop efficient error-detecting and error-correcting codes,
we will need more sophisticated mathematical tools. Group theory will
allow faster methods of encoding and decoding messages. A code is an
(n,m)-block code if the information that is to be coded can be divided into
blocks of m binary digits, each of which can be encoded into n binary
digits. More specifically, an (n,m)-block code consists of an encoding
function

E : Zm2 → Zn2
and a decoding function

D : Zn2 → Zm2 .

A codeword is any element in the image of E. We also require that E be
one-to-one so that two information blocks will not be encoded into the
same codeword. If our code is to be error-correcting, then D must be
onto.
Example 8.9 The even-parity coding system developed to detect single
errors in ascii characters is an (8, 7)-block code. The encoding function
is

E(x7, x6, . . . , x1) = (x8, x7, . . . , x1),

where x8 = x7 + x6 + · · ·+ x1 with addition in Z2. □
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be binary n-tuples. The

Hamming distance or distance, d(x, y), between x and y is the number
of bits in which x and y differ. The distance between two codewords
is the minimum number of transmission errors required to change one
codeword into the other. The minimum distance for a code, dmin, is the
minimum of all distances d(x, y), where x and y are distinct codewords.
The weight, w(x), of a binary codeword x is the number of 1s in x. Clearly,
w(x) = d(x, 0), where 0 = (00 · · · 0).

Example 8.10 Let x = (10101), y = (11010), and z = (00011) be all
of the codewords in some code C. Then we have the following Hamming
distances:

d(x, y) = 4, d(x, z) = 3, d(y, z) = 3.

The minimum distance for this code is 3. We also have the following
weights:

w(x) = 3, w(y) = 3, w(z) = 2.

□
The following proposition lists some basic properties about the weight

of a codeword and the distance between two codewords. The proof is left
as an exercise.
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Proposition 8.11 Let x, y, and z be binary n-tuples. Then
1. w(x) = d(x, 0);

2. d(x, y) ≥ 0;

3. d(x, y) = 0 exactly when x = y;

4. d(x, y) = d(y, x);

5. d(x, y) ≤ d(x, z) + d(z, y).
The weights in a particular code are usually much easier to compute

than the Hamming distances between all codewords in the code. If a code
is set up carefully, we can use this fact to our advantage.

Suppose that x = (1101) and y = (1100) are codewords in some
code. If we transmit (1101) and an error occurs in the rightmost bit,
then (1100) will be received. Since (1100) is a codeword, the decoder
will decode (1100) as the transmitted message. This code is clearly not
very appropriate for error detection. The problem is that d(x, y) = 1.
If x = (1100) and y = (1010) are codewords, then d(x, y) = 2. If x
is transmitted and a single error occurs, then y can never be received.
Table 8.12, p. 103 gives the distances between all 4-bit codewords in which
the first three bits carry information and the fourth is an even parity check
bit. We can see that the minimum distance here is 2; hence, the code is
suitable as a single error-detecting code.
Table 8.12 Distances between 4-bit codewords

0000 0011 0101 0110 1001 1010 1100 1111

0000 0 2 2 2 2 2 2 4

0011 2 0 2 2 2 2 4 2

0101 2 2 0 2 2 4 2 2

0110 2 2 2 0 4 2 2 2

1001 2 2 2 4 0 2 2 2

1010 2 2 4 2 2 0 2 2

1100 2 4 2 2 2 2 0 2

1111 4 2 2 2 2 2 2 0

To determine exactly what the error-detecting and error-correcting
capabilities for a code are, we need to analyze the minimum distance for
the code. Let x and y be codewords. If d(x, y) = 1 and an error occurs
where x and y differ, then x is changed to y. The received codeword is y
and no error message is given. Now suppose d(x, y) = 2. Then a single
error cannot change x to y. Therefore, if dmin = 2, we have the ability to
detect single errors. However, suppose that d(x, y) = 2, y is sent, and a
noncodeword z is received such that

d(x, z) = d(y, z) = 1.

Then the decoder cannot decide between x and y. Even though we are
aware that an error has occurred, we do not know what the error is.

Suppose dmin ≥ 3. Then the maximum-likelihood decoding scheme
corrects all single errors. Starting with a codeword x, an error in the
transmission of a single bit gives y with d(x, y) = 1, but d(z, y) ≥ 2 for
any other codeword z 6= x. If we do not require the correction of errors,
then we can detect multiple errors when a code has a minimum distance
that is greater than or equal to 3.
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Theorem 8.13 Let C be a code with dmin = 2n+1. Then C can correct
any n or fewer errors. Furthermore, any 2n or fewer errors can be detected
in C.
Proof. Suppose that a codeword x is sent and the word y is received
with at most n errors. Then d(x, y) ≤ n. If z is any codeword other than
x, then

2n+ 1 ≤ d(x, z) ≤ d(x, y) + d(y, z) ≤ n+ d(y, z).

Hence, d(y, z) ≥ n+1 and y will be correctly decoded as x. Now suppose
that x is transmitted and y is received and that at least one error has
occurred, but not more than 2n errors. Then 1 ≤ d(x, y) ≤ 2n. Since the
minimum distance between codewords is 2n+1, y cannot be a codeword.
Consequently, the code can detect between 1 and 2n errors. ■
Example 8.14 In Table 8.15, p. 104, the codewords c1 = (00000), c2 =
(00111), c3 = (11100), and c4 = (11011) determine a single error-correcting
code.
Table 8.15 Hamming distances for an error-correcting code

00000 00111 11100 11011

00000 0 3 3 4

00111 3 0 4 3

11100 3 4 0 3

11011 4 3 3 0

□

Historical Note
Modern coding theory began in 1948 with C. Shannon’s paper, “A Math-
ematical Theory of Information” [7]. This paper offered an example of
an algebraic code, and Shannon’s Theorem proclaimed exactly how good
codes could be expected to be. Richard Hamming began working with
linear codes at Bell Labs in the late 1940s and early 1950s after becoming
frustrated because the programs that he was running could not recover
from simple errors generated by noise. Coding theory has grown tremen-
dously in the past several decades. The Theory of Error-Correcting Codes,
by MacWilliams and Sloane [5], published in 1977, already contained over
1500 references. Linear codes (Reed-Muller (32, 6)-block codes) were used
on NASA’s Mariner space probes. More recent space probes such as Voy-
ager have used what are called convolution codes. Currently, very active
research is being done with Goppa codes, which are heavily dependent
on algebraic geometry.

8.2 Linear Codes
To gain more knowledge of a particular code and develop more efficient
techniques of encoding, decoding, and error detection, we need to add
additional structure to our codes. One way to accomplish this is to require
that the code also be a group. A group code is a code that is also a
subgroup of Zn2 .

To check that a code is a group code, we need only verify one thing.
If we add any two elements in the code, the result must be an n-tuple
that is again in the code. It is not necessary to check that the inverse of
the n-tuple is in the code, since every codeword is its own inverse, nor is
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it necessary to check that 0 is a codeword. For instance,

(11000101) + (11000101) = (00000000).

Example 8.16 Suppose that we have a code that consists of the following
7-tuples:

(0000000) (0001111) (0010101) (0011010)

(0100110) (0101001) (0110011) (0111100)

(1000011) (1001100) (1010110) (1011001)

(1100101) (1101010) (1110000) (1111111).

It is a straightforward though tedious task to verify that this code is also
a subgroup of Z7

2 and, therefore, a group code. This code is a single error-
detecting and single error-correcting code, but it is a long and tedious
process to compute all of the distances between pairs of codewords to
determine that dmin = 3. It is much easier to see that the minimum
weight of all the nonzero codewords is 3. As we will soon see, this is no
coincidence. However, the relationship between weights and distances in
a particular code is heavily dependent on the fact that the code is a group.

□
Lemma 8.17 Let x and y be binary n-tuples. Then w(x + y) = d(x, y).
Proof. Suppose that x and y are binary n-tuples. Then the distance
between x and y is exactly the number of places in which x and y differ.
But x and y differ in a particular coordinate exactly when the sum in the
coordinate is 1, since

1 + 1 = 0

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1.

Consequently, the weight of the sum must be the distance between the
two codewords. ■
Theorem 8.18 Let dmin be the minimum distance for a group code C.
Then dmin is the minimum weight of all the nonzero codewords in C. That
is,

dmin = min{w(x) : x 6= 0}.
Proof. Observe that

dmin = min{d(x, y) : x 6= y}
= min{d(x, y) : x + y 6= 0}
= min{w(x + y) : x + y 6= 0}
= min{w(z) : z 6= 0}.

■

Linear Codes
From Example 8.16, p. 105, it is now easy to check that the minimum
nonzero weight is 3; hence, the code does indeed detect and correct all
single errors. We have now reduced the problem of finding “good” codes
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to that of generating group codes. One easy way to generate group codes
is to employ a bit of matrix theory.

Define the inner product of two binary n-tuples to be

x · y = x1y1 + · · ·+ xnyn,

where x = (x1, x2, . . . , xn)
t and y = (y1, y2, . . . , yn)

t are column vectors.8
For example, if x = (011001)t and y = (110101)t, then x · y = 0. We
can also look at an inner product as the product of a row matrix with a
column matrix; that is,

x · y = xty

=
(
x1 x2 · · · xn

)

y1
y2
...
yn


= x1y1 + x2y2 + · · ·+ xnyn.

Example 8.19 Suppose that the words to be encoded consist of all bi-
nary 3-tuples and that our encoding scheme is even-parity. To encode
an arbitrary 3-tuple, we add a fourth bit to obtain an even number of
1s. Notice that an arbitrary n-tuple x = (x1, x2, . . . , xn)

t has an even
number of 1s exactly when x1 + x2 + · · · + xn = 0; hence, a 4-tuple
x = (x1, x2, x3, x4)

t has an even number of 1s if x1 + x2 + x3 + x4 = 0, or

x · 1 = xt1 =
(
x1 x2 x3 x4

)
1

1

1

1

 = 0.

This example leads us to hope that there is a connection between matrices
and coding theory. □

Let Mm×n(Z2) denote the set of all m × n matrices with entries in
Z2. We do matrix operations as usual except that all our addition and
multiplication operations occur in Z2. Define the null space of a matrix
H ∈ Mm×n(Z2) to be the set of all binary n-tuples x such that Hx = 0.
We denote the null space of a matrix H by Null(H).

Example 8.20 Suppose that

H =

0 1 0 1 0

1 1 1 1 0

0 0 1 1 1

 .

For a 5-tuple x = (x1, x2, x3, x4, x5)
t to be in the null space of H, Hx = 0.

Equivalently, the following system of equations must be satisfied:

x2 + x4 = 0

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 0.

The set of binary 5-tuples satisfying these equations is

(00000) (11110) (10101) (01011).
8Since we will be working with matrices, we will write binary n-tuples as column

vectors for the remainder of this chapter.
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This code is easily determined to be a group code. □
Theorem 8.21 Let H be in Mm×n(Z2). Then the null space of H is a
group code.
Proof. Since each element of Zn2 is its own inverse, the only thing that
really needs to be checked here is closure. Let x, y ∈ Null(H) for some
matrix H in Mm×n(Z2). Then Hx = 0 and Hy = 0. So

H(x + y) = Hx +Hy = 0 + 0 = 0.

Hence, x + y is in the null space of H and therefore must be a codeword.
■

A code is a linear code if it is determined by the null space of some
matrix H ∈ Mm×n(Z2).

Example 8.22 Let C be the code given by the matrix

H =

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 0 0 1

 .

Suppose that the 6-tuple x = (010011)t is received. It is a simple matter
of matrix multiplication to determine whether or not x is a codeword.
Since

Hx =

0

1

1

 ,

the received word is not a codeword. We must either attempt to correct
the word or request that it be transmitted again. □

8.3 Parity-Check and Generator Matrices
We need to find a systematic way of generating linear codes as well as fast
methods of decoding. By examining the properties of a matrix H and by
carefully choosing H, it is possible to develop very efficient methods of
encoding and decoding messages. To this end, we will introduce standard
generator and canonical parity-check matrices.

Suppose that H is an m × n matrix with entries in Z2 and n > m.
If the last m columns of the matrix form the m × m identity matrix,
Im, then the matrix is a canonical parity-check matrix. More specifically,
H = (A | Im), where A is the m× (n−m) matrix

a11 a12 · · · a1,n−m
a21 a22 · · · a2,n−m
...

... . . . ...
am1 am2 · · · am,n−m


and Im is the m×m identity matrix

1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .
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With each canonical parity-check matrix we can associate an n× (n−m)
standard generator matrix

G =

(
In−m
A

)
.

Our goal will be to show that an x satisfying Gx = y exists if and only if
Hy = 0. Given a message block x to be encoded, the matrix G will allow
us to quickly encode it into a linear codeword y.
Example 8.23 Suppose that we have the following eight words to be
encoded:

(000), (001), (010), . . . , (111).
For

A =

0 1 1

1 1 0

1 0 1

 ,

the associated standard generator and canonical parity-check matrices
are

G =



1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 1


and

H =

0 1 1 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1

 ,

respectively.
Observe that the rows in H represent the parity checks on certain bit

positions in a 6-tuple. The 1s in the identity matrix serve as parity checks
for the 1s in the same row. If x = (x1, x2, x3, x4, x5, x6), then

0 = Hx =

x2 + x3 + x4
x1 + x2 + x5
x1 + x3 + x6

 ,

which yields a system of equations:

x2 + x3 + x4 = 0

x1 + x2 + x5 = 0

x1 + x3 + x6 = 0.

Here x4 serves as a check bit for x2 and x3; x5 is a check bit for x1 and
x2; and x6 is a check bit for x1 and x3. The identity matrix keeps x4, x5,
and x6 from having to check on each other. Hence, x1, x2, and x3 can be
arbitrary but x4, x5, and x6 must be chosen to ensure parity. The null
space of H is easily computed to be

(000000) (001101) (010110) (011011)

(100011) (101110) (110101) (111000).

An even easier way to compute the null space is with the generator matrix
G (Table 8.24, p. 109). □
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Table 8.24 A matrix-generated code

Message Word x Codeword Gx
000 000000

001 001101

010 010110

011 011011

100 100011

101 101110

110 110101

111 111000

Theorem 8.25 If H ∈ Mm×n(Z2) is a canonical parity-check matrix,
then Null(H) consists of all x ∈ Zn2 whose first n −m bits are arbitrary
but whose last m bits are determined by Hx = 0. Each of the last m bits
serves as an even parity check bit for some of the first n−m bits. Hence,
H gives rise to an (n, n−m)-block code.

We leave the proof of this theorem as an exercise. In light of the
theorem, the first n−m bits in x are called information bits and the last
m bits are called check bits. In Example 8.23, p. 108, the first three bits
are the information bits and the last three are the check bits.
Theorem 8.26 Suppose that G is an n × k standard generator matrix.
Then C =

{
y : Gx = y for x ∈ Zk2

}
is an (n, k)-block code. More specifi-

cally, C is a group code.
Proof. Let Gx1 = y1 and Gx2 = y2 be two codewords. Then y1 + y2 is
in C since

G(x1 + x2) = Gx1 +Gx2 = y1 + y2.

We must also show that two message blocks cannot be encoded into the
same codeword. That is, we must show that if Gx = Gy, then x = y.
Suppose that Gx = Gy. Then

Gx −Gy = G(x − y) = 0.

However, the first k coordinates in G(x−y) are exactly x1−y1, . . . , xk−yk,
since they are determined by the identity matrix, Ik, part of G. Hence,
G(x − y) = 0 exactly when x = y. ■

Before we can prove the relationship between canonical parity-check
matrices and standard generating matrices, we need to prove a lemma.

Lemma 8.27 Let H = (A | Im) be an m×n canonical parity-check matrix
and G =

(
In−m

A

)
be the corresponding n × (n − m) standard generator

matrix. Then HG = 0.
Proof. Let C = HG. The ijth entry in C is

cij =

n∑
k=1

hikgkj

=

n−m∑
k=1

hikgkj +

n∑
k=n−m+1

hikgkj

=

n−m∑
k=1

aikδkj +

n∑
k=n−m+1

δi−(m−n),kakj

= aij + aij
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= 0,

where

δij =

{
1 i = j

0 i 6= j

is the Kronecker delta. ■
Theorem 8.28 Let H = (A | Im) be an m × n canonical parity-check
matrix and let G =

(
In−m

A

)
be the n× (n−m) standard generator matrix

associated with H. Let C be the code generated by G. Then y is in C
if and only if Hy = 0. In particular, C is a linear code with canonical
parity-check matrix H.
Proof. First suppose that y ∈ C. Then Gx = y for some x ∈ Zm2 . By
Lemma 8.27, p. 109, Hy = HGx = 0.

Conversely, suppose that y = (y1, . . . , yn)
t is in the null space of H.

We need to find an x in Zn−m2 such that Gxt = y. Since Hy = 0, the
following set of equations must be satisfied:

a11y1 + a12y2 + · · ·+ a1,n−myn−m + yn−m+1 = 0

a21y1 + a22y2 + · · ·+ a2,n−myn−m + yn−m+2 = 0

...
am1y1 + am2y2 + · · ·+ am,n−myn−m + yn−m+m = 0.

Equivalently, yn−m+1, . . . , yn are determined by y1, . . . , yn−m:

yn−m+1 = a11y1 + a12y2 + · · ·+ a1,n−myn−m

yn−m+2 = a21y1 + a22y2 + · · ·+ a2,n−myn−m

...
yn = am1y1 + am2y2 + · · ·+ am,n−myn−m.

Consequently, we can let xi = yi for i = 1, . . . , n−m. ■
It would be helpful if we could compute the minimum distance of a

linear code directly from its matrix H in order to determine the error-
detecting and error-correcting capabilities of the code. Suppose that

e1 = (100 · · · 00)t

e2 = (010 · · · 00)t

...
en = (000 · · · 01)t

are the n-tuples in Zn2 of weight 1. For an m× n binary matrix H, Hei
is exactly the ith column of the matrix H.
Example 8.29 Observe that

1 1 1 0 0

1 0 0 1 0

1 1 0 0 1



0

1

0

0

0

 =

1

0

1

 .

□
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We state this result in the following proposition and leave the proof
as an exercise.
Proposition 8.30 Let ei be the binary n-tuple with a 1 in the ith coor-
dinate and 0’s elsewhere and suppose that H ∈ Mm×n(Z2). Then Hei is
the ith column of the matrix H.
Theorem 8.31 Let H be an m×n binary matrix. Then the null space of
H is a single error-detecting code if and only if no column of H consists
entirely of zeros.
Proof. Suppose that Null(H) is a single error-detecting code. Then the
minimum distance of the code must be at least 2. Since the null space is a
group code, it is sufficient to require that the code contain no codewords
of less than weight 2 other than the zero codeword. That is, ei must not
be a codeword for i = 1, . . . , n. Since Hei is the ith column of H, the
only way in which ei could be in the null space of H would be if the ith
column were all zeros, which is impossible; hence, the code must have the
capability to detect at least single errors.

Conversely, suppose that no column of H is the zero column. By
Proposition 8.30, p. 111, Hei 6= 0. ■
Example 8.32 If we consider the matrices

H1 =

1 1 1 0 0

1 0 0 1 0

1 1 0 0 1


and

H2 =

1 1 1 0 0

1 0 0 0 0

1 1 0 0 1

 ,

then the null space of H1 is a single error-detecting code and the null
space of H2 is not. □

We can even do better than Theorem 8.31, p. 111. This theorem gives
us conditions on a matrix H that tell us when the minimum weight of the
code formed by the null space of H is 2. We can also determine when the
minimum distance of a linear code is 3 by examining the corresponding
matrix.
Example 8.33 If we let

H =

1 1 1 0

1 0 0 1

1 1 0 0


and want to determine whether or not H is the canonical parity-check
matrix for an error-correcting code, it is necessary to make certain that
Null(H) does not contain any 4-tuples of weight 2. That is, (1100), (1010),
(1001), (0110), (0101), and (0011) must not be in Null(H). The next
theorem states that we can indeed determine that the code generated
by H is error-correcting by examining the columns of H. Notice in this
example that not only does H have no zero columns, but also that no
two columns are the same. □
Theorem 8.34 Let H be a binary matrix. The null space of H is a single
error-correcting code if and only if H does not contain any zero columns
and no two columns of H are identical.
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Proof. The n-tuple ei + ej has 1s in the ith and jth entries and 0s
elsewhere, and w(ei + ej) = 2 for i 6= j. Since

0 = H(ei + ej) = Hei +Hej

can only occur if the ith and jth columns are identical, the null space of
H is a single error-correcting code. ■

Suppose now that we have a canonical parity-check matrix H with
three rows. Then we might ask how many more columns we can add to
the matrix and still have a null space that is a single error-detecting and
single error-correcting code. Since each column has three entries, there
are 23 = 8 possible distinct columns. We cannot add the columns0

0

0

 ,

1

0

0

 ,

0

1

0

 ,

0

0

1

 .

So we can add as many as four columns and still maintain a minimum
distance of 3.

In general, if H is an m×n canonical parity-check matrix, then there
are n − m information positions in each codeword. Each column has
m bits, so there are 2m possible distinct columns. It is necessary that
the columns 0, e1, . . . , em be excluded, leaving 2m − (1 + m) remaining
columns for information if we are still to maintain the ability not only to
detect but also to correct single errors.

8.4 Efficient Decoding
We are now at the stage where we are able to generate linear codes that
detect and correct errors fairly easily, but it is still a time-consuming
process to decode a received n-tuple and determine which is the closest
codeword, because the received n-tuple must be compared to each pos-
sible codeword to determine the proper decoding. This can be a serious
impediment if the code is very large.
Example 8.35 Given the binary matrix

H =

1 1 1 0 0

0 1 0 1 0

1 0 0 0 1


and the 5-tuples x = (11011)t and y = (01011)t, we can compute

Hx =

0

0

0

 and Hy =

1

0

1

 .

Hence, x is a codeword and y is not, since x is in the null space and y is
not. Notice that Hy is identical to the first column of H. In fact, this is
where the error occurred. If we flip the first bit in y from 0 to 1, then we
obtain x. □

If H is an m× n matrix and x ∈ Zn2 , then we say that the syndrome
of x is Hx. The following proposition allows the quick detection and
correction of errors.
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Proposition 8.36 Let the m × n binary matrix H determine a linear
code and let x be the received n-tuple. Write x as x = c+ e, where c is the
transmitted codeword and e is the transmission error. Then the syndrome
Hx of the received codeword x is also the syndrome of the error e.
Proof. The proof follows from the fact that

Hx = H(c + e) = Hc +He = 0 +He = He.

■
This proposition tells us that the syndrome of a received word depends

solely on the error and not on the transmitted codeword. The proof of
the following theorem follows immediately from Proposition 8.36, p. 113
and from the fact that He is the ith column of the matrix H.
Theorem 8.37 Let H ∈ Mm×n(Z2) and suppose that the linear code
corresponding to H is single error-correcting. Let r be a received n-tuple
that was transmitted with at most one error. If the syndrome of r is 0,
then no error has occurred; otherwise, if the syndrome of r is equal to
some column of H, say the ith column, then the error has occurred in the
ith bit.
Example 8.38 Consider the matrix

H =

1 0 1 1 0 0

0 1 1 0 1 0

1 1 1 0 0 1


and suppose that the 6-tuples x = (111110)t, y = (111111)t, and z =
(010111)t have been received. Then

Hx =

1

1

1

 ,Hy =

1

1

0

 ,Hz =

1

0

0

 .

Hence, x has an error in the third bit and z has an error in the fourth
bit. The transmitted codewords for x and z must have been (110110)
and (010011), respectively. The syndrome of y does not occur in any of
the columns of the matrix H, so multiple errors must have occurred to
produce y. □

Coset Decoding
We can use group theory to obtain another way of decoding messages. A
linear code C is a subgroup of Zn2 . Coset or standard decoding uses the
cosets of C in Zn2 to implement maximum-likelihood decoding. Suppose
that C is an (n,m)-linear code. A coset of C in Zn2 is written in the form
x + C, where x ∈ Zn2 . By Lagrange’s Theorem (Theorem 6.10, p. 81),
there are 2n−m distinct cosets of C in Zn2 .

Example 8.39 Let C be the (5, 3)-linear code given by the parity-check
matrix

H =

0 1 1 0 0

1 0 0 1 0

1 1 0 0 1

 .

The code consists of the codewords

(00000) (01101) (10011) (11110).
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There are 25−2 = 23 cosets of C in Z5
2, each with order 22 = 4. These

cosets are listed in Table 8.40, p. 114. □
Table 8.40 Cosets of C

Coset Coset
Representative

C (00000)(01101)(10011)(11110)

(10000) + C (10000)(11101)(00011)(01110)

(01000) + C (01000)(00101)(11011)(10110)

(00100) + C (00100)(01001)(10111)(11010)

(00010) + C (00010)(01111)(10001)(11100)

(00001) + C (00001)(01100)(10010)(11111)

(10100) + C (00111)(01010)(10100)(11001)

(00110) + C (00110)(01011)(10101)(11000)

Our task is to find out how knowing the cosets might help us to decode
a message. Suppose that x was the original codeword sent and that r is
the n-tuple received. If e is the transmission error, then r = e + x or,
equivalently, x = e + r. However, this is exactly the statement that r
is an element in the coset e + C. In maximum-likelihood decoding we
expect the error e to be as small as possible; that is, e will have the least
weight. An n-tuple of least weight in a coset is called a coset leader. Once
we have determined a coset leader for each coset, the decoding process
becomes a task of calculating r + e to obtain x.
Example 8.41 In Table 8.40, p. 114, notice that we have chosen a repre-
sentative of the least possible weight for each coset. These representatives
are coset leaders. Now suppose that r = (01111) is the received word. To
decode r, we find that it is in the coset (00010)+C; hence, the originally
transmitted codeword must have been (01101) = (01111) + (00010). □

A potential problem with this method of decoding is that we might
have to examine every coset for the received codeword. The following
proposition gives a method of implementing coset decoding. It states
that we can associate a syndrome with each coset; hence, we can make
a table that designates a coset leader corresponding to each syndrome.
Such a list is called a decoding table.
Table 8.42 Syndromes for each coset

Syndrome Coset Leader
(000) (00000)

(001) (00001)

(010) (00010)

(011) (10000)

(100) (00100)

(101) (01000)

(110) (00110)

(111) (10100)

Proposition 8.43 Let C be an (n, k)-linear code given by the matrix H
and suppose that x and y are in Zn2 . Then x and y are in the same coset
of C if and only if Hx = Hy. That is, two n-tuples are in the same coset
if and only if their syndromes are the same.
Proof. Two n-tuples x and y are in the same coset of C exactly when
x − y ∈ C; however, this is equivalent to H(x − y) = 0 or Hx = Hy. ■
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Example 8.44 Table 8.42, p. 114 is a decoding table for the code C given
in Example 8.39, p. 113. If x = (01111) is received, then its syndrome
can be computed to be

Hx =

0

1

0

 .

Examining the decoding table, we determine that the coset leader is
(00010). It is now easy to decode the received codeword. □

Given an (n, k)-block code, the question arises of whether or not coset
decoding is a manageable scheme. A decoding table requires a list of
cosets and syndromes, one for each of the 2n−k cosets of C. Suppose that
we have a (32, 24)-block code. We have a huge number of codewords, 224,
yet there are only 232−24 = 28 = 256 cosets.

Sage. Sage has a substantial repertoire of commands for coding theory,
including the ability to build many different families of codes.

8.5 Reading Questions
1. Suppose a binary code has minimum distance d = 6. How many

errors can be detected? How many errors can be corrected?
2. Explain why it is impossible for the 8-bit string with decimal value

5610 to be an ascii code for a character. Assume the leftmost bit of
the string is being used as a parity-check bit.

3. Suppose we receive the 8-bit string with decimal value 5610 when
we are expecting ascii characters with a parity-check bit in the first
bit (leftmost). We know an error has occurred in transmission. Give
one of the probable guesses for the character which was actually
sent (other than ‘8’), under the assumption that any individual bit
is rarely sent in error. Explain the logic of your answer. (You may
need to consult a table of ascii values online.)

4. Suppose a linear code C is created as the null space of the parity-
check matrix

H =

0 1 0 1 0

1 1 1 1 0

0 0 1 1 1


Then x = 11100 is not a codeword. Describe a computation, and
give the result of that computation, which verifies that x is not a
codeword of the code C.

5. For H and x as in the previous question, suppose that x is received
as a message. Give a maximum likelihood decoding of the received
message.

8.6 Exercises
1. Why is the following encoding scheme not acceptable?

Information 0 1 2 3 4 5 6 7 8

Codeword 000 001 010 011 101 110 111 000 001
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2. Without doing any addition, explain why the following set of 4-tuples
in Z4

2 cannot be a group code.

(0110) (1001) (1010) (1100)

3. Compute the Hamming distances between the following pairs of n-
tuples.

(a) (011010), (011100)

(b) (11110101), (01010100)

(c) (00110), (01111)

(d) (1001), (0111)

4. Compute the weights of the following n-tuples.
(a) (011010)

(b) (11110101)

(c) (01111)

(d) (1011)

5. Suppose that a linear code C has a minimum weight of 7. What are
the error-detection and error-correction capabilities of C?

6. In each of the following codes, what is the minimum distance for the
code? What is the best situation we might hope for in connection
with error detection and error correction?

(a) (011010) (011100) (110111) (110000)

(b) (011100) (011011) (111011) (100011)
(000000) (010101) (110100) (110011)

(c) (000000) (011100) (110101) (110001)

(d) (0110110) (0111100) (1110000) (1111111)
(1001001) (1000011) (0001111) (0000000)

7. Compute the null space of each of the following matrices. What type
of (n, k)-block codes are the null spaces? Can you find a matrix (not
necessarily a standard generator matrix) that generates each code?
Are your generator matrices unique?

(a) 0 1 0 0 0

1 0 1 0 1

1 0 0 1 0


(b) 

1 0 1 0 0 0

1 1 0 1 0 0

0 1 0 0 1 0

1 1 0 0 0 1



(c) (
1 0 0 1 1

0 1 0 1 1

)

(d) 
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 1 1 0 0 1 1


8. Construct a (5, 2)-block code. Discuss both the error-detection and

error-correction capabilities of your code.
9. Let C be the code obtained from the null space of the matrix

H =

0 1 0 0 1

1 0 1 0 1

0 0 1 1 1

 .

Decode the message

01111 10101 01110 00011

if possible.
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10. Suppose that a 1000-bit binary message is transmitted. Assume that
the probability of a single error is p and that the errors occurring
in different bits are independent of one another. If p = 0.01, what
is the probability of more than one error occurring? What is the
probability of exactly two errors occurring? Repeat this problem for
p = 0.0001.

11. Which matrices are canonical parity-check matrices? For those ma-
trices that are canonical parity-check matrices, what are the corre-
sponding standard generator matrices? What are the error-detection
and error-correction capabilities of the code generated by each of
these matrices?

(a) 
1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1


(b) 

0 1 1 0 0 0

1 1 0 1 0 0

0 1 0 0 1 0

1 1 0 0 0 1



(c) (
1 1 1 0

1 0 0 1

)

(d)


0 0 0 1 0 0 0

0 1 1 0 1 0 0

1 0 1 0 0 1 0

0 1 1 0 0 0 1


12. List all possible syndromes for the codes generated by each of the

matrices in Exercise 8.6.11, p. 117.
13. Let

H =

0 1 1 1 1

0 0 0 1 1

1 0 1 0 1

 .

Compute the syndrome caused by each of the following transmission
errors.

(a) An error in the first bit.

(b) An error in the third bit.

(c) An error in the last bit.

(d) Errors in the third and fourth bits.
14. Let C be the group code in Z3

2 defined by the codewords (000) and
(111). Compute the cosets of C in Z3

2. Why was there no need to
specify right or left cosets? Give the single transmission error, if any,
to which each coset corresponds.

15. For each of the following matrices, find the cosets of the correspond-
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ing code C. Give a decoding table for each code if possible.
(a) 0 1 0 0 0

1 0 1 0 1

1 0 0 1 0


(b) 

0 0 1 0 0

1 1 0 1 0

0 1 0 1 0

1 1 0 0 1



(c) (
1 0 0 1 1

0 1 0 1 1

)

(d) 
1 0 0 1 1 1 1

1 1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 0 0 1 0


16. Let x, y, and z be binary n-tuples. Prove each of the following

statements.
(a) w(x) = d(x, 0)

(b) d(x, y) = d(x + z, y + z)

(c) d(x, y) = w(x − y)
17. A metric on a set X is a map d : X×X → R satisfying the following

conditions.
(a) d(x, y) ≥ 0 for all x, y ∈ X;

(b) d(x, y) = 0 exactly when x = y;

(c) d(x, y) = d(y, x);

(d) d(x, y) ≤ d(x, z) + d(z, y).

In other words, a metric is simply a generalization of the notion of
distance. Prove that Hamming distance is a metric on Zn2 . Decoding
a message actually reduces to deciding which is the closest codeword
in terms of distance.

18. Let C be a linear code. Show that either the ith coordinates in the
codewords of C are all zeros or exactly half of them are zeros.

19. Let C be a linear code. Show that either every codeword has even
weight or exactly half of the codewords have even weight.

20. Show that the codewords of even weight in a linear code C are also
a linear code.

21. If we are to use an error-correcting linear code to transmit the 128
ascii characters, what size matrix must be used? What size matrix
must be used to transmit the extended ascii character set of 256
characters? What if we require only error detection in both cases?

22. Find the canonical parity-check matrix that gives the even parity
check bit code with three information positions. What is the ma-
trix for seven information positions? What are the corresponding
standard generator matrices?

23. How many check positions are needed for a single error-correcting
code with 20 information positions? With 32 information positions?

24. Let ei be the binary n-tuple with a 1 in the ith coordinate and 0’s
elsewhere and suppose that H ∈ Mm×n(Z2). Show that Hei is the
ith column of the matrix H.
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25. Let C be an (n, k)-linear code. Define the dual or orthogonal code
of C to be

C⊥ = {x ∈ Zn2 : x · y = 0 for all y ∈ C}.

(a) Find the dual code of the linear code C where C is given by
the matrix 1 1 1 0 0

0 0 1 0 1

1 0 0 1 0

 .

(b) Show that C⊥ is an (n, n− k)-linear code.

(c) Find the standard generator and parity-check matrices of C
and C⊥. What happens in general? Prove your conjecture.

26. Let H be an m × n matrix over Z2, where the ith column is the
number i written in binary with m bits. The null space of such a
matrix is called a Hamming code.

(a) Show that the matrix

H =

0 0 0 1 1 1

0 1 1 0 0 1

1 0 1 0 1 0


generates a Hamming code. What are the error-correcting
properties of a Hamming code?

(b) The column corresponding to the syndrome also marks the bit
that was in error; that is, the ith column of the matrix is i
written as a binary number, and the syndrome immediately
tells us which bit is in error. If the received word is (101011),
compute the syndrome. In which bit did the error occur in
this case, and what codeword was originally transmitted?

(c) Give a binary matrix H for the Hamming code with six in-
formation positions and four check positions. What are the
check positions and what are the information positions? En-
code the messages (101101) and (001001). Decode the received
words (0010000101) and (0000101100). What are the possible
syndromes for this code?

(d) What is the number of check bits and the number of infor-
mation bits in an (m,n)-block Hamming code? Give both an
upper and a lower bound on the number of information bits in
terms of the number of check bits. Hamming codes having the
maximum possible number of information bits with k check
bits are called perfect. Every possible syndrome except 0 oc-
curs as a column. If the number of information bits is less than
the maximum, then the code is called shortened. In this case,
give an example showing that some syndromes can represent
multiple errors.
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8.7 Programming Exercises
1. Write a program to implement a (16, 12)-linear code. Your program

should be able to encode and decode messages using coset decoding.
Once your program is written, write a program to simulate a binary
symmetric channel with transmission noise. Compare the results of
your simulation with the theoretically predicted error probability.
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Isomorphisms

Many groups may appear to be different at first glance, but can be shown
to be the same by a simple renaming of the group elements. For example,
Z4 and the subgroup of the circle group T generated by i can be shown to
be the same by demonstrating a one-to-one correspondence between the
elements of the two groups and between the group operations. In such a
case we say that the groups are isomorphic.

9.1 Definition and Examples
Two groups (G, ·) and (H, ◦) are isomorphic if there exists a one-to-one
and onto map ϕ : G → H such that the group operation is preserved;
that is,

ϕ(a · b) = ϕ(a) ◦ ϕ(b)

for all a and b in G. If G is isomorphic to H, we write G ∼= H. The map
ϕ is called an isomorphism.

Example 9.1 To show that Z4
∼= 〈i〉, define a map ϕ : Z4 → 〈i〉 by

ϕ(n) = in. We must show that ϕ is bijective and preserves the group
operation. The map ϕ is one-to-one and onto because

ϕ(0) = 1

ϕ(1) = i

ϕ(2) = −1

ϕ(3) = −i.

Since
ϕ(m+ n) = im+n = imin = ϕ(m)ϕ(n),

the group operation is preserved. □
Example 9.2 We can define an isomorphism ϕ from the additive group of
real numbers (R,+) to the multiplicative group of positive real numbers
(R+, ·) with the exponential map; that is,

ϕ(x+ y) = ex+y = exey = ϕ(x)ϕ(y).

Of course, we must still show that ϕ is one-to-one and onto, but this can
be determined using calculus. □

121
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Example 9.3 The integers are isomorphic to the subgroup of Q∗ consist-
ing of elements of the form 2n. Define a map ϕ : Z → Q∗ by ϕ(n) = 2n.
Then

ϕ(m+ n) = 2m+n = 2m2n = ϕ(m)ϕ(n).

By definition the map ϕ is onto the subset {2n : n ∈ Z} of Q∗. To
show that the map is injective, assume that m 6= n. If we can show that
ϕ(m) 6= ϕ(n), then we are done. Suppose that m > n and assume that
ϕ(m) = ϕ(n). Then 2m = 2n or 2m−n = 1, which is impossible since
m− n > 0. □
Example 9.4 The groups Z8 and Z12 cannot be isomorphic since they
have different orders; however, it is true that U(8) ∼= U(12). We know
that

U(8) = {1, 3, 5, 7}
U(12) = {1, 5, 7, 11}.

An isomorphism ϕ : U(8) → U(12) is then given by

1 7→ 1

3 7→ 5

5 7→ 7

7 7→ 11.

The map ϕ is not the only possible isomorphism between these two groups.
We could define another isomorphism ψ by ψ(1) = 1, ψ(3) = 11, ψ(5) = 5,
ψ(7) = 7. In fact, both of these groups are isomorphic to Z2 × Z2 (see
Example 3.28, p. 41 in Chapter 3, p. 31). □
Example 9.5 Even though S3 and Z6 possess the same number of el-
ements, we would suspect that they are not isomorphic, because Z6 is
abelian and S3 is nonabelian. To demonstrate that this is indeed the
case, suppose that ϕ : Z6 → S3 is an isomorphism. Let a, b ∈ S3 be
two elements such that ab 6= ba. Since ϕ is an isomorphism, there exist
elements m and n in Z6 such that

ϕ(m) = a and ϕ(n) = b.

However,

ab = ϕ(m)ϕ(n) = ϕ(m+ n) = ϕ(n+m) = ϕ(n)ϕ(m) = ba,

which contradicts the fact that a and b do not commute. □
Theorem 9.6 Let ϕ : G → H be an isomorphism of two groups. Then
the following statements are true.

1. ϕ−1 : H → G is an isomorphism.

2. |G| = |H|.

3. If G is abelian, then H is abelian.

4. If G is cyclic, then H is cyclic.

5. If G has a subgroup of order n, then H has a subgroup of order n.
Proof. Assertions (1) and (2) follow from the fact that ϕ is a bijection.
We will prove (3) here and leave the remainder of the theorem to be
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proved in the exercises.
(3) Suppose that h1 and h2 are elements of H. Since ϕ is onto, there

exist elements g1, g2 ∈ G such that ϕ(g1) = h1 and ϕ(g2) = h2. Therefore,

h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) = ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1.

■
We are now in a position to characterize all cyclic groups.

Theorem 9.7 All cyclic groups of infinite order are isomorphic to Z.
Proof. Let G be a cyclic group with infinite order and suppose that a
is a generator of G. Define a map ϕ : Z → G by ϕ : n 7→ an. Then

ϕ(m+ n) = am+n = aman = ϕ(m)ϕ(n).

To show that ϕ is injective, suppose that m and n are two elements in Z,
where m 6= n. We can assume that m > n. We must show that am 6= an.
Let us suppose the contrary; that is, am = an. In this case am−n = e,
where m − n > 0, which contradicts the fact that a has infinite order.
Our map is onto since any element in G can be written as an for some
integer n and ϕ(n) = an. ■
Theorem 9.8 If G is a cyclic group of order n, then G is isomorphic to
Zn.
Proof. Let G be a cyclic group of order n generated by a and define a
map ϕ : Zn → G by ϕ : k 7→ ak, where 0 ≤ k < n. The proof that ϕ is an
isomorphism is one of the end-of-chapter exercises. ■
Corollary 9.9 If G is a group of order p, where p is a prime number,
then G is isomorphic to Zp.
Proof. The proof is a direct result of Corollary 6.12, p. 81. ■

The main goal in group theory is to classify all groups; however, it
makes sense to consider two groups to be the same if they are isomorphic.
We state this result in the following theorem, whose proof is left as an
exercise.
Theorem 9.10 The isomorphism of groups determines an equivalence
relation on the class of all groups.

Hence, we can modify our goal of classifying all groups to classifying
all groups up to isomorphism; that is, we will consider two groups to be
the same if they are isomorphic.

Cayley’s Theorem
Cayley proved that if G is a group, it is isomorphic to a group of permu-
tations on some set; hence, every group is a permutation group. Cayley’s
Theorem is what we call a representation theorem. The aim of represen-
tation theory is to find an isomorphism of some group G that we wish to
study into a group that we know a great deal about, such as a group of
permutations or matrices.
Example 9.11 Consider the group Z3. The Cayley table for Z3 is as
follows.
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+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

The addition table of Z3 suggests that it is the same as the permuta-
tion group G = {(0), (012), (021)}. The isomorphism here is

0 7→
(
0 1 2

0 1 2

)
= (0)

1 7→
(
0 1 2

1 2 0

)
= (0 1 2)

2 7→
(
0 1 2

2 0 1

)
= (0 2 1).

□
Theorem 9.12 Cayley. Every group is isomorphic to a group of
permutations.
Proof. Let G be a group. We must find a group of permutations G
that is isomorphic to G. For any g ∈ G, define a function λg : G→ G by
λg(a) = ga. We claim that λg is a permutation of G. To show that λg is
one-to-one, suppose that λg(a) = λg(b). Then

ga = λg(a) = λg(b) = gb.

Hence, a = b. To show that λg is onto, we must prove that for each a ∈ G,
there is a b such that λg(b) = a. Let b = g−1a.

Now we are ready to define our group G. Let

G = {λg : g ∈ G}.

We must show that G is a group under composition of functions and find
an isomorphism between G and G. We have closure under composition
of functions since

(λg ◦ λh)(a) = λg(ha) = gha = λgh(a).

Also,
λe(a) = ea = a

and
(λg−1 ◦ λg)(a) = λg−1(ga) = g−1ga = a = λe(a).

We can define an isomorphism from G to G by ϕ : g 7→ λg. The group
operation is preserved since

ϕ(gh) = λgh = λgλh = ϕ(g)ϕ(h).

It is also one-to-one, because if ϕ(g)(a) = ϕ(h)(a), then

ga = λga = λha = ha.

Hence, g = h. That ϕ is onto follows from the fact that ϕ(g) = λg for
any λg ∈ G. ■

The isomorphism g 7→ λg is known as the left regular representation
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of G.

Historical Note
Arthur Cayley was born in England in 1821, though he spent much of
the first part of his life in Russia, where his father was a merchant. Cay-
ley was educated at Cambridge, where he took the first Smith’s Prize in
mathematics. A lawyer for much of his adult life, he wrote several papers
in his early twenties before entering the legal profession at the age of
25. While practicing law he continued his mathematical research, writ-
ing more than 300 papers during this period of his life. These included
some of his best work. In 1863 he left law to become a professor at Cam-
bridge. Cayley wrote more than 900 papers in fields such as group theory,
geometry, and linear algebra. His legal knowledge was very valuable to
Cambridge; he participated in the writing of many of the university’s
statutes. Cayley was also one of the people responsible for the admission
of women to Cambridge.

9.2 Direct Products
Given two groups G and H, it is possible to construct a new group from
the Cartesian product of G and H, G × H. Conversely, given a large
group, it is sometimes possible to decompose the group; that is, a group is
sometimes isomorphic to the direct product of two smaller groups. Rather
than studying a large group G, it is often easier to study the component
groups of G.

External Direct Products
If (G, ·) and (H, ◦) are groups, then we can make the Cartesian product
of G and H into a new group. As a set, our group is just the ordered
pairs (g, h) ∈ G × H where g ∈ G and h ∈ H. We can define a binary
operation on G×H by

(g1, h1)(g2, h2) = (g1 · g2, h1 ◦ h2);

that is, we just multiply elements in the first coordinate as we do in G
and elements in the second coordinate as we do in H. We have specified
the particular operations · and ◦ in each group here for the sake of clarity;
we usually just write (g1, h1)(g2, h2) = (g1g2, h1h2).

Proposition 9.13 Let G and H be groups. The set G × H is a group
under the operation (g1, h1)(g2, h2) = (g1g2, h1h2) where g1, g2 ∈ G and
h1, h2 ∈ H.
Proof. Clearly the binary operation defined above is closed. If eG and
eH are the identities of the groups G and H respectively, then (eG, eH) is
the identity of G×H. The inverse of (g, h) ∈ G×H is (g−1, h−1). The fact
that the operation is associative follows directly from the associativity of
G and H. ■
Example 9.14 Let R be the group of real numbers under addition. The
Cartesian product of R with itself, R × R = R2, is also a group, in
which the group operation is just addition in each coordinate; that is,
(a, b)+(c, d) = (a+ c, b+d). The identity is (0, 0) and the inverse of (a, b)
is (−a,−b). □
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Example 9.15 Consider

Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Although Z2×Z2 and Z4 both contain four elements, they are not isomor-
phic. Every element (a, b) in Z2 ×Z2 other than the identity has order 2,
since (a, b) + (a, b) = (0, 0); however, Z4 is cyclic. □

The group G × H is called the external direct product of G and H.
Notice that there is nothing special about the fact that we have used only
two groups to build a new group. The direct product

n∏
i=1

Gi = G1 ×G2 × · · · ×Gn

of the groups G1, G2, . . . , Gn is defined in exactly the same manner. If
G = G1 = G2 = · · · = Gn, we often write Gn instead of G1×G2×· · ·×Gn.
Example 9.16 The group Zn2 , considered as a set, is just the set of all
binary n-tuples. The group operation is the “exclusive or” of two binary
n-tuples. For example,

(01011101) + (01001011) = (00010110).

This group is important in coding theory, in cryptography, and in many
areas of computer science. □
Theorem 9.17 Let (g, h) ∈ G×H. If g and h have finite orders r and s
respectively, then the order of (g, h) in G×H is the least common multiple
of r and s.
Proof. Suppose that m is the least common multiple of r and s and let
n = |(g, h)|. Then

(g, h)m = (gm, hm) = (eG, eH)

(gn, hn) = (g, h)n = (eG, eH).

Hence, n must divide m, and n ≤ m. However, by the second equation,
both r and s must divide n; therefore, n is a common multiple of r and s.
Since m is the least common multiple of r and s, m ≤ n. Consequently,
m must be equal to n. ■
Corollary 9.18 Let (g1, . . . , gn) ∈

∏
Gi. If gi has finite order ri in Gi,

then the order of (g1, . . . , gn) in
∏
Gi is the least common multiple of

r1, . . . , rn.
Example 9.19 Let (8, 56) ∈ Z12 × Z60. Since gcd(8, 12) = 4, the order
of 8 is 12/4 = 3 in Z12. Similarly, the order of 56 in Z60 is 15. The
least common multiple of 3 and 15 is 15; hence, (8, 56) has order 15 in
Z12 × Z60. □
Example 9.20 The group Z2 × Z3 consists of the pairs

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2).

In this case, unlike that of Z2 × Z2 and Z4, it is true that Z2 × Z3
∼= Z6.

We need only show that Z2 × Z3 is cyclic. It is easy to see that (1, 1) is
a generator for Z2 × Z3. □

The next theorem tells us exactly when the direct product of two
cyclic groups is cyclic.
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Theorem 9.21 The group Zm × Zn is isomorphic to Zmn if and only if
gcd(m,n) = 1.
Proof. We will first show that if Zm × Zn ∼= Zmn, then gcd(m,n) = 1.
We will prove the contrapositive; that is, we will show that if gcd(m,n) =
d > 1, then Zm × Zn cannot be cyclic. Notice that mn/d is divisible by
both m and n; hence, for any element (a, b) ∈ Zm × Zn,

(a, b) + (a, b) + · · ·+ (a, b)︸ ︷︷ ︸
mn/d times

= (0, 0).

Therefore, no (a, b) can generate all of Zm × Zn.
The converse follows directly from Theorem 9.17, p. 126 since lcm(m,n) =

mn if and only if gcd(m,n) = 1. ■
Corollary 9.22 Let n1, . . . , nk be positive integers. Then

k∏
i=1

Zni
∼= Zn1···nk

if and only if gcd(ni, nj) = 1 for i 6= j.

Corollary 9.23 If
m = pe11 · · · pekk ,

where the pis are distinct primes, then

Zm ∼= Zpe11 × · · · × Zpekk .
Proof. Since the greatest common divisor of peii and p

ej
j is 1 for i 6= j,

the proof follows from Corollary 9.22, p. 127. ■
In Chapter 13, p. 165, we will prove that all finite abelian groups are

isomorphic to direct products of the form

Zpe11 × · · · × Zpekk
where p1, . . . , pk are (not necessarily distinct) primes.

Internal Direct Products
The external direct product of two groups builds a large group out of
two smaller groups. We would like to be able to reverse this process
and conveniently break down a group into its direct product components;
that is, we would like to be able to say when a group is isomorphic to the
direct product of two of its subgroups.

Let G be a group with subgroups H and K satisfying the following
conditions.

• G = HK = {hk : h ∈ H, k ∈ K};

• H ∩K = {e};

• hk = kh for all k ∈ K and h ∈ H.

Then G is the internal direct product of H and K.

Example 9.24 The group U(8) is the internal direct product of

H = {1, 3} and K = {1, 5}.

□
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Example 9.25 The dihedral group D6 is an internal direct product of
its two subgroups

H = {id, r3} and K = {id, r2, r4, s, r2s, r4s}.

It can easily be shown that K ∼= S3; consequently, D6
∼= Z2 × S3. □

Example 9.26 Not every group can be written as the internal direct
product of two of its proper subgroups. If the group S3 were an inter-
nal direct product of its proper subgroups H and K, then one of the
subgroups, say H, would have to have order 3. In this case H is the
subgroup {(1), (123), (132)}. The subgroup K must have order 2, but no
matter which subgroup we choose for K, the condition that hk = kh will
never be satisfied for h ∈ H and k ∈ K. □
Theorem 9.27 Let G be the internal direct product of subgroups H and
K. Then G is isomorphic to H ×K.
Proof. Since G is an internal direct product, we can write any element
g ∈ G as g = hk for some h ∈ H and some k ∈ K. Define a map
ϕ : G→ H ×K by ϕ(g) = (h, k).

The first problem that we must face is to show that ϕ is a well-defined
map; that is, we must show that h and k are uniquely determined by g.
Suppose that g = hk = h′k′. Then h−1h′ = k(k′)−1 is in both H and K,
so it must be the identity. Therefore, h = h′ and k = k′, which proves
that ϕ is, indeed, well-defined.

To show that ϕ preserves the group operation, let g1 = h1k1 and
g2 = h2k2 and observe that

ϕ(g1g2) = ϕ(h1k1h2k2)

= ϕ(h1h2k1k2)

= (h1h2, k1k2)

= (h1, k1)(h2, k2)

= ϕ(g1)ϕ(g2).

We will leave the proof that ϕ is one-to-one and onto as an exercise. ■
Example 9.28 The group Z6 is an internal direct product isomorphic to
{0, 2, 4} × {0, 3}. □

We can extend the definition of an internal direct product of G to a
collection of subgroups H1,H2, . . . , Hn of G, by requiring that

• G = H1H2 · · ·Hn = {h1h2 · · ·hn : hi ∈ Hi};

• Hi ∩ 〈∪j ̸=iHj〉 = {e};

• hihj = hjhi for all hi ∈ Hi and hj ∈ Hj .

We will leave the proof of the following theorem as an exercise.
Theorem 9.29 Let G be the internal direct product of subgroups Hi,
where i = 1, 2, . . . , n. Then G is isomorphic to

∏
iHi.

Sage. Sage can quickly determine if two permutation groups are iso-
morphic, even though this should, in theory, be a very difficult computa-
tion.
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9.3 Reading Questions

1. Determine the order of (1, 2) in Z4 × Z8.
2. List three properties of a group that are preserved by an isomor-

phism.
3. Find a group isomorphic to Z15 that is an external direct product of

two non-trivial groups.
4. Explain why we can now say “the infinite cyclic group”?
5. Compare and contrast external direct products and internal direct

products.

9.4 Exercises
1. Prove that Z ∼= nZ for n 6= 0.
2. Prove that C∗ is isomorphic to the subgroup of GL2(R) consisting

of matrices of the form (
a b

−b a

)
.

3. Prove or disprove: U(8) ∼= Z4.
4. Prove that U(8) is isomorphic to the group of matrices(

1 0

0 1

)
,

(
1 0

0 −1

)
,

(
−1 0

0 1

)
,

(
−1 0

0 −1

)
.

5. Show that U(5) is isomorphic to U(10), but U(12) is not.
6. Show that the nth roots of unity are isomorphic to Zn.
7. Show that any cyclic group of order n is isomorphic to Zn.
8. Prove that Q is not isomorphic to Z.
9. Let G = R \ {−1} and define a binary operation on G by

a ∗ b = a+ b+ ab.

Prove that G is a group under this operation. Show that (G, ∗) is
isomorphic to the multiplicative group of nonzero real numbers.

10. Show that the matrices1 0 0

0 1 0

0 0 1

 1 0 0

0 0 1

0 1 0

 0 1 0

1 0 0

0 0 1


0 0 1

1 0 0

0 1 0

 0 0 1

0 1 0

1 0 0

 0 1 0

0 0 1

1 0 0


form a group. Find an isomorphism of G with a more familiar group
of order 6.

11. Find five non-isomorphic groups of order 8.
12. Prove S4 is not isomorphic to D12.
13. Let ω = cis(2π/n) be a primitive nth root of unity. Prove that the



130 CHAPTER 9. ISOMORPHISMS

matrices
A =

(
ω 0

0 ω−1

)
and B =

(
0 1

1 0

)
generate a multiplicative group isomorphic to Dn.

14. Show that the set of all matrices of the form(
±1 k

0 1

)
,

is a group isomorphic to Dn, where all entries in the matrix are in
Zn.

15. List all of the elements of Z4 × Z2.
16. Find the order of each of the following elements.

(a) (3, 4) in Z4 × Z6

(b) (6, 15, 4) in Z30 × Z45 × Z24

(c) (5, 10, 15) in Z25 × Z25 × Z25

(d) (8, 8, 8) in Z10 × Z24 × Z80

17. Prove that D4 cannot be the internal direct product of two of its
proper subgroups.

18. Prove that the subgroup of Q∗ consisting of elements of the form
2m3n for m,n ∈ Z is an internal direct product isomorphic to Z×Z.

19. Prove that S3 ×Z2 is isomorphic to D6. Can you make a conjecture
about D2n? Prove your conjecture.

20. Prove or disprove: Every abelian group of order divisible by 3 con-
tains a subgroup of order 3.

21. Prove or disprove: Every nonabelian group of order divisible by 6
contains a subgroup of order 6.

22. Let G be a group of order 20. If G has subgroups H and K of orders
4 and 5 respectively such that hk = kh for all h ∈ H and k ∈ K,
prove that G is the internal direct product of H and K.

23. Prove or disprove the following assertion. Let G, H, and K be
groups. If G×K ∼= H ×K, then G ∼= H.

24. Prove or disprove: There is a noncyclic abelian group of order 51.
25. Prove or disprove: There is a noncyclic abelian group of order 52.
26. Let ϕ : G → H be a group isomorphism. Show that ϕ(x) = eH if

and only if x = eG, where eG and eH are the identities of G and H,
respectively.

27. Let G ∼= H. Show that if G is cyclic, then so is H.
28. Prove that any group G of order p, p prime, must be isomorphic to

Zp.
29. Show that Sn is isomorphic to a subgroup of An+2.
30. Prove that Dn is isomorphic to a subgroup of Sn.
31. Let ϕ : G1 → G2 and ψ : G2 → G3 be isomorphisms. Show that

ϕ−1 and ψ◦ϕ are both isomorphisms. Using these results, show that
the isomorphism of groups determines an equivalence relation on the
class of all groups.
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32. Prove U(5) ∼= Z4. Can you generalize this result for U(p), where p
is prime?

33. Write out the permutations associated with each element of S3 in
the proof of Cayley’s Theorem.

34. An automorphism of a group G is an isomorphism with itself. Prove
that complex conjugation is an automorphism of the additive group
of complex numbers; that is, show that the map ϕ(a + bi) = a − bi
is an isomorphism from C to C.

35. Prove that a+ ib 7→ a− ib is an automorphism of C∗.
36. Prove that A 7→ B−1AB is an automorphism of SL2(R) for all B in

GL2(R).
37. We will denote the set of all automorphisms of G by Aut(G). Prove

that Aut(G) is a subgroup of SG, the group of permutations of G.
38. Find Aut(Z6).
39. Find Aut(Z).
40. Find two nonisomorphic groupsG andH such that Aut(G) ∼= Aut(H).
41. Let G be a group and g ∈ G. Define a map ig : G → G by

ig(x) = gxg−1. Prove that ig defines an automorphism of G. Such
an automorphism is called an inner automorphism. The set of all
inner automorphisms is denoted by Inn(G).

42. Prove that Inn(G) is a subgroup of Aut(G).
43. What are the inner automorphisms of the quaternion group Q8? Is

Inn(G) = Aut(G) in this case?
44. Let G be a group and g ∈ G. Define maps λg : G → G and ρg :

G→ G by λg(x) = gx and ρg(x) = xg−1. Show that ig = ρg ◦ λg is
an automorphism of G. The isomorphism g 7→ ρg is called the right
regular representation of G.

45. Let G be the internal direct product of subgroups H and K. Show
that the map ϕ : G → H ×K defined by ϕ(g) = (h, k) for g = hk,
where h ∈ H and k ∈ K, is one-to-one and onto.

46. Let G and H be isomorphic groups. If G has a subgroup of order n,
prove that H must also have a subgroup of order n.

47. If G ∼= G and H ∼= H, show that G×H ∼= G×H.
48. Prove that G×H is isomorphic to H ×G.
49. Let n1, . . . , nk be positive integers. Show that

k∏
i=1

Zni
∼= Zn1···nk

if and only if gcd(ni, nj) = 1 for i 6= j.
50. Prove that A×B is abelian if and only if A and B are abelian.
51. If G is the internal direct product of H1,H2, . . . , Hn, prove that G

is isomorphic to
∏
iHi.

52. Let H1 and H2 be subgroups of G1 and G2, respectively. Prove that
H1 ×H2 is a subgroup of G1 ×G2.

53. Let m,n ∈ Z. Prove that 〈m,n〉 = 〈d〉 if and only if d = gcd(m,n).
54. Let m,n ∈ Z. Prove that 〈m〉∩〈n〉 = 〈l〉 if and only if l = lcm(m,n).
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55. Groups of order 2p. In this series of exercises we will classify all
groups of order 2p, where p is an odd prime.

(a) Assume G is a group of order 2p, where p is an odd prime. If
a ∈ G, show that a must have order 1, 2, p, or 2p.

(b) Suppose that G has an element of order 2p. Prove that G is
isomorphic to Z2p. Hence, G is cyclic.

(c) Suppose that G does not contain an element of order 2p. Show
that G must contain an element of order p. Hint: Assume that
G does not contain an element of order p.

(d) Suppose that G does not contain an element of order 2p. Show
that G must contain an element of order 2.

(e) Let P be a subgroup of G with order p and y ∈ G have order
2. Show that yP = Py.

(f) Suppose that G does not contain an element of order 2p and
P = 〈z〉 is a subgroup of order p generated by z. If y is an
element of order 2, then yz = zky for some 2 ≤ k < p.

(g) Suppose that G does not contain an element of order 2p. Prove
that G is not abelian.

(h) Suppose that G does not contain an element of order 2p and
P = 〈z〉 is a subgroup of order p generated by z and y is an
element of order 2. Show that we can list the elements of G as
{ziyj | 0 ≤ i < p, 0 ≤ j < 2}.

(i) Suppose that G does not contain an element of order 2p and
P = 〈z〉 is a subgroup of order p generated by z and y is an
element of order 2. Prove that the product (ziyj)(zrys) can be
expressed as a uniquely as zmyn for some non negative integers
m,n. Thus, conclude that there is only one possibility for a
non-abelian group of order 2p, it must therefore be the one we
have seen already, the dihedral group.
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Normal Subgroups and Factor Groups

If H is a subgroup of a group G, then right cosets are not always the
same as left cosets; that is, it is not always the case that gH = Hg for all
g ∈ G. The subgroups for which this property holds play a critical role
in group theory—they allow for the construction of a new class of groups,
called factor or quotient groups. Factor groups may be studied directly
or by using homomorphisms, a generalization of isomorphisms. We will
study homomorphisms in Chapter 11, p. 141.

10.1 Factor Groups and Normal Subgroups

Normal Subgroups
A subgroup H of a group G is normal in G if gH = Hg for all g ∈ G.
That is, a normal subgroup of a group G is one in which the right and
left cosets are precisely the same.
Example 10.1 Let G be an abelian group. Every subgroup H of G is a
normal subgroup. Since gh = hg for all g ∈ G and h ∈ H, it will always
be the case that gH = Hg. □
Example 10.2 Let H be the subgroup of S3 consisting of elements (1)
and (12). Since

(123)H = {(1 2 3), (1 3)} and H(1 2 3) = {(1 2 3), (2 3)},

H cannot be a normal subgroup of S3. However, the subgroup N , con-
sisting of the permutations (1), (1 2 3), and (1 3 2), is normal since the
cosets of N are

N = {(1), (1 2 3), (1 3 2)}
(1 2)N = N(1 2) = {(1 2), (1 3), (2 3)}.

□
The following theorem is fundamental to our understanding of normal

subgroups.
Theorem 10.3 Let G be a group and N be a subgroup of G. Then the
following statements are equivalent.

1. The subgroup N is normal in G.

133
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2. For all g ∈ G, gNg−1 ⊂ N .

3. For all g ∈ G, gNg−1 = N .
Proof. (1) ⇒ (2). Since N is normal in G, gN = Ng for all g ∈ G.
Hence, for a given g ∈ G and n ∈ N , there exists an n′ in N such that
gn = n′g. Therefore, gng−1 = n′ ∈ N or gNg−1 ⊂ N .

(2) ⇒ (3). Let g ∈ G. Since gNg−1 ⊂ N , we need only show N ⊂
gNg−1. For n ∈ N , g−1ng = g−1n(g−1)−1 ∈ N . Hence, g−1ng = n′ for
some n′ ∈ N . Therefore, n = gn′g−1 is in gNg−1.

(3) ⇒ (1). Suppose that gNg−1 = N for all g ∈ G. Then for any
n ∈ N there exists an n′ ∈ N such that gng−1 = n′. Consequently,
gn = n′g or gN ⊂ Ng. Similarly, Ng ⊂ gN . ■

Factor Groups
If N is a normal subgroup of a group G, then the cosets of N in G form a
group G/N under the operation (aN)(bN) = abN . This group is called
the factor or quotient group of G and N . Our first task is to prove that
G/N is indeed a group.

Theorem 10.4 Let N be a normal subgroup of a group G. The cosets of
N in G form a group G/N of order [G : N ].
Proof. The group operation on G/N is (aN)(bN) = abN . This opera-
tion must be shown to be well-defined; that is, group multiplication must
be independent of the choice of coset representative. Let aN = bN and
cN = dN . We must show that

(aN)(cN) = acN = bdN = (bN)(dN).

Then a = bn1 and c = dn2 for some n1 and n2 in N . Hence,

acN = bn1dn2N

= bn1dN

= bn1Nd

= bNd

= bdN .

The remainder of the theorem is easy: eN = N is the identity and g−1N
is the inverse of gN . The order of G/N is, of course, the number of cosets
of N in G. ■

It is very important to remember that the elements in a factor group
are sets of elements in the original group.

Example 10.5 Consider the normal subgroup of S3, N = {(1), (1 2 3), (1 3 2)}.
The cosets of N in S3 are N and (12)N . The factor group S3/N has the
following multiplication table.

N (1 2)N

N N (1 2)N

(1 2)N (1 2)N N

This group is isomorphic to Z2. At first, multiplying cosets seems
both complicated and strange; however, notice that S3/N is a smaller
group. The factor group displays a certain amount of information about
S3. Actually, N = A3, the group of even permutations, and (1 2)N =
{(1 2), (1 3), (2 3)} is the set of odd permutations. The information cap-
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tured in G/N is parity; that is, multiplying two even or two odd per-
mutations results in an even permutation, whereas multiplying an odd
permutation by an even permutation yields an odd permutation. □
Example 10.6 Consider the normal subgroup 3Z of Z. The cosets of 3Z
in Z are

0 + 3Z = {. . . ,−3, 0, 3, 6, . . .}
1 + 3Z = {. . . ,−2, 1, 4, 7, . . .}
2 + 3Z = {. . . ,−1, 2, 5, 8, . . .}.

The group Z/3Z is given by the Cayley table below.

+ 0 + 3Z 1 + 3Z 2 + 3Z
0 + 3Z 0 + 3Z 1 + 3Z 2 + 3Z
1 + 3Z 1 + 3Z 2 + 3Z 0 + 3Z
2 + 3Z 2 + 3Z 0 + 3Z 1 + 3Z

In general, the subgroup nZ of Z is normal. The cosets of Z/nZ are

nZ
1 + nZ
2 + nZ

...
(n− 1) + nZ.

The sum of the cosets k + nZ and l + nZ is k + l + nZ. Notice that we
have written our cosets additively, because the group operation is integer
addition. □
Example 10.7 Consider the dihedral group Dn, generated by the two
elements r and s, satisfying the relations

rn = id
s2 = id
srs = r−1.

The element r actually generates the cyclic subgroup of rotations, Rn, of
Dn. Since srs−1 = srs = r−1 ∈ Rn, the group of rotations is a normal
subgroup of Dn; therefore, Dn/Rn is a group. Since there are exactly
two elements in this group, it must be isomorphic to Z2. □

10.2 The Simplicity of the Alternating Group
Of special interest are groups with no nontrivial normal subgroups. Such
groups are called simple groups. Of course, we already have a whole class
of examples of simple groups, Zp, where p is prime. These groups are triv-
ially simple since they have no proper subgroups other than the subgroup
consisting solely of the identity. Other examples of simple groups are not
so easily found. We can, however, show that the alternating group, An,
is simple for n ≥ 5. The proof of this result requires several lemmas.
Lemma 10.8 The alternating group An is generated by 3-cycles for n ≥ 3.
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Proof. To show that the 3-cycles generate An, we need only show that
any pair of transpositions can be written as the product of 3-cycles. Since
(a, b) = (b, a), every pair of transpositions must be one of the following:

(a, b)(a, b) = id
(a, b)(c, d) = (a, c, b)(a, c, d)

(a, b)(a, c) = (a, c, b).

■
Lemma 10.9 Let N be a normal subgroup of An, where n ≥ 3. If N
contains a 3-cycle, then N = An.
Proof. We will first show that An is generated by 3-cycles of the specific
form (i, j, k), where i and j are fixed in {1, 2, . . . , n} and we let k vary.
Every 3-cycle is the product of 3-cycles of this form, since

(i, a, j) = (i, j, a)2

(i, a, b) = (i, j, b)(i, j, a)2

(j, a, b) = (i, j, b)2(i, j, a)

(a, b, c) = (i, j, a)2(i, j, c)(i, j, b)2(i, j, a).

Now suppose that N is a nontrivial normal subgroup of An for n ≥ 3
such that N contains a 3-cycle of the form (i, j, a). Using the normality
of N , we see that

[(i, j)(a, k)](i, j, a)2[(i, j)(a, k)]−1 = (i, j, k)

is in N . Hence, N must contain all of the 3-cycles (i, j, k) for 1 ≤ k ≤ n.
By Lemma 10.8, p. 135, these 3-cycles generate An; hence, N = An. ■
Lemma 10.10 For n ≥ 5, every nontrivial normal subgroup N of An
contains a 3-cycle.
Proof. Let σ be an arbitrary element in a normal subgroup N . There
are several possible cycle structures for σ.

• σ is a 3-cycle.

• σ is the product of disjoint cycles, σ = τ(a1, a2, . . . , ar) ∈ N , where
r > 3.

• σ is the product of disjoint cycles, σ = τ(a1, a2, a3)(a4, a5, a6).

• σ = τ(a1, a2, a3), where τ is the product of disjoint 2-cycles.

• σ = τ(a1, a2)(a3, a4), where τ is the product of an even number of
disjoint 2-cycles.

If σ is a 3-cycle, then we are done. If N contains a product of disjoint
cycles, σ, and at least one of these cycles has length greater than 3, say
σ = τ(a1, a2, . . . , ar), then

(a1, a2, a3)σ(a1, a2, a3)
−1

is in N since N is normal; hence,

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1

is also in N . Since

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1 = σ−1(a1, a2, a3)σ(a1, a3, a2)
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= (a1, a2, . . . , ar)
−1τ−1(a1, a2, a3)τ(a1, a2, . . . , ar)(a1, a3, a2)

= (a1, ar, ar−1, . . . , a2)(a1, a2, a3)(a1, a2, . . . , ar)(a1, a3, a2)

= (a1, a3, ar),

N must contain a 3-cycle; hence, N = An.
Now suppose that N contains a disjoint product of the form

σ = τ(a1, a2, a3)(a4, a5, a6).

Then
σ−1(a1, a2, a4)σ(a1, a2, a4)

−1 ∈ N

since
(a1, a2, a4)σ(a1, a2, a4)

−1 ∈ N .

So

σ−1(a1, a2, a4)σ(a1, a2, a4)
−1 = [τ(a1, a2, a3)(a4, a5, a6)]

−1(a1, a2, a4)τ(a1, a2, a3)(a4, a5, a6)(a1, a2, a4)
−1

= (a4, a6, a5)(a1, a3, a2)τ
−1(a1, a2, a4)τ(a1, a2, a3)(a4, a5, a6)(a1, a4, a2)

= (a4, a6, a5)(a1, a3, a2)(a1, a2, a4)(a1, a2, a3)(a4, a5, a6)(a1, a4, a2)

= (a1, a4, a2, a6, a3).

So N contains a disjoint cycle of length greater than 3, and we can apply
the previous case.

Suppose N contains a disjoint product of the form σ = τ(a1, a2, a3),
where τ is the product of disjoint 2-cycles. Since σ ∈ N , σ2 ∈ N , and

σ2 = τ(a1, a2, a3)τ(a1, a2, a3)

= (a1, a3, a2).

So N contains a 3-cycle.
The only remaining possible case is a disjoint product of the form

σ = τ(a1, a2)(a3, a4),

where τ is the product of an even number of disjoint 2-cycles. But

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1

is in N since (a1, a2, a3)σ(a1, a2, a3)
−1 is in N ; and so

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1 = τ−1(a1, a2)(a3, a4)(a1, a2, a3)τ(a1, a2)(a3, a4)(a1, a2, a3)

−1

= (a1, a3)(a2, a4).

Since n ≥ 5, we can find b ∈ {1, 2, . . . , n} such that b 6= a1, a2, a3, a4. Let
µ = (a1, a3, b). Then

µ−1(a1, a3)(a2, a4)µ(a1, a3)(a2, a4) ∈ N

and

µ−1(a1, a3)(a2, a4)µ(a1, a3)(a2, a4) = (a1, ba3)(a1, a3)(a2, a4)(a1, a3, b)(a1, a3)(a2, a4)

= (a1a3b).

Therefore, N contains a 3-cycle. This completes the proof of the lemma.
■
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Theorem 10.11 The alternating group, An, is simple for n ≥ 5.
Proof. Let N be a normal subgroup of An. By Lemma 10.10, p. 136,
N contains a 3-cycle. By Lemma 10.9, p. 136, N = An; therefore, An
contains no proper nontrivial normal subgroups for n ≥ 5. ■

Sage. Sage can easily determine if a subgroup is normal or not. If so,
it can create the quotient group. However, the construction creates a
new permuation group, isomorphic to the quotient group, so its utility is
limited.

Historical Note
One of the foremost problems of group theory has been to classify all
simple finite groups. This problem is over a century old and has been
solved only in the last few decades of the twentieth century. In a sense,
finite simple groups are the building blocks of all finite groups. The first
nonabelian simple groups to be discovered were the alternating groups.
Galois was the first to prove that A5 was simple. Later, mathematicians
such as C. Jordan and L. E. Dickson found several infinite families of
matrix groups that were simple. Other families of simple groups were
discovered in the 1950s. At the turn of the century, William Burnside
conjectured that all nonabelian simple groups must have even order. In
1963, W. Feit and J. Thompson proved Burnside’s conjecture and pub-
lished their results in the paper “Solvability of Groups of Odd Order,”
which appeared in the Pacific Journal of Mathematics. Their proof, run-
ning over 250 pages, gave impetus to a program in the 1960s and 1970s to
classify all finite simple groups. Daniel Gorenstein was the organizer of
this remarkable effort. One of the last simple groups was the “Monster,”
discovered by R. Greiss. The Monster, a 196,833× 196,833 matrix group,
is one of the 26 sporadic, or special, simple groups. These sporadic simple
groups are groups that fit into no infinite family of simple groups. Some
of the sporadic groups play an important role in physics.

10.3 Reading Questions
1. Let G be the group of symmetries of an equilateral triangle, ex-

pressed as permutations of the vertices numbered 1, 2, 3. Let H be
the subgroup H = 〈(1 2)〉. Build the left and right cosets of H in G.

2. Based on your answer to the previous question, is H normal in G?
Explain why or why not.

3. The subgroup 8Z is normal in Z. In the factor group Z/8Z perform
the computation (3 + 8Z) + (7 + 8Z).

4. List two statements about a group G and a subgroup H that are
equivalent to “H is normal in G.”

5. In your own words, what is a factor group?

10.4 Exercises
1. For each of the following groups G, determine whether H is a normal

subgroup of G. If H is a normal subgroup, write out a Cayley table
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for the factor group G/H.
(a) G = S4 and H = A4

(b) G = A5 and H = {(1), (1 2 3), (1 3 2)}

(c) G = S4 and H = D4

(d) G = Q8 and H = {1,−1, I,−I}

(e) G = Z and H = 5Z
2. Find all the subgroups of D4. Which subgroups are normal? What

are all the factor groups of D4 up to isomorphism?
3. Find all the subgroups of the quaternion group, Q8. Which sub-

groups are normal? What are all the factor groups of Q8 up to
isomorphism?

4. Let T be the group of nonsingular upper triangular 2 × 2 matrices
with entries in R; that is, matrices of the form(

a b

0 c

)
,

where a, b, c ∈ R and ac 6= 0. Let U consist of matrices of the form(
1 x

0 1

)
,

where x ∈ R.
(a) Show that U is a subgroup of T .

(b) Prove that U is abelian.

(c) Prove that U is normal in T .

(d) Show that T/U is abelian.

(e) Is T normal in GL2(R)?
5. Show that the intersection of two normal subgroups is a normal

subgroup.
6. If G is abelian, prove that G/H must also be abelian.
7. Prove or disprove: If H is a normal subgroup of G such that H and

G/H are abelian, then G is abelian.
8. If G is cyclic, prove that G/H must also be cyclic.
9. Prove or disprove: If H and G/H are cyclic, then G is cyclic.
10. Let H be a subgroup of index 2 of a group G. Prove that H must be

a normal subgroup of G. Conclude that Sn is not simple for n ≥ 3.
11. If a group G has exactly one subgroup H of order k, prove that H

is normal in G.
12. Define the centralizer of an element g in a group G to be the set

C(g) = {x ∈ G : xg = gx}.

Show that C(g) is a subgroup of G. If g generates a normal subgroup
of G, prove that C(g) is normal in G.
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13. Recall that the center of a group G is the set

Z(G) = {x ∈ G : xg = gx for all g ∈ G}.

(a) Calculate the center of S3.

(b) Calculate the center of GL2(R).

(c) Show that the center of any group G is a normal subgroup of
G.

(d) If G/Z(G) is cyclic, show that G is abelian.
14. Let G be a group and let G′ = 〈aba−1b−1〉; that is, G′ is the subgroup

of all finite products of elements in G of the form aba−1b−1. The
subgroup G′ is called the commutator subgroup of G.

(a) Show that G′ is a normal subgroup of G.

(b) Let N be a normal subgroup of G. Prove that G/N is abelian
if and only if N contains the commutator subgroup of G.



11

Homomorphisms

One of the basic ideas of algebra is the concept of a homomorphism, a
natural generalization of an isomorphism. If we relax the requirement
that an isomorphism of groups be bijective, we have a homomorphism.

11.1 Group Homomorphisms
A homomorphism between groups (G, ·) and (H, ◦) is a map ϕ : G → H
such that

ϕ(g1 · g2) = ϕ(g1) ◦ ϕ(g2)
for g1, g2 ∈ G. The range of ϕ in H is called the homomorphic image of
ϕ.

Two groups are related in the strongest possible way if they are iso-
morphic; however, a weaker relationship may exist between two groups.
For example, the symmetric group Sn and the group Z2 are related by the
fact that Sn can be divided into even and odd permutations that exhibit
a group structure like that Z2, as shown in the following multiplication
table.

even odd
even even odd
odd odd even

We use homomorphisms to study relationships such as the one we
have just described.
Example 11.1 Let G be a group and g ∈ G. Define a map ϕ : Z → G
by ϕ(n) = gn. Then ϕ is a group homomorphism, since

ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n).

This homomorphism maps Z onto the cyclic subgroup of G generated by
g. □
Example 11.2 Let G = GL2(R). If

A =

(
a b

c d

)
is in G, then the determinant is nonzero; that is, det(A) = ad − bc 6= 0.
Also, for any two elements A and B in G, det(AB) = det(A)det(B).

141



142 CHAPTER 11. HOMOMORPHISMS

Using the determinant, we can define a homomorphism ϕ : GL2(R) → R∗

by A 7→ det(A). □
Example 11.3 Recall that the circle group T consists of all complex
numbers z such that |z| = 1. We can define a homomorphism ϕ from the
additive group of real numbers R to T by ϕ : θ 7→ cos θ + i sin θ. Indeed,

ϕ(α+ β) = cos(α+ β) + i sin(α+ β)

= (cosα cosβ − sinα sinβ) + i(sinα cosβ + cosα sinβ)
= (cosα+ i sinα)(cosβ + i sinβ)
= ϕ(α)ϕ(β).

Geometrically, we are simply wrapping the real line around the circle in
a group-theoretic fashion. □

The following proposition lists some basic properties of group homo-
morphisms.
Proposition 11.4 Let ϕ : G1 → G2 be a homomorphism of groups. Then

1. If e is the identity of G1, then ϕ(e) is the identity of G2;

2. For any element g ∈ G1, ϕ(g−1) = [ϕ(g)]−1;

3. If H1 is a subgroup of G1, then ϕ(H1) is a subgroup of G2;

4. If H2 is a subgroup of G2, then ϕ−1(H2) = {g ∈ G1 : ϕ(g) ∈ H2}
is a subgroup of G1. Furthermore, if H2 is normal in G2, then
ϕ−1(H2) is normal in G1.

Proof. (1) Suppose that e and e′ are the identities of G1 and G2,
respectively; then

e′ϕ(e) = ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e).

By cancellation, ϕ(e) = e′.
(2) This statement follows from the fact that

ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(e) = e′.

(3) The set ϕ(H1) is nonempty since the identity of G2 is in ϕ(H1).
Suppose that H1 is a subgroup of G1 and let x and y be in ϕ(H1). There
exist elements a, b ∈ H1 such that ϕ(a) = x and ϕ(b) = y. Since

xy−1 = ϕ(a)[ϕ(b)]−1 = ϕ(ab−1) ∈ ϕ(H1),

ϕ(H1) is a subgroup of G2 by Proposition 3.31, p. 42.
(4) Let H2 be a subgroup of G2 and define H1 to be ϕ−1(H2); that

is, H1 is the set of all g ∈ G1 such that ϕ(g) ∈ H2. The identity is in
H1 since ϕ(e) = e′. If a and b are in H1, then ϕ(ab−1) = ϕ(a)[ϕ(b)]−1 is
in H2 since H2 is a subgroup of G2. Therefore, ab−1 ∈ H1 and H1 is a
subgroup of G1. If H2 is normal in G2, we must show that g−1hg ∈ H1

for h ∈ H1 and g ∈ G1. But

ϕ(g−1hg) = [ϕ(g)]−1ϕ(h)ϕ(g) ∈ H2,

since H2 is a normal subgroup of G2. Therefore, g−1hg ∈ H1. ■
Let ϕ : G → H be a group homomorphism and suppose that e is the

identity of H. By Proposition 11.4, p. 142, ϕ−1({e}) is a subgroup of G.
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This subgroup is called the kernel of ϕ and will be denoted by kerϕ. In
fact, this subgroup is a normal subgroup of G since the trivial subgroup
is normal in H. We state this result in the following theorem, which says
that with every homomorphism of groups we can naturally associate a
normal subgroup.
Theorem 11.5 Let ϕ : G → H be a group homomorphism. Then the
kernel of ϕ is a normal subgroup of G.
Example 11.6 Let us examine the homomorphism ϕ : GL2(R) → R∗

defined by A 7→ det(A). Since 1 is the identity of R∗, the kernel of this
homomorphism is all 2 × 2 matrices having determinant one. That is,
kerϕ = SL2(R). □
Example 11.7 The kernel of the group homomorphism ϕ : R → C∗

defined by ϕ(θ) = cos θ + i sin θ is {2πn : n ∈ Z}. Notice that kerϕ ∼= Z.
□

Example 11.8 Suppose that we wish to determine all possible homomor-
phisms ϕ from Z7 to Z12. Since the kernel of ϕ must be a subgroup of
Z7, there are only two possible kernels, {0} and all of Z7. The image of
a subgroup of Z7 must be a subgroup of Z12. Hence, there is no injective
homomorphism; otherwise, Z12 would have a subgroup of order 7, which
is impossible. Consequently, the only possible homomorphism from Z7

to Z12 is the one mapping all elements to zero. □
Example 11.9 Let G be a group. Suppose that g ∈ G and ϕ is the
homomorphism from Z to G given by ϕ(n) = gn. If the order of g is
infinite, then the kernel of this homomorphism is {0} since ϕ maps Z
onto the cyclic subgroup of G generated by g. However, if the order of g
is finite, say n, then the kernel of ϕ is nZ. □

11.2 The Isomorphism Theorems
Although it is not evident at first, factor groups correspond exactly
to homomorphic images, and we can use factor groups to study homo-
morphisms. We already know that with every group homomorphism
ϕ : G→ H we can associate a normal subgroup of G, kerϕ. The converse
is also true; that is, every normal subgroup of a group G gives rise to
homomorphism of groups.

Let H be a normal subgroup of G. Define the natural or canonical
homomorphism

ϕ : G→ G/H

by
ϕ(g) = gH.

This is indeed a homomorphism, since

ϕ(g1g2) = g1g2H = g1Hg2H = ϕ(g1)ϕ(g2).

The kernel of this homomorphism is H. The following theorems describe
the relationships between group homomorphisms, normal subgroups, and
factor groups.
Theorem 11.10 First Isomorphism Theorem. If ψ : G → H is
a group homomorphism with K = kerψ, then K is normal in G. Let
ϕ : G → G/K be the canonical homomorphism. Then there exists a
unique isomorphism η : G/K → ψ(G) such that ψ = ηϕ.
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Proof. We already know that K is normal in G. Define η : G/K →
ψ(G) by η(gK) = ψ(g). We first show that η is a well-defined map. If
g1K = g2K, then for some k ∈ K, g1k = g2; consequently,

η(g1K) = ψ(g1) = ψ(g1)ψ(k) = ψ(g1k) = ψ(g2) = η(g2K).

Thus, η does not depend on the choice of coset representatives and the
map η : G/K → ψ(G) is uniquely defined since ψ = ηϕ. We must also
show that η is a homomorphism. Indeed,

η(g1Kg2K) = η(g1g2K)

= ψ(g1g2)

= ψ(g1)ψ(g2)

= η(g1K)η(g2K).

Clearly, η is onto ψ(G). To show that η is one-to-one, suppose that
η(g1K) = η(g2K). Then ψ(g1) = ψ(g2). This implies that ψ(g−1

1 g2) = e,
or g−1

1 g2 is in the kernel of ψ; hence, g−1
1 g2K = K; that is, g1K = g2K.

■
Mathematicians often use diagrams called commutative diagrams to

describe such theorems. The following diagram “commutes” since ψ =
ηϕ.

G H

G/K

ψ

ϕ η

Example 11.11 Let G be a cyclic group with generator g. Define a map
ϕ : Z → G by n 7→ gn. This map is a surjective homomorphism since

ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n).

Clearly ϕ is onto. If |g| = m, then gm = e. Hence, kerϕ = mZ and
Z/ kerϕ = Z/mZ ∼= G. On the other hand, if the order of g is infinite,
then kerϕ = 0 and ϕ is an isomorphism of G and Z. Hence, two cyclic
groups are isomorphic exactly when they have the same order. Up to
isomorphism, the only cyclic groups are Z and Zn. □
Theorem 11.12 Second Isomorphism Theorem. Let H be a sub-
group of a group G (not necessarily normal in G) and N a normal sub-
group of G. Then HN is a subgroup of G, H ∩N is a normal subgroup
of H, and

H/H ∩N ∼= HN/N .
Proof. We will first show that HN = {hn : h ∈ H,n ∈ N} is a
subgroup of G. Suppose that h1n1, h2n2 ∈ HN . Since N is normal,
(h2)

−1n1h2 ∈ N . So

(h1n1)(h2n2) = h1h2((h2)
−1n1h2)n2

is in HN . The inverse of hn ∈ HN is in HN since

(hn)−1 = n−1h−1 = h−1(hn−1h−1).
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Next, we prove that H ∩N is normal in H. Let h ∈ H and n ∈ H ∩N .
Then h−1nh ∈ H since each element is in H. Also, h−1nh ∈ N since N
is normal in G; therefore, h−1nh ∈ H ∩N .

Now define a map ϕ from H to HN/N by h 7→ hN . The map ϕ is
onto, since any coset hnN = hN is the image of h in H. We also know
that ϕ is a homomorphism because

ϕ(hh′) = hh′N = hNh′N = ϕ(h)ϕ(h′).

By the First Isomorphism Theorem, the image of ϕ is isomorphic to
H/ kerϕ; that is,

HN/N = ϕ(H) ∼= H/ kerϕ.

Since
kerϕ = {h ∈ H : h ∈ N} = H ∩N ,

HN/N = ϕ(H) ∼= H/H ∩N . ■
Theorem 11.13 Correspondence Theorem. Let N be a normal
subgroup of a group G. Then H 7→ H/N is a one-to-one correspondence
between the set of subgroups H of G containing N and the set of sub-
groups of G/N . Furthermore, the normal subgroups of G containing N
correspond to normal subgroups of G/N .
Proof. Let H be a subgroup of G containing N . Since N is normal in
H, H/N is a factor group. Let aN and bN be elements of H/N . Then
(aN)(b−1N) = ab−1N ∈ H/N ; hence, H/N is a subgroup of G/N .

Let S be a subgroup of G/N . This subgroup is a set of cosets of N . If
H = {g ∈ G : gN ∈ S}, then for h1, h2 ∈ H, we have that (h1N)(h2N) =
h1h2N ∈ S and h−1

1 N ∈ S. Therefore, H must be a subgroup of G.
Clearly, H contains N . Therefore, S = H/N . Consequently, the map
H 7→ H/N is onto.

Suppose that H1 and H2 are subgroups of G containing N such that
H1/N = H2/N . If h1 ∈ H1, then h1N ∈ H1/N . Hence, h1N = h2N ⊂
H2 for some h2 in H2. However, since N is contained in H2, we know
that h1 ∈ H2 or H1 ⊂ H2. Similarly, H2 ⊂ H1. Since H1 = H2, the map
H 7→ H/N is one-to-one.

Suppose that H is normal in G and N is a subgroup of H. Then it
is easy to verify that the map G/N → G/H defined by gN 7→ gH is a
homomorphism. The kernel of this homomorphism is H/N , which proves
that H/N is normal in G/N .

Conversely, suppose that H/N is normal in G/N . The homomor-
phism given by

G→ G/N → G/N

H/N

has kernel H. Hence, H must be normal in G. ■
Notice that in the course of the proof of Theorem 11.13, p. 145, we

have also proved the following theorem.
Theorem 11.14 Third Isomorphism Theorem. Let G be a group
and N and H be normal subgroups of G with N ⊂ H. Then

G/H ∼=
G/N

H/N
.

Example 11.15 By the Third Isomorphism Theorem,

Z/mZ ∼= (Z/mnZ)/(mZ/mnZ).
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Since |Z/mnZ| = mn and |Z/mZ| = m, we have |mZ/mnZ| = n. □

Sage. Sage can create homomorphisms between groups, which can be
used directly as functions, and then queried for their kernels and images.
So there is great potential for exploring the many fundamental relation-
ships between groups, normal subgroups, quotient groups and properties
of homomorphisms.

11.3 Reading Questions
1. Consider the function ϕ : Z10 → Z10 defined by ϕ(x) = x+x. Prove

that ϕ is a group homomorphism.
2. For ϕ defined in the previous question, explain why ϕ is not a group

isomorphism.
3. Compare and contrast isomorphisms and homomorphisms.
4. Paraphrase the First Isomorphism Theorem using only words. No

symbols allowed at all.
5. “For every normal subgroup there is a homomorphism, and for every

homomorphism there is a normal subgroup.” Explain the (precise)
basis for this (vague) statement.

11.4 Exercises
1. Prove that det(AB) = det(A)det(B) for A,B ∈ GL2(R). This

shows that the determinant is a homomorphism from GL2(R) to
R∗.

2. Which of the following maps are homomorphisms? If the map is a
homomorphism, what is the kernel?

(a) ϕ : R∗ → GL2(R) defined by

ϕ(a) =

(
1 0

0 a

)
(b) ϕ : R → GL2(R) defined by

ϕ(a) =

(
1 0

a 1

)
(c) ϕ : GL2(R) → R defined by

ϕ

((
a b

c d

))
= a+ d

(d) ϕ : GL2(R) → R∗ defined by

ϕ

((
a b

c d

))
= ad− bc

(e) ϕ : M2(R) → R defined by

ϕ

((
a b

c d

))
= b,

where M2(R) is the additive group of 2×2 matrices with entries
in R.
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3. Let A be an m×n matrix. Show that matrix multiplication, x 7→ Ax,
defines a homomorphism ϕ : Rn → Rm.

4. Let ϕ : Z → Z be given by ϕ(n) = 7n. Prove that ϕ is a group
homomorphism. Find the kernel and the image of ϕ.

5. Describe all of the homomorphisms from Z24 to Z18.
6. Describe all of the homomorphisms from Z to Z12.
7. In the group Z24, let H = 〈4〉 and N = 〈6〉.

(a) List the elements in HN (we usually write H + N for these
additive groups) and H ∩N .

(b) List the cosets in HN/N , showing the elements in each coset.

(c) List the cosets in H/(H ∩ N), showing the elements in each
coset.

(d) Give the correspondence between HN/N and H/(H ∩N) de-
scribed in the proof of the Second Isomorphism Theorem.

8. If G is an abelian group and n ∈ N, show that ϕ : G → G defined
by g 7→ gn is a group homomorphism.

9. If ϕ : G→ H is a group homomorphism and G is abelian, prove that
ϕ(G) is also abelian.

10. If ϕ : G → H is a group homomorphism and G is cyclic, prove that
ϕ(G) is also cyclic.

11. Show that a homomorphism defined on a cyclic group is completely
determined by its action on the generator of the group.

12. If a group G has exactly one subgroup H of order k, prove that H
is normal in G.

13. Prove or disprove: Q/Z ∼= Q.
14. Let G be a finite group and N a normal subgroup of G. If H is a

subgroup of G/N , prove that ϕ−1(H) is a subgroup in G of order
|H| · |N |, where ϕ : G→ G/N is the canonical homomorphism.

15. Let G1 and G2 be groups, and let H1 and H2 be normal subgroups
of G1 and G2 respectively. Let ϕ : G1 → G2 be a homomorphism.
Show that ϕ induces a homomorphism ϕ : (G1/H1) → (G2/H2) if
ϕ(H1) ⊂ H2.

16. If H and K are normal subgroups of G and H ∩K = {e}, prove that
G is isomorphic to a subgroup of G/H ×G/K.

17. Let ϕ : G1 → G2 be a surjective group homomorphism. Let H1 be
a normal subgroup of G1 and suppose that ϕ(H1) = H2. Prove or
disprove that G1/H1

∼= G2/H2.
18. Let ϕ : G → H be a group homomorphism. Show that ϕ is one-to-

one if and only if ϕ−1(e) = {e}.
19. Given a homomorphism ϕ : G → H define a relation ∼ on G by

a ∼ b if ϕ(a) = ϕ(b) for a, b ∈ G. Show this relation is an equivalence
relation and describe the equivalence classes.
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11.5 Additional Exercises: Automorphisms
1. Let Aut(G) be the set of all automorphisms of G; that is, isomor-

phisms from G to itself. Prove this set forms a group and is a
subgroup of the group of permutations of G; that is, Aut(G) ≤ SG.

2. An inner automorphism of G,

ig : G→ G,

is defined by the map
ig(x) = gxg−1,

for g ∈ G. Show that ig ∈ Aut(G).
3. The set of all inner automorphisms is denoted by Inn(G). Show that

Inn(G) is a subgroup of Aut(G).
4. Find an automorphism of a group G that is not an inner automor-

phism.
5. Let G be a group and ig be an inner automorphism of G, and define

a map
G→ Aut(G)

by
g 7→ ig.

Prove that this map is a homomorphism with image Inn(G) and
kernel Z(G). Use this result to conclude that

G/Z(G) ∼= Inn(G).
6. Compute Aut(S3) and Inn(S3). Do the same thing for D4.
7. Find all of the homomorphisms ϕ : Z → Z. What is Aut(Z)?
8. Find all of the automorphisms of Z8. Prove that Aut(Z8) ∼= U(8).
9. For k ∈ Zn, define a map ϕk : Zn → Zn by a 7→ ka. Prove that ϕk

is a homomorphism.
10. Prove that ϕk is an isomorphism if and only if k is a generator of

Zn.
11. Show that every automorphism of Zn is of the form ϕk, where k is

a generator of Zn.
12. Prove that ψ : U(n) → Aut(Zn) is an isomorphism, where ψ : k 7→

ϕk.
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Matrix Groups and Symmetry

When Felix Klein (1849–1925) accepted a chair at the University of Erlan-
gen, he outlined in his inaugural address a program to classify different
geometries. Central to Klein’s program was the theory of groups: he
considered geometry to be the study of properties that are left invariant
under transformation groups. Groups, especially matrix groups, have
now become important in the study of symmetry and have found appli-
cations in such disciplines as chemistry and physics. In the first part of
this chapter, we will examine some of the classical matrix groups, such
as the general linear group, the special linear group, and the orthogonal
group. We will then use these matrix groups to investigate some of the
ideas behind geometric symmetry.

12.1 Matrix Groups

Some Facts from Linear Algebra
Before we study matrix groups, we must recall some basic facts from linear
algebra. One of the most fundamental ideas of linear algebra is that of a
linear transformation. A linear transformation or linear map T : Rn →
Rm is a map that preserves vector addition and scalar multiplication;
that is, for vectors x and y in Rn and a scalar α ∈ R,

T (x + y) = T (x) + T (y)
T (αy) = αT (y).

An m×n matrix with entries in R represents a linear transformation from
Rn to Rm. If we write vectors x = (x1, . . . , xn)

t and y = (y1, . . . , yn)
t in

Rn as column matrices, then an m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


maps the vectors to Rm linearly by matrix multiplication. Observe that
if α is a real number,

A(x + y) = Ax +Ay and αAx = A(αx),

149
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where

x =


x1
x2
...
xn

 .

We will often abbreviate the matrix A by writing (aij).
Conversely, if T : Rn → Rm is a linear map, we can associate a matrix

A with T by considering what T does to the vectors
e1 = (1, 0, . . . , 0)t

e2 = (0, 1, . . . , 0)t

...
en = (0, 0, . . . , 1)t.

We can write any vector x = (x1, . . . , xn)
t as

x1e1 + x2e2 + · · ·+ xnen.
Consequently, if

T (e1) = (a11, a21, . . . , am1)
t,

T (e2) = (a12, a22, . . . , am2)
t,

...
T (en) = (a1n, a2n, . . . , amn)

t,
then

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)
= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

=

(
n∑
k=1

a1kxk, . . . ,

n∑
k=1

amkxk

)t

= Ax.
Example 12.1 If we let T : R2 → R2 be the map given by

T (x1, x2) = (2x1 + 5x2,−4x1 + 3x2),

the axioms that T must satisfy to be a linear transformation are easily
verified. The column vectors Te1 = (2,−4)t and Te2 = (5, 3)t tell us that
T is given by the matrix

A =

(
2 5

−4 3

)
.

□
Since we are interested in groups of matrices, we need to know which

matrices have multiplicative inverses. Recall that an n × n matrix A
is invertible exactly when there exists another matrix A−1 such that
AA−1 = A−1A = I, where

I =


1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1


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is the n × n identity matrix. From linear algebra we know that A is
invertible if and only if the determinant of A is nonzero. Sometimes an
invertible matrix is said to be nonsingular.
Example 12.2 If A is the matrix(

2 1

5 3

)
,

then the inverse of A is

A−1 =

(
3 −1

−5 2

)
.

We are guaranteed that A−1 exists, since det(A) = 2 · 3 − 5 · 1 = 1 is
nonzero. □

Some other facts about determinants will also prove useful in the
course of this chapter. Let A and B be n × n matrices. From linear
algebra we have the following properties of determinants.

• The determinant is a homomorphism into the multiplicative group
of real numbers; that is, det(AB) = (detA)(detB).

• If A is an invertible matrix, then det(A−1) = 1/ detA.

• If we define the transpose of a matrix A = (aij) to be At = (aji),
then det(At) = detA.

• Let T be the linear transformation associated with an n×n matrix
A. Then T multiplies volumes by a factor of |detA|. In the case of
R2, this means that T multiplies areas by |detA|.

Linear maps, matrices, and determinants are covered in any elemen-
tary linear algebra text; however, if you have not had a course in linear
algebra, it is a straightforward process to verify these properties directly
for 2× 2 matrices, the case with which we are most concerned.

The General and Special Linear Groups
The set of all n× n invertible matrices forms a group called the general
linear group. We will denote this group by GLn(R). The general linear
group has several important subgroups. The multiplicative properties of
the determinant imply that the set of matrices with determinant one is a
subgroup of the general linear group. Stated another way, suppose that
det(A) = 1 and det(B) = 1. Then det(AB) = det(A)det(B) = 1 and
det(A−1) = 1/ detA = 1. This subgroup is called the special linear group
and is denoted by SLn(R).

Example 12.3 Given a 2× 2 matrix

A =

(
a b

c d

)
,

the determinant of A is ad − bc. The group GL2(R) consists of those
matrices in which ad− bc 6= 0. The inverse of A is

A−1 =
1

ad− bc

(
d −b
−c a

)
.
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If A is in SL2(R), then

A−1 =

(
d −b
−c a

)
.

Geometrically, SL2(R) is the group that preserves the areas of parallelo-
grams. Let

A =

(
1 1

0 1

)
be in SL2(R). In Figure 12.4, p. 152, the unit square corresponding to
the vectors x = (1, 0)t and y = (0, 1)t is taken by A to the parallelogram
with sides (1, 0)t and (1, 1)t; that is, Ax = (1, 0)t and Ay = (1, 1)t. Notice
that these two parallelograms have the same area. □

y

x(1, 0)

(0, 1)

y

x(1, 0)

(1, 1)

Figure 12.4 SL2(R) acting on the unit square

The Orthogonal Group O(n)

Another subgroup of GLn(R) is the orthogonal group. A matrix A is
orthogonal if A−1 = At. The orthogonal group consists of the set of all
orthogonal matrices. We write O(n) for the n× n orthogonal group. We
leave as an exercise the proof that O(n) is a subgroup of GLn(R).

Example 12.5 The following matrices are orthogonal:

(
3/5 −4/5

4/5 3/5

)
,

(
1/2 −

√
3/2√

3/2 1/2

)
,

−1/
√
2 0 1/

√
2

1/
√
6 −2/

√
6 1/

√
6

1/
√
3 1/

√
3 1/

√
3

 .

□
There is a more geometric way of viewing the group O(n). The or-

thogonal matrices are exactly those matrices that preserve the length of
vectors. We can define the length of a vector using the Euclidean inner
product, or dot product, of two vectors. The Euclidean inner product of
two vectors x = (x1, . . . , xn)

t and y = (y1, . . . , yn)
t is

〈x, y〉 = xty = (x1, x2, . . . , xn)


y1
y2
...
yn

 = x1y1 + · · ·+ xnyn.

We define the length of a vector x = (x1, . . . , xn)
t to be

‖x‖ =
√

〈x, x〉 =
√
x21 + · · ·+ x2n.
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Associated with the notion of the length of a vector is the idea of the
distance between two vectors. We define the distance between two vectors
x and y to be ‖x − y‖. We leave as an exercise the proof of the following
proposition about the properties of Euclidean inner products.
Proposition 12.6 Let x, y, and w be vectors in Rn and α ∈ R. Then

1. 〈x, y〉 = 〈y, x〉.

2. 〈x, y + w〉 = 〈x, y〉+ 〈x,w〉.

3. 〈αx, y〉 = 〈x, αy〉 = α〈x, y〉.

4. 〈x, x〉 ≥ 0 with equality exactly when x = 0.

5. If 〈x, y〉 = 0 for all x in Rn, then y = 0.

Example 12.7 The vector x = (3, 4)t has length
√
32 + 42 = 5. We can

also see that the orthogonal matrix

A =

(
3/5 −4/5

4/5 3/5

)
preserves the length of this vector. The vector Ax = (−7/5, 24/5)t also
has length 5. □

Since det(AAt) = det(I) = 1 and det(A) = det(At), the determinant
of any orthogonal matrix is either 1 or −1. Consider the column vectors

aj =


a1j
a2j
...
anj


of the orthogonal matrix A = (aij). Since AAt = I, 〈ar, as〉 = δrs, where

δrs =

{
1 r = s

0 r 6= s

is the Kronecker delta. Accordingly, column vectors of an orthogonal
matrix all have length 1; and the Euclidean inner product of distinct
column vectors is zero. Any set of vectors satisfying these properties is
called an orthonormal set. Conversely, given an n × n matrix A whose
columns form an orthonormal set, it follows that A−1 = At.

We say that a matrix A is distance-preserving, length-preserving, or
inner product-preserving when ‖Ax − Ay‖ = ‖x − y‖, ‖Ax‖ = ‖x‖, or
〈Ax, Ay〉 = 〈x, y〉, respectively. The following theorem, which character-
izes the orthogonal group, says that these notions are the same.
Theorem 12.8 Let A be an n× n matrix. The following statements are
equivalent.

1. The columns of the matrix A form an orthonormal set.

2. A−1 = At.

3. For vectors x and y, 〈Ax, Ay〉 = 〈x, y〉.

4. For vectors x and y, ‖Ax −Ay‖ = ‖x − y‖.

5. For any vector x, ‖Ax‖ = ‖x‖.
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Proof. We have already shown (1) and (2) to be equivalent.
(2) ⇒ (3).

〈Ax, Ay〉 = (Ax)tAy
= xtAtAy
= xty
= 〈x, y〉.

(3) ⇒ (2). Since

〈x, x〉 = 〈Ax, Ax〉
= xtAtAx
= 〈x, AtAx〉,

we know that 〈x, (AtA − I)x〉 = 0 for all x. Therefore, AtA − I = 0 or
A−1 = At.

(3) ⇒ (4). If A is inner product-preserving, then A is distance-
preserving, since

‖Ax −Ay‖2 = ‖A(x − y)‖2

= 〈A(x − y), A(x − y)〉
= 〈x − y, x − y〉
= ‖x − y‖2.

(4) ⇒ (5). If A is distance-preserving, then A is length-preserving.
Letting y = 0, we have

‖Ax‖ = ‖Ax −Ay‖ = ‖x − y‖ = ‖x‖.

(5) ⇒ (3). We use the following identity to show that length-preserving
implies inner product-preserving:

〈x, y〉 = 1

2

[
‖x + y‖2 − ‖x‖2 − ‖y‖2

]
.

Observe that

〈Ax, Ay〉 = 1

2

[
‖Ax +Ay‖2 − ‖Ax‖2 − ‖Ay‖2

]
=

1

2

[
‖A(x + y)‖2 − ‖Ax‖2 − ‖Ay‖2

]
=

1

2

[
‖x + y‖2 − ‖x‖2 − ‖y‖2

]
= 〈x, y〉.

■
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x

y

(a, b)

(a,−b)

x

y

θ

(sin θ,− cos θ)

(cos θ, sin θ)

Figure 12.9 O(2) acting on R2

Example 12.10 Let us examine the orthogonal group on R2 a bit more
closely. An element A ∈ O(2) is determined by its action on e1 = (1, 0)t

and e2 = (0, 1)t. If Ae1 = (a, b)t, then a2 + b2 = 1, since the length of a
vector must be preserved when it is multiplied by A. Since multiplication
of an element ofO(2) preserves length and orthogonality, Ae2 = ±(−b, a)t.
If we choose Ae2 = (−b, a)t, then

A =

(
a −b
b a

)
=

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 ≤ θ < 2π. The matrix A rotates a vector in R2 counterclockwise
about the origin by an angle of θ (Figure 12.9, p. 155).

If we choose Ae2 = (b,−a)t, then we obtain the matrix

B =

(
a b

b −a

)
=

(
cos θ sin θ
sin θ − cos θ

)
.

Here, detB = −1 and

B2 =

(
1 0

0 1

)
.

A reflection about the horizontal axis is given by the matrix

C =

(
1 0

0 −1

)
,

and B = AC (see Figure 12.9, p. 155). Thus, a reflection about a line ℓ is
simply a reflection about the horizontal axis followed by a rotation. □

Two of the other matrix or matrix-related groups that we will consider
are the special orthogonal group and the group of Euclidean motions.
The special orthogonal group, SO(n), is just the intersection of O(n)
and SLn(R); that is, those elements in O(n) with determinant one. The
Euclidean group, E(n), can be written as ordered pairs (A, x), where A
is in O(n) and x is in Rn. We define multiplication by

(A, x)(B, y) = (AB,Ay + x).

The identity of the group is (I, 0); the inverse of (A, x) is (A−1,−A−1x).
In Exercise 12.4.6, p. 163, you are asked to check that E(n) is indeed a
group under this operation.
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x

y

x

x

y

x + y

Figure 12.11 Translations in R2

12.2 Symmetry
An isometry or rigid motion in Rn is a distance-preserving function f
from Rn to Rn. This means that f must satisfy

‖f(x)− f(y)‖ = ‖x − y‖

for all x, y ∈ Rn. It is not difficult to show that f must be a one-to-one
map. By Theorem 12.8, p. 153, any element in O(n) is an isometry on Rn;
however, O(n) does not include all possible isometries on Rn. Translation
by a vector x, Ty(x) = x + y is also an isometry (Figure 12.11, p. 156);
however, T cannot be in O(n) since it is not a linear map.

We are mostly interested in isometries in R2. In fact, the only isome-
tries in R2 are rotations and reflections about the origin, translations, and
combinations of the two. For example, a glide reflection is a translation
followed by a reflection (Figure 12.12, p. 156). In Rn all isometries are
given in the same manner. The proof is very easy to generalize.

x

y

x

x

y

T (x)

Figure 12.12 Glide reflections

Lemma 12.13 An isometry f that fixes the origin in R2 is a linear
transformation. In particular, f is given by an element in O(2).
Proof. Let f be an isometry in R2 fixing the origin. We will first show
that f preserves inner products. Since f(0) = 0, ‖f(x)‖ = ‖x‖; therefore,

‖x‖2 − 2〈f(x), f(y)〉+ ‖y‖2 = ‖f(x)‖2 − 2〈f(x), f(y)〉+ ‖f(y)‖2

= 〈f(x)− f(y), f(x)− f(y)〉
= ‖f(x)− f(y)‖2

= ‖x − y‖2

= 〈x − y, x − y〉
= ‖x‖2 − 2〈x, y〉+ ‖y‖2.
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Consequently,
〈f(x), f(y)〉 = 〈x, y〉.

Now let e1 and e2 be (1, 0)t and (0, 1)t, respectively. If

x = (x1, x2) = x1e1 + x2e2,

then

f(x) = 〈f(x), f(e1)〉f(e1) + 〈f(x), f(e2)〉f(e2) = x1f(e1) + x2f(e2).

The linearity of f easily follows. ■
For any arbitrary isometry, f , Txf will fix the origin for some vector

x in R2; hence, Txf(y) = Ay for some matrix A ∈ O(2). Consequently,
f(y) = Ay + x. Given the isometries

f(y) = Ay + x1

g(y) = By + x2,

their composition is

f(g(y)) = f(By + x2) = ABy +Ax2 + x1.

This last computation allows us to identify the group of isometries on R2

with E(2).

Theorem 12.14 The group of isometries on R2 is the Euclidean group,
E(2).

A symmetry group in Rn is a subgroup of the group of isometries on
Rn that fixes a set of points X ⊂ Rn. It is important to realize that the
symmetry group of X depends both on Rn and on X. For example, the
symmetry group of the origin in R1 is Z2, but the symmetry group of the
origin in R2 is O(2).

Theorem 12.15 The only finite symmetry groups in R2 are Zn and Dn.
Proof. We simply need to find all of the finite subgroups G of E(2). Any
finite symmetry group G in R2 must fix the origin and must be a finite
subgroup of O(2), since translations and glide reflections have infinite
order. By Example 12.10, p. 155, elements in O(2) are either rotations of
the form

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
or reflections of the form

Tϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)(
1 0

0 −1

)
=

(
cosϕ sinϕ
sinϕ − cosϕ

)
.

Notice that det(Rθ) = 1, det(Tϕ) = −1, and T 2
ϕ = I. We can divide the

proof up into two cases. In the first case, all of the elements in G have
determinant one. In the second case, there exists at least one element in
G with determinant −1.
Case 1. The determinant of every element in G is one. In this case every
element in G must be a rotation. Since G is finite, there is a smallest
angle, say θ0, such that the corresponding element Rθ0 is the smallest
rotation in the positive direction. We claim that Rθ0 generates G. If not,
then for some positive integer n there is an angle θ1 between nθ0 and
(n+1)θ0. If so, then (n+1)θ0−θ1 corresponds to a rotation smaller than
θ0, which contradicts the minimality of θ0.
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Case 2. The group G contains a reflection T . The kernel of the homo-
morphism ϕ : G → {−1, 1} given by A 7→ det(A) consists of elements
whose determinant is 1. Therefore, |G/ kerϕ| = 2. We know that the
kernel is cyclic by the first case and is a subgroup of G of, say, order n.
Hence, |G| = 2n. The elements of G are

Rθ, . . . , R
n−1
θ , TRθ, . . . , TR

n−1
θ .

These elements satisfy the relation

TRθT = R−1
θ .

Consequently, G must be isomorphic to Dn in this case. ■

The Wallpaper Groups
Suppose that we wish to study wallpaper patterns in the plane or crystals
in three dimensions. Wallpaper patterns are simply repeating patterns
in the plane (Figure 12.16, p. 158). The analogs of wallpaper patterns in
R3 are crystals, which we can think of as repeating patterns of molecules
in three dimensions (Figure 12.17, p. 158). The mathematical equivalent
of a wallpaper or crystal pattern is called a lattice.

Figure 12.16 A wallpaper pattern in R2

Figure 12.17 A crystal structure in R3

Let us examine wallpaper patterns in the plane a little more closely.
Suppose that x and y are linearly independent vectors in R2; that is, one
vector cannot be a scalar multiple of the other. A lattice of x and y is
the set of all linear combinations mx + ny, where m and n are integers.
The vectors x and y are said to be a basis for the lattice.
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Notice that a lattice can have several bases. For example, the vec-
tors (1, 1)t and (2, 0)t have the same lattice as the vectors (−1, 1)t and
(−1,−1)t (Figure 12.18, p. 159). However, any lattice is completely de-
termined by a basis. Given two bases for the same lattice, say {x1, x2}
and {y1, y2}, we can write

y1 = α1x1 + α2x2

y2 = β1x1 + β2x2,

where α1, α2, β1, and β2 are integers. The matrix corresponding to this
transformation is

U =

(
α1 α2

β1 β2

)
.

If we wish to give x1 and x2 in terms of y1 and y2, we need only calculate
U−1; that is,

U−1

(
y1

y2

)
=

(
x1

x2

)
.

Since U has integer entries, U−1 must also have integer entries; hence the
determinants of both U and U−1 must be integers. Because UU−1 = I,

det(UU−1) = det(U)det(U−1) = 1;

consequently, det(U) = ±1. A matrix with determinant ±1 and integer
entries is called unimodular. For example, the matrix(

3 1

5 2

)
is unimodular. It should be clear that there is a minimum length for
vectors in a lattice.

(2, 0)

(1, 1)(−1, 1)

(−1,−1)

Figure 12.18 A lattice in R2

We can classify lattices by studying their symmetry groups. The
symmetry group of a lattice is the subgroup of E(2) that maps the lattice
to itself. We consider two lattices in R2 to be equivalent if they have
the same symmetry group. Similarly, classification of crystals in R3 is
accomplished by associating a symmetry group, called a space group,
with each type of crystal. Two lattices are considered different if their
space groups are not the same. The natural question that now arises is
how many space groups exist.

A space group is composed of two parts: a translation subgroup and
a point. The translation subgroup is an infinite abelian subgroup of the
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space group made up of the translational symmetries of the crystal; the
point group is a finite group consisting of rotations and reflections of the
crystal about a point. More specifically, a space group is a subgroup of
G ⊂ E(2) whose translations are a set of the form {(I, t) : t ∈ L}, where
L is a lattice. Space groups are, of course, infinite. Using geometric
arguments, we can prove the following theorem (see [5] or [6]).

Theorem 12.19 Every translation group in R2 is isomorphic to Z× Z.
The point group of G is G0 = {A : (A, b) ∈ G for some b}. In par-

ticular, G0 must be a subgroup of O(2). Suppose that x is a vector in a
lattice L with space group G, translation group H, and point group G0.
For any element (A, y) in G,

(A, y)(I, x)(A, y)−1 = (A,Ax + y)(A−1,−A−1y)
= (AA−1,−AA−1y +Ax + y)
= (I, Ax);

hence, (I, Ax) is in the translation group of G. More specifically, Ax
must be in the lattice L. It is important to note that G0 is not usually a
subgroup of the space group G; however, if T is the translation subgroup
of G, then G/T ∼= G0. The proof of the following theorem can be found
in [2], [5], or [6].

Theorem 12.20 The point group in the wallpaper groups is isomorphic
to Zn or Dn, where n = 1, 2, 3, 4, 6.

To answer the question of how the point groups and the translation
groups can be combined, we must look at the different types of lattices.
Lattices can be classified by the structure of a single lattice cell. The
possible cell shapes are parallelogram, rectangular, square, rhombic, and
hexagonal (Figure 12.21, p. 160). The wallpaper groups can now be clas-
sified according to the types of reflections that occur in each group: these
are ordinarily reflections, glide reflections, both, or none.

Square
Rectangular

Rhombic

Parallelogram
Hexagonal

Figure 12.21 Types of lattices in R2
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Table 12.22 The 17 wallpaper groups

Notation and Reflections or
Space Groups Point Group Lattice Type Glide Reflections?

p1 Z1 parallelogram none
p2 Z2 parallelogram none
p3 Z3 hexagonal none
p4 Z4 square none
p6 Z6 hexagonal none
pm D1 rectangular reflections
pg D1 rectangular glide reflections
cm D1 rhombic both

pmm D2 rectangular reflections
pmg D2 rectangular glide reflections
pgg D2 rectangular both

c2mm D2 rhombic both
p3m1, p31m D3 hexagonal both

p4m, p4g D4 square both
p6m D6 hexagonal both

Theorem 12.23 There are exactly 17 wallpaper groups.

p4m p4g

Figure 12.24 The wallpaper groups p4m and p4g
The 17 wallpaper groups are listed in Table 12.22, p. 161. The groups

p3m1 and p31m can be distinguished by whether or not all of their three-
fold centers lie on the reflection axes: those of p3m1 must, whereas those
of p31m may not. Similarly, the fourfold centers of p4m must lie on the
reflection axes whereas those of p4g need not (Figure 12.24, p. 161). The
complete proof of this theorem can be found in several of the references
at the end of this chapter, including [5], [6], [10], and [11].

Sage. We have not seen how to use Sage profitably with the material
in this chapter.

Historical Note
Symmetry groups have intrigued mathematicians for a long time.
Leonardo da Vinci was probably the first person to know all of the point
groups. At the International Congress of Mathematicians in 1900, David
Hilbert gave a now-famous address outlining 23 problems to guide math-
ematics in the twentieth century. Hilbert’s eighteenth problem asked
whether or not crystallographic groups in n dimensions were always fi-
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nite. In 1910, L. Bieberbach proved that crystallographic groups are
finite in every dimension. Finding out how many of these groups there
are in each dimension is another matter. In R3 there are 230 different
space groups; in R4 there are 4783. No one has been able to compute the
number of space groups for R5 and beyond. It is interesting to note that
the crystallographic groups were found mathematically for R3 before the
230 different types of crystals were actually discovered in nature.

12.3 Reading Questions
1. What is a nonsingular matrix? Give an example of a 2×2 nonsingular

matrix. How do you know your example is nonsingular?
2. What is an isometry in Rn? Can you give an example of an isometry

in R2?
3. What is an orthonormal set of vectors?
4. What is the difference between the orthogonal group and the special

orthogonal group?
5. What is a lattice?

12.4 Exercises
1. Prove the identity

〈x, y〉 = 1

2

[
‖x + y‖2 − ‖x‖2 − ‖y‖2

]
.

2. Show that O(n) is a group.
3. Prove that the following matrices are orthogonal. Are any of these

matrices in SO(n)?
(a)

(
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

)

(b)

(
1/

√
5 2/

√
5

−2/
√
5 1/

√
5

)

(c)  4/5 0 3/5

−3/5 0 4/5

0 −1 0


(d)  1/3 2/3 −2/3

−2/3 2/3 1/3

2/3 1/3 2/3


4. Determine the symmetry group of each of the figures below.

(a)

(b)

(c)
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5. Let x, y, and w be vectors in Rn and α ∈ R. Prove each of the
following properties of inner products.

(a) 〈x, y〉 = 〈y, x〉.

(b) 〈x, y + w〉 = 〈x, y〉+ 〈x,w〉.

(c) 〈αx, y〉 = 〈x, αy〉 = α〈x, y〉.

(d) 〈x, x〉 ≥ 0 with equality exactly when x = 0.

(e) If 〈x, y〉 = 0 for all x in Rn, then y = 0.
6. Verify that

E(n) = {(A, x) : A ∈ O(n) and x ∈ Rn}

is a group.
7. Prove that {(2, 1), (1, 1)} and {(12, 5), (7, 3)} are bases for the same

lattice.
8. Let G be a subgroup of E(2) and suppose that T is the translation

subgroup of G. Prove that the point group of G is isomorphic to
G/T .

9. Let A ∈ SL2(R) and suppose that the vectors x and y form two sides
of a parallelogram in R2. Prove that the area of this parallelogram
is the same as the area of the parallelogram with sides Ax and Ay.

10. Prove that SO(n) is a normal subgroup of O(n).
11. Show that any isometry f in Rn is a one-to-one map.
12. Prove or disprove: an element in E(2) of the form (A, x), where

x 6= 0, has infinite order.
13. Prove or disprove: There exists an infinite abelian subgroup of O(n).
14. Let x = (x1, x2) be a point on the unit circle in R2; that is, x21+x22 =

1. If A ∈ O(2), show that Ax is also a point on the unit circle.
15. Let G be a group with a subgroup H (not necessarily normal) and a

normal subgroup N . Then G is a semidirect product of N by H if
• H ∩N = {id};

• HN = G.

Show that each of the following is true.

(a) S3 is the semidirect product of A3 by H = {(1), (1 2)}.

(b) The quaternion group, Q8, cannot be written as a semidirect
product.

(c) E(2) is the semidirect product of O(2) by H, where H consists
of all translations in R2.

16. Determine which of the 17 wallpaper groups preserves the symmetry
of the pattern in Figure 12.16, p. 158.

17. Determine which of the 17 wallpaper groups preserves the symmetry
of the pattern in Figure 12.25, p. 164.
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Figure 12.25

18. Find the rotation group of a dodecahedron.
19. For each of the 17 wallpaper groups, draw a wallpaper pattern having

that group as a symmetry group.
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The Structure of Groups

The ultimate goal of group theory is to classify all groups up to isomor-
phism; that is, given a particular group, we should be able to match it up
with a known group via an isomorphism. For example, we have already
proved that any finite cyclic group of order n is isomorphic to Zn; hence,
we “know” all finite cyclic groups. It is probably not reasonable to expect
that we will ever know all groups; however, we can often classify certain
types of groups or distinguish between groups in special cases.

In this chapter we will characterize all finite abelian groups. We shall
also investigate groups with sequences of subgroups. If a group has a
sequence of subgroups, say

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e},

where each subgroup Hi is normal in Hi+1 and each of the factor groups
Hi+1/Hi is abelian, then G is a solvable group. In addition to allowing
us to distinguish between certain classes of groups, solvable groups turn
out to be central to the study of solutions to polynomial equations.

13.1 Finite Abelian Groups
In our investigation of cyclic groups we found that every group of prime
order was isomorphic to Zp, where p was a prime number. We also
determined that Zmn ∼= Zm × Zn when gcd(m,n) = 1. In fact, much
more is true. Every finite abelian group is isomorphic to a direct product
of cyclic groups of prime power order; that is, every finite abelian group
is isomorphic to a group of the type

Zpα1
1

× · · · × Zpαn
n

,

where each pk is prime (not necessarily distinct).
First, let us examine a slight generalization of finite abelian groups.

Suppose that G is a group and let {gi} be a set of elements in G, where
i is in some index set I (not necessarily finite). The smallest subgroup
of G containing all of the gi’s is the subgroup of G generated by the gi’s.
If this subgroup of G is in fact all of G, then G is generated by the set
{gi : i ∈ I}. In this case the gi’s are said to be the generators of G.
If there is a finite set {gi : i ∈ I} that generates G, then G is finitely
generated.

165
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Example 13.1 Obviously, all finite groups are finitely generated. For
example, the group S3 is generated by the permutations (1 2) and (1 2 3).
The group Z×Zn is an infinite group but is finitely generated by {(1, 0), (0, 1)}.

□
Example 13.2 Not all groups are finitely generated. Consider the ra-
tional numbers Q under the operation of addition. Suppose that Q is
finitely generated with generators p1/q1, . . . , pn/qn, where each pi/qi is a
fraction expressed in its lowest terms. Let p be some prime that does not
divide any of the denominators q1, . . . , qn. We claim that 1/p cannot be
in the subgroup of Q that is generated by p1/q1, . . . , pn/qn, since p does
not divide the denominator of any element in this subgroup. This fact is
easy to see since the sum of any two generators is

pi/qi + pj/qj = (piqj + pjqi)/(qiqj).

□
Proposition 13.3 Let H be the subgroup of a group G that is generated
by {gi ∈ G : i ∈ I}. Then h ∈ H exactly when it is a product of the form

h = gα1
i1

· · · gαn
in

,

where the giks are not necessarily distinct.
Proof. Let K be the set of all products of the form gα1

i1
· · · gαn

in
, where

the giks are not necessarily distinct. Certainly K is a subset of H. We
need only show that K is a subgroup of G. If this is the case, then K = H,
since H is the smallest subgroup containing all the gis.

Clearly, the set K is closed under the group operation. Since g0i = 1,
the identity is in K. It remains to show that the inverse of an element
g = gk1i1 · · · gknin in K must also be in K. However,

g−1 = (gk1i1 · · · gknin )−1 = (g−knin
· · · g−k1i1

).

■
The reason that powers of a fixed gi may occur several times in the

product is that we may have a nonabelian group. However, if the group
is abelian, then the gis need occur only once. For example, a product
such as a−3b5a7 in an abelian group could always be simplified (in this
case, to a4b5).

Now let us restrict our attention to finite abelian groups. We can
express any finite abelian group as a finite direct product of cyclic groups.
More specifically, letting p be prime, we define a group G to be a p-group
if every element in G has as its order a power of p. For example, both
Z2×Z2 and Z4 are 2-groups, whereas Z27 is a 3-group. We shall prove the
Fundamental Theorem of Finite Abelian Groups which tells us that every
finite abelian group is isomorphic to a direct product of cyclic p-groups.
Theorem 13.4 Fundamental Theorem of Finite Abelian Groups.
Every finite abelian group G is isomorphic to a direct product of cyclic
groups of the form

Zpα1
1

× Zpα2
2

× · · · × Zpαn
n

here the pi’s are primes (not necessarily distinct).
Example 13.5 Suppose that we wish to classify all abelian groups of
order 540 = 22 · 33 · 5. The Fundamental Theorem of Finite Abelian
Groups tells us that we have the following six possibilities.
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• Z2 × Z2 × Z3 × Z3 × Z3 × Z5;

• Z2 × Z2 × Z3 × Z9 × Z5;

• Z2 × Z2 × Z27 × Z5;

• Z4 × Z3 × Z3 × Z3 × Z5;

• Z4 × Z3 × Z9 × Z5;

• Z4 × Z27 × Z5.

□
The proof of the Fundamental Theorem of Finite Abelian Groups

depends on several lemmas.
Lemma 13.6 Let G be a finite abelian group of order n. If p is a prime
that divides n, then G contains an element of order p.
Proof. We will prove this lemma by induction. If n = 1, then there is
nothing to show. Now suppose that the lemma is true for all groups of
order k, where k < n. Furthermore, let p be a prime that divides n.

If G has no proper nontrivial subgroups, then G = 〈a〉, where a is any
element other than the identity. By Exercise 4.5.39, p. 61, the order of G
must be prime. Since p divides n, we know that p = n, and G contains
p− 1 elements of order p.

Now suppose that G contains a nontrivial proper subgroup H. Then
1 < |H| < n. If p | |H|, then H contains an element of order p by
induction and the lemma is true. Suppose that p does not divide the
order of H. Since G is abelian, it must be the case that H is a normal
subgroup of G, and |G| = |H|·|G/H|. Consequently, p must divide |G/H|.
Since |G/H| < |G| = n, we know that G/H contains an element aH of
order p by the induction hypothesis. Thus,

H = (aH)p = apH,

and ap ∈ H but a /∈ H. If |H| = r, then p and r are relatively prime,
and there exist integers s and t such that sp+ tr = 1. Furthermore, the
order of ap must divide r, and (ap)r = (ar)p = 1.

We claim that ar has order p. We must show that ar 6= 1. Suppose
ar = 1. Then

a = asp+tr

= aspatr

= (ap)s(ar)t

= (ap)s1

= (ap)s.

Since ap ∈ H, it must be the case that a = (ap)s ∈ H, which is a
contradiction. Therefore, ar 6= 1 is an element of order p in G. ■

Lemma 13.6, p. 167 is a special case of Cauchy’s Theorem (Theo-
rem 15.1, p. 189), which states that if G is a finite group and p a prime
such that p divides the order of G, then G contains a subgroup of order
p. We will prove Cauchy’s Theorem in Chapter 15, p. 189.
Lemma 13.7 A finite abelian group is a p-group if and only if its order
is a power of p.
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Proof. If |G| = pn then by Lagrange’s theorem, then the order of any
g ∈ G must divide pn, and therefore must be a power of p. Conversely,
if |G| is not a power of p, then it has some other prime divisor q, so by
Lemma 13.6, p. 167, G has an element of order q and thus is not a p-group.

■
Lemma 13.8 Let G be a finite abelian group of order n = pα1

1 · · · pαk

k ,
where where p1, . . . , pk are distinct primes and α1, α2, . . . , αk are positive
integers. Then G is the internal direct product of subgroups G1, G2, . . . , Gk,
where Gi is the subgroup of G consisting of all elements of order pri for
some integer r.
Proof. Since G is an abelian group, we are guaranteed that Gi is a
subgroup of G for i = 1, . . . , k. Since the identity has order p0i = 1, we
know that 1 ∈ Gi. If g ∈ Gi has order pri , then g−1 must also have order
pri . Finally, if h ∈ Gi has order psi , then

(gh)p
t
i = gp

t
ihp

t
i = 1 · 1 = 1,

where t is the maximum of r and s.
We must show that

G = G1G2 · · ·Gk
and Gi ∩ Gj = {1} for i 6= j. Suppose that g1 ∈ G1 is in the subgroup
generated by G2, G3, . . . , Gk. Then g1 = g2g3 · · · gk for gi ∈ Gi. Since gi
has order pαi , we know that gp

αi

i = 1 for i = 2, 3, . . . , k, and gp
α2
2 ···pαk

k
1 = 1.

Since the order of g1 is a power of p1 and gcd(p1, pα2
2 · · · pαk

k ) = 1, it
must be the case that g1 = 1 and the intersection of G1 with any of the
subgroups G2, G3, . . . , Gk is the identity. A similar argument shows that
Gi ∩Gj = {1} for i 6= j.

Next, we must show that it possible to write every g ∈ G as a product
g1 · · · gk, where gi ∈ Gi. Since the order of g divides the order of G, we
know that

|g| = pβ1

1 p
β2

2 · · · pβk

k

for some integers β1, . . . , βk. Letting ai = |g|/pβi

i , the ai’s are relatively
prime; hence, there exist integers b1, . . . , bk such that a1b1+· · ·+akbk = 1.
Consequently,

g = ga1b1+···+akbk = ga1b1 · · · gakbk .

Since
g(aibi)p

βi
i = gbi|g| = e,

it follows that gaibi must be in Gi. Let gi = gaibi . Then g = g1 · · · gk ∈
G1G2 · · ·Gk. Therefore, G = G1G2 · · ·Gk is an internal direct product of
subgroups. ■

If remains for us to determine the possible structure of each pi-group
Gi in Lemma 13.8, p. 168.
Lemma 13.9 Let G be a finite abelian p-group and suppose that g ∈ G
has maximal order. Then G is isomorphic to 〈g〉 ×H for some subgroup
H of G.
Proof. By Lemma 13.7, p. 167, we may assume that the order of G is
pn. We shall induct on n. If n = 1, then G is cyclic of order p and must
be generated by g. Suppose now that the statement of the lemma holds
for all integers k with 1 ≤ k < n and let g be of maximal order in G, say
|g| = pm. Then ap

m

= e for all a ∈ G. Now choose h in G such that
h /∈ 〈g〉, where h has the smallest possible order. Certainly such an h
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exists; otherwise, G = 〈g〉 and we are done. Let H = 〈h〉.
We claim that 〈g〉 ∩H = {e}. It suffices to show that |H| = p. Since

|hp| = |h|/p, the order of hp is smaller than the order of h and must be
in 〈g〉 by the minimality of h; that is, hp = gr for some number r. Hence,

(gr)p
m−1

= (hp)p
m−1

= hp
m

= e,

and the order of gr must be less than or equal to pm−1. Therefore, gr
cannot generate 〈g〉. Notice that p must occur as a factor of r, say r = ps,
and hp = gr = gps. Define a to be g−sh. Then a cannot be in 〈g〉;
otherwise, h would also have to be in 〈g〉. Also,

ap = g−sphp = g−rhp = h−php = e.

We have now formed an element a with order p such that a /∈ 〈g〉. Since
h was chosen to have the smallest order of all of the elements that are
not in 〈g〉, |H| = p.

Now we will show that the order of gH in the factor group G/H must
be the same as the order of g in G. If |gH| < |g| = pm, then

H = (gH)p
m−1

= gp
m−1

H;

hence, gpm−1 must be in 〈g〉 ∩H = {e}, which contradicts the fact that
the order of g is pm. Therefore, gH must have maximal order in G/H.
By the Correspondence Theorem and our induction hypothesis,

G/H ∼= 〈gH〉 ×K/H

for some subgroup K of G containing H. We claim that 〈g〉 ∩K = {e}.
If b ∈ 〈g〉 ∩K, then bH ∈ 〈gH〉 ∩K/H = {H} and b ∈ 〈g〉 ∩H = {e}. It
follows that G = 〈g〉K implies that G ∼= 〈g〉 ×K. ■

The proof of the Fundamental Theorem of Finite Abelian Groups fol-
lows very quickly from Lemma 13.9, p. 168. Suppose that G is a finite
abelian group and let g be an element of maximal order in G. If 〈g〉 = G,
then we are done; otherwise, G ∼= Z|g| × H for some subgroup H con-
tained in G by the lemma. Since |H| < |G|, we can apply mathematical
induction.

We now state the more general theorem for all finitely generated
abelian groups. The proof of this theorem can be found in any of the
references at the end of this chapter.
Theorem 13.10 The Fundamental Theorem of Finitely Gener-
ated Abelian Groups. Every finitely generated abelian group G is
isomorphic to a direct product of cyclic groups of the form

Zpα1
1

× Zpα2
2

× · · · × Zpαn
n

× Z× · · · × Z,

where the pi’s are primes (not necessarily distinct).

13.2 Solvable Groups
A subnormal series of a group G is a finite sequence of subgroups

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e},
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where Hi is a normal subgroup of Hi+1. If each subgroup Hi is normal
in G, then the series is called a normal series. The length of a subnormal
or normal series is the number of proper inclusions.
Example 13.11 Any series of subgroups of an abelian group is a normal
series. Consider the following series of groups:

Z ⊃ 9Z ⊃ 45Z ⊃ 180Z ⊃ {0},
Z24 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0}.

□
Example 13.12 A subnormal series need not be a normal series. Con-
sider the following subnormal series of the group D4:

D4 ⊃ {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊃ {(1), (1 2)(3 4)} ⊃ {(1)}.

The subgroup {(1), (1 2)(3 4)} is not normal in D4; consequently, this
series is not a normal series. □

A subnormal (normal) series {Kj} is a refinement of a subnormal
(normal) series {Hi} if {Hi} ⊂ {Kj}. That is, each Hi is one of the Kj .

Example 13.13 The series

Z ⊃ 3Z ⊃ 9Z ⊃ 45Z ⊃ 90Z ⊃ 180Z ⊃ {0}

is a refinement of the series

Z ⊃ 9Z ⊃ 45Z ⊃ 180Z ⊃ {0}.

□
The best way to study a subnormal or normal series of subgroups,

{Hi} of G, is actually to study the factor groups Hi+1/Hi. We say
that two subnormal (normal) series {Hi} and {Kj} of a group G are
isomorphic if there is a one-to-one correspondence between the collections
of factor groups {Hi+1/Hi} and {Kj+1/Kj}.

Example 13.14 The two normal series

Z60 ⊃ 〈3〉 ⊃ 〈15〉 ⊃ {0}
Z60 ⊃ 〈4〉 ⊃ 〈20〉 ⊃ {0}

of the group Z60 are isomorphic since

Z60/〈3〉 ∼= 〈20〉/{0} ∼= Z3

〈3〉/〈15〉 ∼= 〈4〉/〈20〉 ∼= Z5

〈15〉/{0} ∼= Z60/〈4〉 ∼= Z4.

□
A subnormal series {Hi} of a group G is a composition series if all the

factor groups are simple; that is, if none of the factor groups of the series
contains a normal subgroup. A normal series {Hi} of G is a principal
series if all the factor groups are simple.
Example 13.15 The group Z60 has a composition series

Z60 ⊃ 〈3〉 ⊃ 〈15〉 ⊃ 〈30〉 ⊃ {0}
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with factor groups

Z60/〈3〉 ∼= Z3

〈3〉/〈15〉 ∼= Z5

〈15〉/〈30〉 ∼= Z2

〈30〉/{0} ∼= Z2.

Since Z60 is an abelian group, this series is automatically a principal series.
Notice that a composition series need not be unique. The series

Z60 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ 〈20〉 ⊃ {0}

is also a composition series. □
Example 13.16 For n ≥ 5, the series

Sn ⊃ An ⊃ {(1)}

is a composition series for Sn since Sn/An ∼= Z2 and An is simple. □
Example 13.17 Not every group has a composition series or a principal
series. Suppose that

{0} = H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 ⊂ Hn = Z

is a subnormal series for the integers under addition. Then H1 must be
of the form kZ for some k ∈ N. In this case H1/H0

∼= kZ is an infinite
cyclic group with many nontrivial proper normal subgroups. □

Although composition series need not be unique as in the case of Z60,
it turns out that any two composition series are related. The factor groups
of the two composition series for Z60 are Z2, Z2, Z3, and Z5; that is, the
two composition series are isomorphic. The Jordan-Hölder Theorem says
that this is always the case.
Theorem 13.18 Jordan-Hölder. Any two composition series of G
are isomorphic.
Proof. We shall employ mathematical induction on the length of the
composition series. If the length of a composition series is 1, then G must
be a simple group. In this case any two composition series are isomorphic.

Suppose now that the theorem is true for all groups having a compo-
sition series of length k, where 1 ≤ k < n. Let

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e}
G = Km ⊃ Km−1 ⊃ · · · ⊃ K1 ⊃ K0 = {e}

be two composition series for G. We can form two new subnormal series
for G since Hi∩Km−1 is normal in Hi+1∩Km−1 and Kj∩Hn−1 is normal
in Kj+1 ∩Hn−1:

G = Hn ⊃ Hn−1 ⊃ Hn−1 ∩Km−1 ⊃ · · · ⊃ H0 ∩Km−1 = {e}
G = Km ⊃ Km−1 ⊃ Km−1 ∩Hn−1 ⊃ · · · ⊃ K0 ∩Hn−1 = {e}.

Since Hi ∩ Km−1 is normal in Hi+1 ∩ Km−1, the Second Isomorphism
Theorem (Theorem 11.12, p. 144) implies that

(Hi+1 ∩Km−1)/(Hi ∩Km−1) = (Hi+1 ∩Km−1)/(Hi ∩ (Hi+1 ∩Km−1))
∼= Hi(Hi+1 ∩Km−1)/Hi,
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where Hi is normal in Hi(Hi+1 ∩ Km−1). Since {Hi} is a composition
series, Hi+1/Hi must be simple; consequently, Hi(Hi+1 ∩ Km−1)/Hi is
either Hi+1/Hi or Hi/Hi. That is, Hi(Hi+1 ∩Km−1) must be either Hi

or Hi+1. Removing any nonproper inclusions from the series

Hn−1 ⊃ Hn−1 ∩Km−1 ⊃ · · · ⊃ H0 ∩Km−1 = {e},

we have a composition series for Hn−1. Our induction hypothesis says
that this series must be equivalent to the composition series

Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e}.

Hence, the composition series

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e}

and

G = Hn ⊃ Hn−1 ⊃ Hn−1 ∩Km−1 ⊃ · · · ⊃ H0 ∩Km−1 = {e}

are equivalent. If Hn−1 = Km−1, then the composition series {Hi} and
{Kj} are equivalent and we are done; otherwise, Hn−1Km−1 is a normal
subgroup of G properly containing Hn−1. In this case Hn−1Km−1 = G
and we can apply the Second Isomorphism Theorem once again; that is,

Km−1/(Km−1 ∩Hn−1) ∼= (Hn−1Km−1)/Hn−1 = G/Hn−1.

Therefore,

G = Hn ⊃ Hn−1 ⊃ Hn−1 ∩Km−1 ⊃ · · · ⊃ H0 ∩Km−1 = {e}

and

G = Km ⊃ Km−1 ⊃ Km−1 ∩Hn−1 ⊃ · · · ⊃ K0 ∩Hn−1 = {e}

are equivalent and the proof of the theorem is complete. ■
A group G is solvable if it has a subnormal series {Hi} such that

all of the factor groups Hi+1/Hi are abelian. Solvable groups will play
a fundamental role when we study Galois theory and the solution of
polynomial equations.
Example 13.19 The group S4 is solvable since

S4 ⊃ A4 ⊃ {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊃ {(1)}

has abelian factor groups; however, for n ≥ 5 the series

Sn ⊃ An ⊃ {(1)}

is a composition series for Sn with a nonabelian factor group. Therefore,
Sn is not a solvable group for n ≥ 5. □

Sage. Sage is able to create direct products of cyclic groups, though
they are realized as permutation groups. This is a situation that should
improve. However, with a classification of finite abelian groups, we can
describe how to construct in Sage every group of order less than 16.
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13.3 Reading Questions

1. How many abelian groups are there of order 200 = 2352?
2. How many abelian groups are there of order 729 = 36?
3. Find a subgroup of order 6 in Z8 × Z3 × Z3.
4. It can be shown that an abelian group of order 72 contains a sub-

group of order 8. What are the possibilities for this subgroup?
5. What is a principal series of the group G? Your answer should not

use new terms defined in this chapter.

13.4 Exercises
1. Find all of the abelian groups of order less than or equal to 40 up to

isomorphism.
2. Find all of the abelian groups of order 200 up to isomorphism.
3. Find all of the abelian groups of order 720 up to isomorphism.
4. Find all of the composition series for each of the following groups.

(a) Z12

(b) Z48

(c) The quaternions, Q8

(d) D4

(e) S3 × Z4

(f) S4

(g) Sn, n ≥ 5

(h) Q
5. Show that the infinite direct product G = Z2×Z2×· · · is not finitely

generated.
6. Let G be an abelian group of order m. If n divides m, prove that G

has a subgroup of order n.
7. A group G is a torsion group if every element of G has finite order.

Prove that a finitely generated abelian torsion group must be finite.
8. Let G, H, and K be finitely generated abelian groups. Show that if

G×H ∼= G×K, then H ∼= K. Give a counterexample to show that
this cannot be true in general.

9. Let G and H be solvable groups. Show that G×H is also solvable.
10. If G has a composition (principal) series and if N is a proper normal

subgroup of G, show there exists a composition (principal) series
containing N .

11. Prove or disprove: Let N be a normal subgroup of G. If N and
G/N have composition series, then G must also have a composition
series.

12. Let N be a normal subgroup of G. If N and G/N are solvable
groups, show that G is also a solvable group.

13. Prove that G is a solvable group if and only if G has a series of
subgroups

G = Pn ⊃ Pn−1 ⊃ · · · ⊃ P1 ⊃ P0 = {e}

where Pi is normal in Pi+1 and the order of Pi+1/Pi is prime.
14. Let G be a solvable group. Prove that any subgroup of G is also

solvable.
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15. Let G be a solvable group and N a normal subgroup of G. Prove
that G/N is solvable.

16. Prove that Dn is solvable for all integers n.
17. Suppose that G has a composition series. If N is a normal subgroup

of G, show that N and G/N also have composition series.
18. Let G be a cyclic p-group with subgroups H and K. Prove that

either H is contained in K or K is contained in H.
19. Suppose that G is a solvable group with order n ≥ 2. Show that G

contains a normal nontrivial abelian subgroup.
20. Recall that the commutator subgroup G′ of a group G is defined as

the subgroup of G generated by elements of the form a−1b−1ab for
a, b ∈ G. We can define a series of subgroups of G by G(0) = G,
G(1) = G′, and G(i+1) = (G(i))′.

(a) Prove that G(i+1) is normal in (G(i))′. The series of subgroups

G(0) = G ⊃ G(1) ⊃ G(2) ⊃ · · ·

is called the derived series of G.

(b) Show that G is solvable if and only if G(n) = {e} for some
integer n.

21. Suppose that G is a solvable group with order n ≥ 2. Show that G
contains a normal nontrivial abelian factor group.

22. Zassenhaus Lemma. Let H and K be subgroups of a group G.
Suppose also that H∗ and K∗ are normal subgroups of H and K
respectively. Then

(a) H∗(H ∩K∗) is a normal subgroup of H∗(H ∩K).

(b) K∗(H∗ ∩K) is a normal subgroup of K∗(H ∩K).

(c) H∗(H ∩K)/H∗(H ∩K∗) ∼= K∗(H ∩K)/K∗(H∗ ∩K) ∼= (H ∩
K)/(H∗ ∩K)(H ∩K∗).

23. Schreier’s Theorem. Use the Zassenhaus Lemma to prove that
two subnormal (normal) series of a group G have isomorphic refine-
ments.

24. Use Schreier’s Theorem to prove the Jordan-Hölder Theorem.

13.5 Programming Exercises
1. Write a program that will compute all possible abelian groups of

order n. What is the largest n for which your program will work?

13.6 References and Suggested Readings
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Springer, New York, 1995.
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Group Actions

Group actions generalize group multiplication. If G is a group and X
is an arbitrary set, a group action of an element g ∈ G and x ∈ X is a
product, gx, living in X. Many problems in algebra are best be attacked
via group actions. For example, the proofs of the Sylow theorems and of
Burnside’s Counting Theorem are most easily understood when they are
formulated in terms of group actions.

14.1 Groups Acting on Sets
Let X be a set and G be a group. A (left) action of G on X is a map
G×X → X given by (g, x) 7→ gx, where

1. ex = x for all x ∈ X;

2. (g1g2)x = g1(g2x) for all x ∈ X and all g1, g2 ∈ G.
Under these considerations X is called a G-set. Notice that we are not
requiring X to be related to G in any way. It is true that every group
G acts on every set X by the trivial action (g, x) 7→ x; however, group
actions are more interesting if the set X is somehow related to the group
G.
Example 14.1 Let G = GL2(R) and X = R2. Then G acts on X by left
multiplication. If v ∈ R2 and I is the identity matrix, then Iv = v. If A
and B are 2 × 2 invertible matrices, then (AB)v = A(Bv) since matrix
multiplication is associative. □
Example 14.2 Let G = D4 be the symmetry group of a square. If
X = {1, 2, 3, 4} is the set of vertices of the square, then we can consider
D4 to consist of the following permutations:

{(1), (1 3), (2 4), (1 4 3 2), (1 2 3 4), (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}.

The elements of D4 act on X as functions. The permutation (1 3)(2 4)
acts on vertex 1 by sending it to vertex 3, on vertex 2 by sending it to
vertex 4, and so on. It is easy to see that the axioms of a group action
are satisfied. □

In general, if X is any set and G is a subgroup of SX , the group of
all permutations acting on X, then X is a G-set under the group action

(σ, x) 7→ σ(x)

175
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for σ ∈ G and x ∈ X.
Example 14.3 If we let X = G, then every group G acts on itself by the
left regular representation; that is, (g, x) 7→ λg(x) = gx, where λg is left
multiplication:

e · x = λex = ex = x

(gh) · x = λghx = λgλhx = λg(hx) = g · (h · x).

If H is a subgroup of G, then G is an H-set under left multiplication by
elements of H. □
Example 14.4 Let G be a group and suppose that X = G. If H is a
subgroup of G, then G is an H-set under conjugation; that is, we can
define an action of H on G,

H ×G→ G,

via
(h, g) 7→ hgh−1

for h ∈ H and g ∈ G. Clearly, the first axiom for a group action holds.
Observing that

(h1h2, g) = h1h2g(h1h2)
−1

= h1(h2gh
−1
2 )h−1

1

= (h1, (h2, g)),

we see that the second condition is also satisfied. □
Example 14.5 Let H be a subgroup of G and LH the set of left cosets
of H. The set LH is a G-set under the action

(g, xH) 7→ gxH.

Again, it is easy to see that the first axiom is true. Since (gg′)xH =
g(g′xH), the second axiom is also true. □

If G acts on a set X and x, y ∈ X, then x is said to be G-equivalent
to y if there exists a g ∈ G such that gx = y. We write x ∼G y or x ∼ y
if two elements are G-equivalent.
Proposition 14.6 Let X be a G-set. Then G-equivalence is an equiva-
lence relation on X.
Proof. The relation ∼ is reflexive since ex = x. Suppose that x ∼ y for
x, y ∈ X. Then there exists a g such that gx = y. In this case g−1y = x;
hence, y ∼ x. To show that the relation is transitive, suppose that x ∼ y
and y ∼ z. Then there must exist group elements g and h such that
gx = y and hy = z. So z = hy = (hg)x, and x is equivalent to z. ■

If X is a G-set, then each partition of X associated with G-equivalence
is called an orbit of X under G. We will denote the orbit that contains
an element x of X by Ox.
Example 14.7 Let G be the permutation group defined by

G = {(1), (1 2 3), (1 3 2), (4 5), (1 2 3)(4 5), (1 3 2)(4 5)}

and X = {1, 2, 3, 4, 5}. Then X is a G-set. The orbits are O1 = O2 =
O3 = {1, 2, 3} and O4 = O5 = {4, 5}. □
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Now suppose that G is a group acting on a set X and let g be an
element of G. The fixed point set of g in X, denoted by Xg, is the set of
all x ∈ X such that gx = x. We can also study the group elements g that
fix a given x ∈ X. This set is more than a subset of G, it is a subgroup.
This subgroup is called the stabilizer subgroup or isotropy subgroup of
x. We will denote the stabilizer subgroup of x by Gx.
Remark 14.8 It is important to remember that Xg ⊂ X and Gx ⊂ G.

Example 14.9 Let X = {1, 2, 3, 4, 5, 6} and suppose that G is the per-
mutation group given by the permutations

{(1), (1 2)(3 4 5 6), (3 5)(4 6), (1 2)(3 6 5 4)}.

Then the fixed point sets of X under the action of G are

X(1) = X,

X(3 5)(4 6) = {1, 2},
X(1 2)(3 4 5 6) = X(1 2)(3 6 5 4) = ∅,

and the stabilizer subgroups are

G1 = G2 = {(1), (3 5)(4 6)},
G3 = G4 = G5 = G6 = {(1)}.

It is easily seen that Gx is a subgroup of G for each x ∈ X. □
Proposition 14.10 Let G be a group acting on a set X and x ∈ X. The
stabilizer group of x, Gx, is a subgroup of G.
Proof. Clearly, e ∈ Gx since the identity fixes every element in the set
X. Let g, h ∈ Gx. Then gx = x and hx = x. So (gh)x = g(hx) = gx = x;
hence, the product of two elements in Gx is also in Gx. Finally, if g ∈ Gx,
then x = ex = (g−1g)x = (g−1)gx = g−1x. So g−1 is in Gx. ■

We will denote the number of elements in the fixed point set of an
element g ∈ G by |Xg| and denote the number of elements in the orbit of
x ∈ X by |Ox|. The next theorem demonstrates the relationship between
orbits of an element x ∈ X and the left cosets of Gx in G.
Theorem 14.11 Let G be a finite group and X a finite G-set. If x ∈ X,
then |Ox| = [G : Gx].
Proof. We know that |G|/|Gx| is the number of left cosets of Gx in G
by Lagrange’s Theorem (Theorem 6.10, p. 81). We will define a bijective
map ϕ between the orbit Ox of X and the set of left cosets LGx

of Gx in
G. Let y ∈ Ox. Then there exists a g in G such that gx = y. Define ϕ
by ϕ(y) = gGx. To show that ϕ is one-to-one, assume that ϕ(y1) = ϕ(y2).
Then

ϕ(y1) = g1Gx = g2Gx = ϕ(y2),

where g1x = y1 and g2x = y2. Since g1Gx = g2Gx, there exists a g ∈ Gx
such that g2 = g1g,

y2 = g2x = g1gx = g1x = y1;

consequently, the map ϕ is one-to-one. Finally, we must show that the
map ϕ is onto. Let gGx be a left coset. If gx = y, then ϕ(y) = gGx. ■
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14.2 The Class Equation
Let X be a finite G-set and XG be the set of fixed points in X; that is,

XG = {x ∈ X : gx = x for all g ∈ G}.

Since the orbits of the action partition X,

|X| = |XG|+
n∑
i=k

|Oxi |,

where xk, . . . , xn are representatives from the distinct nontrivial orbits of
X.

Now consider the special case in which G acts on itself by conjugation,
(g, x) 7→ gxg−1. The center of G,

Z(G) = {x : xg = gx for all g ∈ G},

is the set of points that are fixed by conjugation. The nontrivial orbits
of the action are called the conjugacy classes of G. If x1, . . . , xk are
representatives from each of the nontrivial conjugacy classes of G and
|Ox1 | = n1, . . . , |Oxk

| = nk, then

|G| = |Z(G)|+ n1 + · · ·+ nk.

The stabilizer subgroups of each of the xi’s, C(xi) = {g ∈ G : gxi = xig},
are called the centralizer subgroups of the xi’s. From Theorem 14.11,
p. 177, we obtain the class equation:

|G| = |Z(G)|+ [G : C(x1)] + · · ·+ [G : C(xk)].

One of the consequences of the class equation is that the order of each
conjugacy class must divide the order of G.
Example 14.12 It is easy to check that the conjugacy classes in S3 are
the following:

{(1)}, {(1 2 3), (1 3 2)}, {(1 2), (1 3), (2 3)}.

The class equation is 6 = 1 + 2 + 3. □
Example 14.13 The center of D4 is {(1), (1 3)(2 4)}, and the conjugacy
classes are

{(1 3), (2 4)}, {(1 4 3 2), (1 2 3 4)}, {(1 2)(3 4), (1 4)(2 3)}.

Thus, the class equation for D4 is 8 = 2 + 2 + 2 + 2. □
Example 14.14 For Sn it takes a bit of work to find the conjugacy
classes. We begin with cycles. Suppose that σ = (a1, . . . , ak) is a cycle
and let τ ∈ Sn. By Theorem 6.16, p. 82,

τστ−1 = (τ(a1), . . . , τ(ak)).

Consequently, any two cycles of the same length are conjugate. Now
let σ = σ1σ2 · · ·σr be a cycle decomposition, where the length of each
cycle σi is ri. Then σ is conjugate to every other τ ∈ Sn whose cycle
decomposition has the same lengths.

The number of conjugate classes in Sn is the number of ways in which
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n can be partitioned into sums of positive integers. In the case of S3 for
example, we can partition the integer 3 into the following three sums:

3 = 1 + 1 + 1

3 = 1 + 2

3 = 3;

therefore, there are three conjugacy classes. There are variations to prob-
lem of finding the number of such partitions for any positive integer n that
are what computer scientists call NP-complete. This effectively means
that the problem cannot be solved for a large n because the computations
would be too time-consuming for even the largest computer. □
Theorem 14.15 Let G be a group of order pn where p is prime. Then
G has a nontrivial center.
Proof. We apply the class equation

|G| = |Z(G)|+ n1 + · · ·+ nk.

Since each ni > 1 and ni | |G|, it follows that p must divide each ni. Also,
p | |G|; hence, p must divide |Z(G)|. Since the identity is always in the
center of G, |Z(G)| ≥ 1. Therefore, |Z(G)| ≥ p, and there exists some
g ∈ Z(G) such that g 6= 1. ■

Corollary 14.16 Let G be a group of order p2 where p is prime. Then
G is abelian.
Proof. By Theorem 14.15, p. 179, |Z(G)| = p or p2. Suppose that
|Z(G)| = p. Then Z(G) and G/Z(G) both have order p and must both
be cyclic groups. Choosing a generator aZ(G) for G/Z(G), we can write
any element gZ(G) in the quotient group as amZ(G) for some integer m;
hence, g = amx for some x in the center of G. Similarly, if hZ(G) ∈
G/Z(G), there exists a y in Z(G) such that h = any for some integer
n. Since x and y are in the center of G, they commute with all other
elements of G; therefore,

gh = amxany = am+nxy = anyamx = hg,

and G must be abelian. Hence, |Z(G)| = p2. ■

14.3 Burnside’s Counting Theorem
Suppose that we wish to color the vertices of a square with two different
colors, say black and white. We might suspect that there would be 24 =
16 different colorings. However, some of these colorings are equivalent. If
we color the first vertex black and the remaining vertices white, it is the
same as coloring the second vertex black and the remaining ones white
since we could obtain the second coloring simply by rotating the square
90◦ (Figure 14.17, p. 180).
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Figure 14.17 Equivalent colorings of square
Burnside’s Counting Theorem offers a method of computing the num-

ber of distinguishable ways in which something can be done. In addition
to its geometric applications, the theorem has interesting applications to
areas in switching theory and chemistry. The proof of Burnside’s Count-
ing Theorem depends on the following lemma.
Lemma 14.18 Let X be a G-set and suppose that x ∼ y. Then Gx is
isomorphic to Gy. In particular, |Gx| = |Gy|.
Proof. Let G act on X by (g, x) 7→ g · x. Since x ∼ y, there exists a
g ∈ G such that g · x = y. Let a ∈ Gx. Since

gag−1 · y = ga · g−1y = ga · x = g · x = y,

we can define a map ϕ : Gx → Gy by ϕ(a) = gag−1. The map ϕ is a
homomorphism since

ϕ(ab) = gabg−1 = gag−1gbg−1 = ϕ(a)ϕ(b).

Suppose that ϕ(a) = ϕ(b). Then gag−1 = gbg−1 or a = b; hence, the map
is injective. To show that ϕ is onto, let b be in Gy; then g−1bg is in Gx
since

g−1bg · x = g−1b · gx = g−1b · y = g−1 · y = x;

and ϕ(g−1bg) = b. ■
Theorem 14.19 Burnside. Let G be a finite group acting on a set X
and let k denote the number of orbits of X. Then

k =
1

|G|
∑
g∈G

|Xg|.

Proof. We look at all the fixed points x of all the elements in g ∈ G;
that is, we look at all g’s and all x’s such that gx = x. If viewed in terms
of fixed point sets, the number of all g’s fixing x’s is∑

g∈G
|Xg|.
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However, if viewed in terms of the stabilizer subgroups, this number is∑
x∈X

|Gx|;

hence,
∑
g∈G |Xg| =

∑
x∈X |Gx|. By Lemma 14.18, p. 180,∑
y∈Ox

|Gy| = |Ox| · |Gx|.

By Theorem 14.11, p. 177 and Lagrange’s Theorem, this expression is
equal to |G|. Summing over all of the k distinct orbits, we conclude that∑

g∈G
|Xg| =

∑
x∈X

|Gx| = k · |G|.

■
Example 14.20 Let X = {1, 2, 3, 4, 5} and suppose that G is the permu-
tation group G = {(1), (1 3), (1 3)(2 5), (2 5)}. The orbits of X are {1, 3},
{2, 5}, and {4}. The fixed point sets are

X(1) = X

X(1 3) = {2, 4, 5}
X(1 3)(2 5) = {4}

X(2 5) = {1, 3, 4}.

Burnside’s Theorem says that

k =
1

|G|
∑
g∈G

|Xg| =
1

4
(5 + 3 + 1 + 3) = 3.

□

A Geometric Example
Before we apply Burnside’s Theorem to switching-theory problems, let
us examine the number of ways in which the vertices of a square can be
colored black or white. Notice that we can sometimes obtain equivalent
colorings by simply applying a rigid motion to the square. For instance,
as we have pointed out, if we color one of the vertices black and the
remaining three white, it does not matter which vertex was colored black
since a rotation will give an equivalent coloring.

The symmetry group of a square, D4, is given by the following per-
mutations:

(1) (1 3) (2 4) (1 4 3 2)

(1 2 3 4) (1 2)(3 4) (1 4)(2 3) (1 3)(2 4)

The groupG acts on the set of vertices {1, 2, 3, 4} in the usual manner. We
can describe the different colorings by mappings from X into Y = {B,W}
where B and W represent the colors black and white, respectively. Each
map f : X → Y describes a way to color the corners of the square.
Every σ ∈ D4 induces a permutation σ̃ of the possible colorings given by
σ̃(f) = f ◦ σ for f : X → Y . For example, suppose that f is defined by

f(1) = B
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f(2) =W

f(3) =W

f(4) =W

and σ = (12)(34). Then σ̃(f) = f ◦ σ sends vertex 2 to B and the
remaining vertices to W . The set of all such σ̃ is a permutation group
G̃ on the set of possible colorings. Let X̃ denote the set of all possible
colorings; that is, X̃ is the set of all possible maps from X to Y . Now we
must compute the number of G̃-equivalence classes.

1. X̃(1) = X̃ since the identity fixes every possible coloring. |X̃| =
24 = 16.

2. X̃(1 2 3 4) consists of all f ∈ X̃ such that f is unchanged by the
permutation (1 2 3 4). In this case f(1) = f(2) = f(3) = f(4), so
that all values of f must be the same; that is, either f(x) = B or
f(x) =W for every vertex x of the square. So |X̃(1 2 3 4)| = 2.

3. |X̃(1 4 3 2)| = 2.

4. For X̃(1 3)(2 4), f(1) = f(3) and f(2) = f(4). Thus, |X̃(1 3)(2 4)| =
22 = 4.

5. |X̃(1 2)(3 4)| = 4.

6. |X̃(1 4)(2 3)| = 4.

7. For X̃(1 3), f(1) = f(3) and the other corners can be of any color;
hence, |X̃(1 3)| = 23 = 8.

8. |X̃(2 4)| = 8.

By Burnside’s Theorem, we can conclude that there are exactly

1

8
(24 + 21 + 22 + 21 + 22 + 22 + 23 + 23) = 6

ways to color the vertices of the square.

Proposition 14.21 Let G be a permutation group of X and X̃ the set
of functions from X to Y . Then G induces a group G̃ that permutes
the elements of X̃, where σ̃ ∈ G̃ is defined by σ̃(f) = f ◦ σ for σ ∈ G

and f ∈ X̃. Furthermore, if n is the number of cycles in the cycle
decomposition of σ, then |X̃σ| = |Y |n.
Proof. Let σ ∈ G and f ∈ X̃. Since σ permutes the elements of X,
f ◦ σ must also be in X̃. Suppose that g is another function from X to
Y such that σ̃(f) = σ̃(g). Then for each x ∈ X,

f(σ(x)) = σ̃(f)(x) = σ̃(g)(x) = g(σ(x)).

Since σ is a permutation of X, every element x′ in X is the image of some
x in X under σ; hence, f and g agree on all elements of X. Therefore,
f = g and σ̃ is injective. The map σ 7→ σ̃ is onto, since the two sets are
the same size.

Suppose that σ is a permutation of X with cycle decomposition σ =
σ1σ2 · · ·σn. Any f in X̃σ must have the same value on each cycle of σ.
Since there are n cycles and |Y | possible values for each cycle, |X̃σ| = |Y |n.

■
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Example 14.22 Let X = {1, 2, . . . , 7} and suppose that Y = {A,B,C}.
If g is the permutation of X given by (1 3)(2 4 5) = (1 3)(2 4 5)(6)(7), then
n = 4. Any f ∈ X̃g must have the same value on each cycle in g. There
are |Y | = 3 such choices for any value, so |X̃g| = 34 = 81. □
Example 14.23 Suppose that we wish to color the vertices of a square
using four different colors. By Proposition 14.21, p. 182, we can immedi-
ately decide that there are

1

8
(44 + 41 + 42 + 41 + 42 + 42 + 43 + 43) = 55

possible ways. □

Switching Functions
In switching theory we are concerned with the design of electronic cir-
cuits with binary inputs and outputs. The simplest of these circuits is a
switching function that has n inputs and a single output (Figure 14.24,
p. 183). Large electronic circuits can often be constructed by combining
smaller modules of this kind. The inherent problem here is that even for
a simple circuit a large number of different switching functions can be
constructed. With only four inputs and a single output, we can construct
65,536 different switching functions. However, we can often replace one
switching function with another merely by permuting the input leads to
the circuit (Figure 14.25, p. 183).

x1
x2...
xn

f f(x1, x2, . . . , xn)

Figure 14.24 A switching function of n variables
We define a switching or Boolean function of n variables to be a

function from Zn2 to Z2. Since any switching function can have two pos-
sible values for each binary n-tuple and there are 2n binary n-tuples, 22n

switching functions are possible for n variables. In general, allowing per-
mutations of the inputs greatly reduces the number of different kinds of
modules that are needed to build a large circuit.

a

b
f f(a, b)

a

b
f f(b, a) = g(a, b)

Figure 14.25 Switching functions in two variables
The possible switching functions with two input variables a and b

are listed in Table 14.26, p. 184. Two switching functions f and g are
equivalent if g can be obtained from f by a permutation of the input
variables. For example, g(a, b, c) = f(b, c, a). In this case g ∼ f via
the permutation (a, c, b). In the case of switching functions of two vari-
ables, the permutation (a, b) reduces 16 possible switching functions to
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12 equivalent functions since

f2 ∼ f4

f3 ∼ f5

f10 ∼ f12

f11 ∼ f13.

Table 14.26 Switching functions in two variables

Inputs Outputs
f0 f1 f2 f3 f4 f5 f6 f7

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

Inputs Outputs
f8 f9 f10 f11 f12 f13 f14 f15

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

For three input variables there are 22
3

= 256 possible switching func-
tions; in the case of four variables there are 22

4

= 65,536. The number
of equivalence classes is too large to reasonably calculate directly. It is
necessary to employ Burnside’s Theorem.

Consider a switching function with three possible inputs, a, b, and c.
As we have mentioned, two switching functions f and g are equivalent
if a permutation of the input variables of f gives g. It is important
to notice that a permutation of the switching functions is not simply a
permutation of the input values {a, b, c}. A switching function is a set of
output values for the inputs a, b, and c, so when we consider equivalent
switching functions, we are permuting 23 possible outputs, not just three
input values. For example, each binary triple (a, b, c) has a specific output
associated with it. The permutation (acb) changes outputs as follows:

(0, 0, 0) 7→ (0, 0, 0)

(0, 0, 1) 7→ (0, 1, 0)

(0, 1, 0) 7→ (1, 0, 0)

...
(1, 1, 0) 7→ (1, 0, 1)

(1, 1, 1) 7→ (1, 1, 1).

Let X be the set of output values for a switching function in n vari-
ables. Then |X| = 2n. We can enumerate these values as follows:

(0, . . . , 0, 1) 7→ 0

(0, . . . , 1, 0) 7→ 1

(0, . . . , 1, 1) 7→ 2

...
(1, . . . , 1, 1) 7→ 2n − 1.
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Now let us consider a circuit with four input variables and a single output.
Suppose that we can permute the leads of any circuit according to the
following permutation group:

(a), (a, c), (b, d), (a, d, c, b),

(a, b, c, d), (a, b)(c, d), (a, d)(b, c), (a, c)(b, d).

The permutations of the four possible input variables induce the permu-
tations of the output values in Table 14.27, p. 185.

Hence, there are
1

8
(216 + 2 · 212 + 2 · 26 + 3 · 210) = 9616

possible switching functions of four variables under this group of permuta-
tions. This number will be even smaller if we consider the full symmetric
group on four letters.
Table 14.27 Permutations of switching functions in four vari-
ables

Group Number
Permutation Switching Function Permutation of Cycles
(a) (0) 16
(a, c) (2, 8)(3, 9)(6, 12)(7, 13) 12
(b, d) (1, 4)(3, 6)(9, 12)(11, 14) 12
(a, d, c, b) (1, 2, 4, 8)(3, 6.12, 9)(5, 10)(7, 14, 13, 11) 6
(a, b, c, d) (1, 8, 4, 2)(3, 9, 12, 6)(5, 10)(7, 11, 13, 14) 6
(a, b)(c, d) (1, 2)(4, 8)(5, 10)(6, 9)(7, 11)(13, 14) 10
(a, d)(b, c) (1, 8)(2, 4)(3, 12)(5, 10)(7, 14)(11, 13) 10
(a, c)(b, d) (1, 4)(2, 8)(3, 12)(6, 9)(7, 13)(11, 14) 10

Sage. Sage has many commands related to conjugacy, which is a group
action. It also has commands for orbits and stabilizers of permutation
groups. In the supplement, we illustrate the automorphism group of a
(combinatorial) graph as another example of a group action on the vertex
set of the graph.

Historical Note
William Burnside was born in London in 1852. He attended Cambridge
University from 1871 to 1875 and won the Smith’s Prize in his last year.
After his graduation he lectured at Cambridge. He was made a member of
the Royal Society in 1893. Burnside wrote approximately 150 papers on
topics in applied mathematics, differential geometry, and probability, but
his most famous contributions were in group theory. Several of Burnside’s
conjectures have stimulated research to this day. One such conjecture was
that every group of odd order is solvable; that is, for a group G of odd
order, there exists a sequence of subgroups

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e}

such that Hi is normal in Hi+1 and Hi+1/Hi is abelian. This conjecture
was finally proven by W. Feit and J. Thompson in 1963. Burnside’s The
Theory of Groups of Finite Order, published in 1897, was one of the first
books to treat groups in a modern context as opposed to permutation
groups. The second edition, published in 1911, is still a classic.
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14.4 Reading Questions

1. Give an informal description of a group action.
2. Describe the class equation.
3. What are the groups of order 49?
4. How many switching functions are there with 5 inputs? (Give both

a simple expression and the total number as a single integer.)
5. The “Historical Note” mentions the proof of Burnside’s Conjecture.

How long was the proof?

14.5 Exercises
1. Examples 14.1, p. 175–14.5, p. 176 in the first section each describe

an action of a group G on a set X, which will give rise to the equiva-
lence relation defined by G-equivalence. For each example, compute
the equivalence classes of the equivalence relation, the G-equivalence
classes.

2. Compute all Xg and all Gx for each of the following permutation
groups.

(a) X = {1, 2, 3}, G = S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}

(b) X = {1, 2, 3, 4, 5, 6}, G = {(1), (1 2), (3 4 5), (3 5 4), (1 2)(3 4 5), (1 2)(3 5 4)}
3. Compute the G-equivalence classes of X for each of the G-sets in

Exercise 14.5.2, p. 186. For each x ∈ X verify that |G| = |Ox| · |Gx|.
4. Let G be the additive group of real numbers. Let the action of θ ∈ G

on the real plane R2 be given by rotating the plane counterclockwise
about the origin through θ radians. Let P be a point on the plane
other than the origin.

(a) Show that R2 is a G-set.

(b) Describe geometrically the orbit containing P .

(c) Find the group GP .
5. Let G = A4 and suppose that G acts on itself by conjugation; that

is, (g, h) 7→ ghg−1.
(a) Determine the conjugacy classes (orbits) of each element of G.

(b) Determine all of the isotropy subgroups for each element of G.
6. Find the conjugacy classes and the class equation for each of the

following groups.
(a) S4 (b) D5 (c) Z9 (d) Q8

7. Write the class equation for S5 and for A5.
8. If a square remains fixed in the plane, how many different ways can

the corners of the square be colored if three colors are used?
9. How many ways can the vertices of an equilateral triangle be colored

using three different colors?
10. Find the number of ways a six-sided die can be constructed if each

side is marked differently with 1, . . . , 6 dots.
11. Up to a rotation, how many ways can the faces of a cube be colored

with three different colors?
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12. Consider 12 straight wires of equal lengths with their ends soldered
together to form the edges of a cube. Either silver or copper wire
can be used for each edge. How many different ways can the cube
be constructed?

13. Suppose that we color each of the eight corners of a cube. Using
three different colors, how many ways can the corners be colored up
to a rotation of the cube?

14. Each of the faces of a regular tetrahedron can be painted either
red or white. Up to a rotation, how many different ways can the
tetrahedron be painted?

15. Suppose that the vertices of a regular hexagon are to be colored
either red or white. How many ways can this be done up to a sym-
metry of the hexagon?

16. A molecule of benzene is made up of six carbon atoms and six hydro-
gen atoms, linked together in a hexagonal shape as in Figure 14.28,
p. 187.

(a) How many different compounds can be formed by replacing
one or more of the hydrogen atoms with a chlorine atom?

(b) Find the number of different chemical compounds that can
be formed by replacing three of the six hydrogen atoms in a
benzene ring with a CH3 radical.

H

H

H

H

H

H

Figure 14.28 A benzene ring
17. How many equivalence classes of switching functions are there if the

input variables x1, x2, and x3 can be permuted by any permuta-
tion in S3? What if the input variables x1, x2, x3, and x4 can be
permuted by any permutation in S4?

18. How many equivalence classes of switching functions are there if
the input variables x1, x2, x3, and x4 can be permuted by any
permutation in the subgroup of S4 generated by the permutation
(x1, x2, x3, x4)?

19. A striped necktie has 12 bands of color. Each band can be colored
by one of four possible colors. How many possible different-colored
neckties are there?

20. A group acts faithfully on a G-set X if the identity is the only
element of G that leaves every element of X fixed. Show that G
acts faithfully on X if and only if no two distinct elements of G have
the same action on each element of X.

21. Let p be prime. Show that the number of different abelian groups of
order pn (up to isomorphism) is the same as the number of conjugacy
classes in Sn.
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22. Let a ∈ G. Show that for any g ∈ G, gC(a)g−1 = C(gag−1).
23. Let |G| = pn be a nonabelian group for p prime. Prove that |Z(G)| <

pn−1.
24. Let G be a group with order pn where p is prime and X a finite G-set.

If XG = {x ∈ X : gx = x for all g ∈ G} is the set of elements in X
fixed by the group action, then prove that |X| ≡ |XG| (mod p).

25. If G is a group of order pn, where p is prime and n ≥ 2, show that
G must have a proper subgroup of order p. If n ≥ 3, is it true that
G will have a proper subgroup of order p2?

14.6 Programming Exercise
1. Write a program to compute the number of conjugacy classes in Sn.

What is the largest n for which your program will work?
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The Sylow Theorems

We already know that the converse of Lagrange’s Theorem is false. If
G is a group of order m and n divides m, then G does not necessarily
possess a subgroup of order n. For example, A4 has order 12 but does not
possess a subgroup of order 6. However, the Sylow Theorems do provide a
partial converse for Lagrange’s Theorem—in certain cases they guarantee
us subgroups of specific orders. These theorems yield a powerful set of
tools for the classification of all finite nonabelian groups.

15.1 The Sylow Theorems
We will use what we have learned about group actions to prove the Sylow
Theorems. Recall for a moment what it means for G to act on itself
by conjugation and how conjugacy classes are distributed in the group
according to the class equation, discussed in Chapter 14, p. 175. A group
G acts on itself by conjugation via the map (g, x) 7→ gxg−1. Let x1, . . . , xk
be representatives from each of the distinct conjugacy classes of G that
consist of more than one element. Then the class equation can be written
as

|G| = |Z(G)|+ [G : C(x1)] + · · ·+ [G : C(xk)],
where Z(G) = {g ∈ G : gx = xg for all x ∈ G} is the center of G and
C(xi) = {g ∈ G : gxi = xig} is the centralizer subgroup of xi.

We begin our investigation of the Sylow Theorems by examining sub-
groups of order p, where p is prime. A group G is a p-group if every
element in G has as its order a power of p, where p is a prime number.
A subgroup of a group G is a p-subgroup if it is a p-group.
Theorem 15.1 Cauchy. Let G be a finite group and p a prime such
that p divides the order of G. Then G contains a subgroup of order p.
Proof. We will use induction on the order of G. If |G| = p, then clearly
G itself is the required subgroup. We now assume that every group of
order k, where p ≤ k < n and p divides k, has an element of order p.
Assume that |G| = n and p | n and consider the class equation of G:

|G| = |Z(G)|+ [G : C(x1)] + · · ·+ [G : C(xk)].

We have two cases.
Case 1. Suppose the order of one of the centralizer subgroups, C(xi),
is divisible by p for some i, i = 1, . . . , k. In this case, by our induction

189
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hypothesis, we are done. Since C(xi) is a proper subgroup of G and p
divides |C(xi)|, C(xi) must contain an element of order p. Hence, G must
contain an element of order p.

Case 2. Suppose the order of no centralizer subgroup is divisible by
p. Then p divides [G : C(xi)], the order of each conjugacy class in the
class equation; hence, p must divide the center of G, Z(G). Since Z(G) is
abelian, it must have a subgroup of order p by the Fundamental Theorem
of Finite Abelian Groups. Therefore, the center of G contains an element
of order p. ■
Corollary 15.2 Let G be a finite group. Then G is a p-group if and only
if |G| = pn.

Example 15.3 Let us consider the group A5. We know that |A5| =
60 = 22 · 3 · 5. By Cauchy’s Theorem, we are guaranteed that A5 has
subgroups of orders 2, 3 and 5. The Sylow Theorems will give us even
more information about the possible subgroups of A5. □

We are now ready to state and prove the first of the Sylow Theorems.
The proof is very similar to the proof of Cauchy’s Theorem.
Theorem 15.4 First Sylow Theorem. Let G be a finite group and
p a prime such that pr divides |G|. Then G contains a subgroup of order
pr.
Proof. We induct on the order of G once again. If |G| = p, then we
are done. Now suppose that the order of G is n with n > p and that the
theorem is true for all groups of order less than n, where p divides n. We
shall apply the class equation once again:

|G| = |Z(G)|+ [G : C(x1)] + · · ·+ [G : C(xk)].

First suppose that p does not divide [G : C(xi)] for some i. Then pr |
|C(xi)|, since pr divides |G| = |C(xi)| · [G : C(xi)]. Now we can apply
the induction hypothesis to C(xi).

Hence, we may assume that p divides [G : C(xi)] for all i. Since
p divides |G|, the class equation says that p must divide |Z(G)|; hence,
by Cauchy’s Theorem, Z(G) has an element of order p, say g. Let N
be the group generated by g. Clearly, N is a normal subgroup of Z(G)
since Z(G) is abelian; therefore, N is normal in G since every element
in Z(G) commutes with every element in G. Now consider the factor
group G/N of order |G|/p. By the induction hypothesis, G/N contains
a subgroup H of order pr−1. The inverse image of H under the canonical
homomorphism ϕ : G→ G/N is a subgroup of order pr in G. ■

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G.
To prove the other two Sylow Theorems, we need to consider conjugate
subgroups as opposed to conjugate elements in a group. For a group G,
let S be the collection of all subgroups of G. For any subgroup H, S is
a H-set, where H acts on S by conjugation. That is, we have an action

H × S → S

defined by
h ·K 7→ hKh−1

for K in S.
The set

N(H) = {g ∈ G : gHg−1 = H}
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is a subgroup of G called the the normalizer of H in G. Notice that H
is a normal subgroup of N(H). In fact, N(H) is the largest subgroup of
G in which H is normal.
Lemma 15.5 Let P be a Sylow p-subgroup of a finite group G and let x
have as its order a power of p. If x−1Px = P , then x ∈ P .
Proof. Certainly x ∈ N(P ), and the cyclic subgroup, 〈xP 〉 ⊂ N(P )/P ,
has as its order a power of p. By the Correspondence Theorem there
exists a subgroup H of N(P ) containing P such that H/P = 〈xP 〉. Since
|H| = |P | · |〈xP 〉|, the order of H must be a power of p. However, P is
a Sylow p-subgroup contained in H. Since the order of P is the largest
power of p dividing |G|, H = P . Therefore, H/P is the trivial subgroup
and xP = P , or x ∈ P . ■
Lemma 15.6 Let H and K be subgroups of G. The number of distinct
H-conjugates of K is [H : N(K) ∩H].
Proof. We define a bijection between the conjugacy classes of K and
the right cosets of N(K) ∩H by h−1Kh 7→ (N(K) ∩H)h. To show that
this map is a bijection, let h1, h2 ∈ H and suppose that (N(K)∩H)h1 =
(N(K) ∩H)h2. Then h2h

−1
1 ∈ N(K). Therefore, K = h2h

−1
1 Kh1h

−1
2 or

h−1
1 Kh1 = h−1

2 Kh2, and the map is an injection. It is easy to see that
this map is surjective; hence, we have a one-to-one and onto map between
the H-conjugates of K and the right cosets of N(K) ∩H in H. ■
Theorem 15.7 Second Sylow Theorem. Let G be a finite group and
p a prime dividing |G|. Then all Sylow p-subgroups of G are conjugate.
That is, if P1 and P2 are two Sylow p-subgroups, there exists a g ∈ G such
that gP1g

−1 = P2.
Proof. Let P be a Sylow p-subgroup of G and suppose that |G| = prm
with |P | = pr. Let

S = {P = P1, P2, . . . , Pk}

consist of the distinct conjugates of P in G. By Lemma 15.6, p. 191,
k = [G : N(P )]. Notice that

|G| = prm = |N(P )| · [G : N(P )] = |N(P )| · k.

Since pr divides |N(P )|, p cannot divide k.
Given any other Sylow p-subgroup Q, we must show that Q ∈ S.

Consider the Q-conjugacy classes of each Pi. Clearly, these conjugacy
classes partition S. The size of the partition containing Pi is [Q : N(Pi)∩
Q] by Lemma 15.6, p. 191, and Lagrange’s Theorem tells us that |Q| =
[Q : N(Pi) ∩ Q]|N(Pi) ∩ Q|. Thus, [Q : N(Pi) ∩ Q] must be a divisor
of |Q| = pr. Hence, the number of conjugates in every equivalence class
of the partition is a power of p. However, since p does not divide k, one
of these equivalence classes must contain only a single Sylow p-subgroup,
say Pj . In this case, x−1Pjx = Pj for all x ∈ Q. By Lemma 15.5, p. 191,
Pj = Q. ■
Theorem 15.8 Third Sylow Theorem. Let G be a finite group and
let p be a prime dividing the order of G. Then the number of Sylow
p-subgroups is congruent to 1 (mod p) and divides |G|.
Proof. Let P be a Sylow p-subgroup acting on the set of Sylow p-
subgroups,

S = {P = P1, P2, . . . , Pk},
by conjugation. From the proof of the Second Sylow Theorem, the only
P -conjugate of P is itself and the order of the other P -conjugacy classes
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is a power of p. Each P -conjugacy class contributes a positive power of
p toward |S| except the equivalence class {P}. Since |S| is the sum of
positive powers of p and 1, |S| ≡ 1 (mod p).

Now suppose that G acts on S by conjugation. Since all Sylow p-
subgroups are conjugate, there can be only one orbit under this action.
For P ∈ S,

|S| = |orbit of P | = [G : N(P )]

by Lemma 15.6, p. 191. But [G : N(P )] is a divisor of |G|; consequently,
the number of Sylow p-subgroups of a finite group must divide the order
of the group. ■

Historical Note
Peter Ludvig Mejdell Sylow was born in 1832 in Christiania, Norway (now
Oslo). After attending Christiania University, Sylow taught high school.
In 1862 he obtained a temporary appointment at Christiania University.
Even though his appointment was relatively brief, he influenced students
such as Sophus Lie (1842–1899). Sylow had a chance at a permanent chair
in 1869, but failed to obtain the appointment. In 1872, he published a
10-page paper presenting the theorems that now bear his name. Later
Lie and Sylow collaborated on a new edition of Abel’s works. In 1898, a
chair at Christiania University was finally created for Sylow through the
efforts of his student and colleague Lie. Sylow died in 1918.

15.2 Examples and Applications
Example 15.9 Using the Sylow Theorems, we can determine that A5

has subgroups of orders 2, 3, 4, and 5. The Sylow p-subgroups of A5

have orders 3, 4, and 5. The Third Sylow Theorem tells us exactly how
many Sylow p-subgroups A5 has. Since the number of Sylow 5-subgroups
must divide 60 and also be congruent to 1 (mod 5), there are either one
or six Sylow 5-subgroups in A5. All Sylow 5-subgroups are conjugate. If
there were only a single Sylow 5-subgroup, it would be conjugate to itself;
that is, it would be a normal subgroup of A5. Since A5 has no normal
subgroups, this is impossible; hence, we have determined that there are
exactly six distinct Sylow 5-subgroups of A5. □

The Sylow Theorems allow us to prove many useful results about finite
groups. By using them, we can often conclude a great deal about groups
of a particular order if certain hypotheses are satisfied.
Theorem 15.10 If p and q are distinct primes with p < q, then every
group G of order pq has a single subgroup of order q and this subgroup is
normal in G. Hence, G cannot be simple. Furthermore, if q 6≡ 1 (mod p),
then G is cyclic.
Proof. We know that G contains a subgroup H of order q. The number
of conjugates of H divides pq and is equal to 1 + kq for k = 0, 1, . . ..
However, 1 + q is already too large to divide the order of the group;
hence, H can only be conjugate to itself. That is, H must be normal in
G.

The group G also has a Sylow p-subgroup, say K. The number of
conjugates of K must divide q and be equal to 1 + kp for k = 0, 1, . . ..
Since q is prime, either 1+ kp = q or 1+ kp = 1. If 1+ kp = 1, then K is
normal in G. In this case, we can easily show that G satisfies the criteria,
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given in Chapter 9, p. 121, for the internal direct product of H and K.
Since H is isomorphic to Zq and K is isomorphic to Zp, G ∼= Zp×Zq ∼= Zpq
by Theorem 9.21, p. 127. ■
Example 15.11 Every group of order 15 is cyclic. This is true because
15 = 5 · 3 and 5 6≡ 1 (mod 3). □

Example 15.12 Let us classify all of the groups of order 99 = 32 ·11 up to
isomorphism. First we will show that every group G of order 99 is abelian.
By the Third Sylow Theorem, there are 1+3k Sylow 3-subgroups, each of
order 9, for some k = 0, 1, 2, . . .. Also, 1+3k must divide 11; hence, there
can only be a single normal Sylow 3-subgroup H in G. Similarly, there
are 1+11k Sylow 11-subgroups and 1+11k must divide 9. Consequently,
there is only one Sylow 11-subgroup K in G. By Corollary 14.16, p. 179,
any group of order p2 is abelian for p prime; hence, H is isomorphic
either to Z3 × Z3 or to Z9. Since K has order 11, it must be isomorphic
to Z11. Therefore, the only possible groups of order 99 are Z3 ×Z3 ×Z11

or Z9 × Z11 up to isomorphism. □
To determine all of the groups of order 5 · 7 · 47 = 1645, we need the

following theorem.

Theorem 15.13 Let G′ = 〈aba−1b−1 : a, b ∈ G〉 be the subgroup consist-
ing of all finite products of elements of the form aba−1b−1 in a group G.
Then G′ is a normal subgroup of G and G/G′ is abelian.

The subgroup G′ of G is called the commutator subgroup of G. We
leave the proof of this theorem as an exercise (Exercise 10.4.14, p. 140 in
Chapter 10, p. 133).

Example 15.14 We will now show that every group of order 5 · 7 · 47 =
1645 is abelian, and cyclic by Theorem 9.21, p. 127. By the Third Sylow
Theorem, G has only one subgroup H1 of order 47. So G/H1 has order 35
and must be abelian by Theorem 15.10, p. 192. Hence, the commutator
subgroup of G is contained in H which tells us that |G′| is either 1 or
47. If |G′| = 1, we are done. Suppose that |G′| = 47. The Third
Sylow Theorem tells us that G has only one subgroup of order 5 and one
subgroup of order 7. So there exist normal subgroups H2 and H3 in G,
where |H2| = 5 and |H3| = 7. In either case the quotient group is abelian;
hence, G′ must be a subgroup of Hi, i = 1, 2. Therefore, the order of
G′ is 1, 5, or 7. However, we already have determined that |G′| = 1 or
47. So the commutator subgroup of G is trivial, and consequently G is
abelian. □

Finite Simple Groups
Given a finite group, one can ask whether or not that group has any
normal subgroups. Recall that a simple group is one with no proper
nontrivial normal subgroups. As in the case of A5, proving a group to
be simple can be a very difficult task; however, the Sylow Theorems are
useful tools for proving that a group is not simple. Usually, some sort of
counting argument is involved.
Example 15.15 Let us show that no group G of order 20 can be simple.
By the Third Sylow Theorem, G contains one or more Sylow 5-subgroups.
The number of such subgroups is congruent to 1 (mod 5) and must also
divide 20. The only possible such number is 1. Since there is only a single
Sylow 5-subgroup and all Sylow 5-subgroups are conjugate, this subgroup
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must be normal. □
Example 15.16 Let G be a finite group of order pn, n > 1 and p prime.
By Theorem 14.15, p. 179, G has a nontrivial center. Since the center of
any groupG is a normal subgroup, G cannot be a simple group. Therefore,
groups of orders 4, 8, 9, 16, 25, 27, 32, 49, 64, and 81 are not simple. In
fact, the groups of order 4, 9, 25, and 49 are abelian by Corollary 14.16,
p. 179. □
Example 15.17 No group of order 56 = 23 · 7 is simple. We have seen
that if we can show that there is only one Sylow p-subgroup for some
prime p dividing 56, then this must be a normal subgroup and we are
done. By the Third Sylow Theorem, there are either one or eight Sylow
7-subgroups. If there is only a single Sylow 7-subgroup, then it must be
normal.

On the other hand, suppose that there are eight Sylow 7-subgroups.
Then each of these subgroups must be cyclic; hence, the intersection of
any two of these subgroups contains only the identity of the group. This
leaves 8 · 6 = 48 distinct elements in the group, each of order 7. Now
let us count Sylow 2-subgroups. There are either one or seven Sylow 2-
subgroups. Any element of a Sylow 2-subgroup other than the identity
must have as its order a power of 2; and therefore cannot be one of the 48
elements of order 7 in the Sylow 7-subgroups. Since a Sylow 2-subgroup
has order 8, there is only enough room for a single Sylow 2-subgroup in
a group of order 56. If there is only one Sylow 2-subgroup, it must be
normal. □

For other groups G, it is more difficult to prove that G is not simple.
Suppose G has order 48. In this case the technique that we employed in
the last example will not work. We need the following lemma to prove
that no group of order 48 is simple.
Lemma 15.18 Let H and K be finite subgroups of a group G. Then

|HK| = |H| · |K|
|H ∩K|

.

Proof. Recall that

HK = {hk : h ∈ H, k ∈ K}.

Certainly, |HK| ≤ |H| · |K| since some element in HK could be written
as the product of different elements in H and K. It is quite possible that
h1k1 = h2k2 for h1, h2 ∈ H and k1, k2 ∈ K. If this is the case, let

a = (h1)
−1h2 = k1(k2)

−1.

Notice that a ∈ H ∩ K, since (h1)
−1h2 is in H and k2(k1)

−1 is in K;
consequently,

h2 = h1a
−1

k2 = ak1.

Conversely, let h = h1b
−1 and k = bk1 for b ∈ H∩K. Then hk = h1k1,

where h ∈ H and k ∈ K. Hence, any element hk ∈ HK can be written in
the form hiki for hi ∈ H and ki ∈ K, as many times as there are elements
in H ∩K; that is, |H ∩K| times. Therefore, |HK| = (|H| · |K|)/|H ∩K|.

■
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Example 15.19 To demonstrate that a group G of order 48 is not simple,
we will show that G contains either a normal subgroup of order 8 or a
normal subgroup of order 16. By the Third Sylow Theorem, G has either
one or three Sylow 2-subgroups of order 16. If there is only one subgroup,
then it must be a normal subgroup.

Suppose that the other case is true, and two of the three Sylow 2-
subgroups are H and K. We claim that |H ∩ K| = 8. If |H ∩ K| ≤ 4,
then by Lemma 15.18, p. 194,

|HK| ≥ 16 · 16
4

= 64,

which is impossible. Notice that H ∩K has index two in both of H and
K, so is normal in both, and thus H and K are each in the normalizer of
H ∩K. Because H is a subgroup of N(H ∩K) and because N(H ∩K)
has strictly more than 16 elements, |N(H ∩ K)| must be a multiple of
16 greater than 1, as well as dividing 48. The only possibility is that
|N(H ∩K)| = 48. Hence, N(H ∩K) = G. □

The following famous conjecture of Burnside was proved in a long and
difficult paper by Feit and Thompson [2].

Theorem 15.20 Odd Order Theorem. Every finite simple group of
nonprime order must be of even order.

The proof of this theorem laid the groundwork for a program in the
1960s and 1970s that classified all finite simple groups. The success of this
program is one of the outstanding achievements of modern mathematics.

Sage. Sage will compute a single Sylow p-subgroup for each prime di-
visor p of the order of the group. Then, with conjugacy, all of the Sylow
p-subgroups can be enumerated. It is also possible to compute the nor-
malizer of a subgroup.

15.3 Reading Questions
1. State Sylow’s First Theorem.
2. How many groups are there of order 69? Why?
3. Give two descriptions, fundamentally different in character, of the

normalizer of a subgroup.
4. Suppose that G is an abelian group. What is the commutator sub-

group of G, and how do you know?
5. What’s all the fuss about Sylow’s Theorems?

15.4 Exercises
1. What are the orders of all Sylow p-subgroups where G has order 18,

24, 54, 72, and 80?
2. Find all the Sylow 3-subgroups of S4 and show that they are all

conjugate.
3. Show that every group of order 45 has a normal subgroup of order

9.
4. Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow

p-subgroup of G contained in N(H).
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5. Prove that no group of order 96 is simple.
6. Prove that no group of order 160 is simple.
7. If H is a normal subgroup of a finite group G and |H| = pk for some

prime p, show that H is contained in every Sylow p-subgroup of G.
8. Let G be a group of order p2q2, where p and q are distinct primes

such that q ∤ p2 − 1 and p ∤ q2 − 1. Prove that G must be abelian.
Find a pair of primes for which this is true.

9. Show that a group of order 33 has only one Sylow 3-subgroup.
10. Let H be a subgroup of a group G. Prove or disprove that the

normalizer of H is normal in G.
11. Let G be a finite group whose order is divisible by a prime p. Prove

that if there is only one Sylow p-subgroup in G, it must be a normal
subgroup of G.

12. Let G be a group of order pr, p prime. Prove that G contains a
normal subgroup of order pr−1.

13. Suppose that G is a finite group of order pnk, where k < p. Show
that G must contain a normal subgroup.

14. Let H be a subgroup of a finite group G. Prove that gN(H)g−1 =
N(gHg−1) for any g ∈ G.

15. Prove that a group of order 108 must have a normal subgroup.
16. Classify all the groups of order 175 up to isomorphism.
17. Show that every group of order 255 is cyclic.
18. Let G have order pe11 · · · penn and suppose that G has n Sylow p-

subgroups P1, . . . , Pn where |Pi| = peii . Prove that G is isomorphic
to P1 × · · · × Pn.

19. Let P be a normal Sylow p-subgroup of G. Prove that every inner
automorphism of G fixes P .

20. What is the smallest possible order of a group G such that G is
nonabelian and |G| is odd? Can you find such a group?

21. The Frattini Lemma. If H is a normal subgroup of a finite group
G and P is a Sylow p-subgroup of H, for each g ∈ G show that there
is an h in H such that gPg−1 = hPh−1. Also, show that if N is the
normalizer of P , then G = HN .

22. Show that if the order of G is pnq, where p and q are primes and
p > q, then G contains a normal subgroup.

23. Prove that the number of distinct conjugates of a subgroup H of a
finite group G is [G : N(H)].

24. Prove that a Sylow 2-subgroup of S5 is isomorphic to D4.
25. Another Proof of the Sylow Theorems.

(a) Suppose p is prime and p does not divide m. Show that

p ∤
(
pkm

pk

)
.

(b) Let S denote the set of all pk element subsets of G. Show that
p does not divide |S|.

(c) Define an action of G on S by left multiplication, aT = {at :
t ∈ T} for a ∈ G and T ∈ S. Prove that this is a group action.
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(d) Prove p ∤ |OT | for some T ∈ S.

(e) Let {T1, . . . , Tu} be an orbit such that p ∤ u and H = {g ∈ G :
gT1 = T1}. Prove that H is a subgroup of G and show that
|G| = u|H|.

(f) Show that pk divides |H| and pk ≤ |H|.

(g) Show that |H| = |OT | ≤ pk; conclude that therefore pk = |H|.
26. Let G be a group. Prove that G′ = 〈aba−1b−1 : a, b ∈ G〉 is a normal

subgroup of G and G/G′ is abelian. Find an example to show that
{aba−1b−1 : a, b ∈ G} is not necessarily a group.

15.5 A Project
The main objective of finite group theory is to classify all possible finite
groups up to isomorphism. This problem is very difficult even if we try
to classify the groups of order less than or equal to 60. However, we
can break the problem down into several intermediate problems. This
is a challenging project that requires a working knowledge of the group
theory you have learned up to this point. Even if you do not complete it,
it will teach you a great deal about finite groups. You can use Table 15.21,
p. 197 as a guide.

Table 15.21 Numbers of distinct groups G, |G| ≤ 60

Order Number Order Number Order Number Order Number
1 ? 16 14 31 1 46 2

2 ? 17 1 32 51 47 1

3 ? 18 ? 33 1 48 52

4 ? 19 ? 34 ? 49 ?
5 ? 20 5 35 1 50 5

6 ? 21 ? 36 14 51 ?
7 ? 22 2 37 1 52 ?
8 ? 23 1 38 ? 53 ?
9 ? 24 ? 39 2 54 15

10 ? 25 2 40 14 55 2

11 ? 26 2 41 1 56 ?
12 5 27 5 42 ? 57 2

13 ? 28 ? 43 1 58 ?
14 ? 29 1 44 4 59 1

15 1 30 4 45 ? 60 13

1. Find all simple groups G ( |G| ≤ 60). Do not use the Odd Order
Theorem unless you are prepared to prove it.

2. Find the number of distinct groups G, where the order of G is n for
n = 1, . . . , 60.

3. Find the actual groups (up to isomorphism) for each n.
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Rings

Up to this point we have studied sets with a single binary operation sat-
isfying certain axioms, but we are often more interested in working with
sets that have two binary operations. For example, one of the most nat-
ural algebraic structures to study is the integers with the operations of
addition and multiplication. These operations are related to one another
by the distributive property. If we consider a set with two such related
binary operations satisfying certain axioms, we have an algebraic struc-
ture called a ring. In a ring we add and multiply elements such as real
numbers, complex numbers, matrices, and functions.

16.1 Rings
A nonempty set R is a ring if it has two closed binary operations, addition
and multiplication, satisfying the following conditions.

1. a+ b = b+ a for a, b ∈ R.

2. (a+ b) + c = a+ (b+ c) for a, b, c ∈ R.

3. There is an element 0 in R such that a+ 0 = a for all a ∈ R.

4. For every element a ∈ R, there exists an element −a in R such that
a+ (−a) = 0.

5. (ab)c = a(bc) for a, b, c ∈ R.

6. For a, b, c ∈ R,

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc.

This last condition, the distributive axiom, relates the binary operations
of addition and multiplication. Notice that the first four axioms simply
require that a ring be an abelian group under addition, so we could also
have defined a ring to be an abelian group (R,+) together with a second
binary operation satisfying the fifth and sixth conditions given above.

If there is an element 1 ∈ R such that 1 6= 0 and 1a = a1 = a for
each element a ∈ R, we say that R is a ring with unity or identity. A
ring R for which ab = ba for all a, b in R is called a commutative ring.

199
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A commutative ring R with identity is called an integral domain if, for
every a, b ∈ R such that ab = 0, either a = 0 or b = 0. A division ring
is a ring R, with an identity, in which every nonzero element in R is a

unit; that is, for each a ∈ R with a 6= 0, there exists a unique element
a−1 such that a−1a = aa−1 = 1. A commutative division ring is called a
field. The relationship among rings, integral domains, division rings, and
fields is shown in Figure 16.1, p. 200.

Rings

Commutative
Rings

Rings with
Identity

Integral
Domains

Division
Rings

Fields

Figure 16.1 Types of rings

Example 16.2 As we have mentioned previously, the integers form a
ring. In fact, Z is an integral domain. Certainly if ab = 0 for two integers
a and b, either a = 0 or b = 0. However, Z is not a field. There is no
integer that is the multiplicative inverse of 2, since 1/2 is not an integer.
The only integers with multiplicative inverses are 1 and −1. □
Example 16.3 Under the ordinary operations of addition and multipli-
cation, all of the familiar number systems are rings: the rationals, Q; the
real numbers, R; and the complex numbers, C. Each of these rings is a
field. □
Example 16.4 We can define the product of two elements a and b in Zn
by ab (mod n). For instance, in Z12, 5 · 7 ≡ 11 (mod 12). This product
makes the abelian group Zn into a ring. Certainly Zn is a commutative
ring; however, it may fail to be an integral domain. If we consider 3 ·4 ≡ 0
(mod 12) in Z12, it is easy to see that a product of two nonzero elements
in the ring can be equal to zero. □

A nonzero element a in a commutative ring R is called a zero divisor
if there is a nonzero element b in R such that ab = 0. In the previous
example, 3 and 4 are zero divisors in Z12.
Example 16.5 In calculus the continuous real-valued functions on an
interval [a, b] form a commutative ring. We add or multiply two functions
by adding or multiplying the values of the functions. If f(x) = x2 and
g(x) = cosx, then (f + g)(x) = f(x) + g(x) = x2 + cosx and (fg)(x) =
f(x)g(x) = x2 cosx. □
Example 16.6 The 2 × 2 matrices with entries in R form a ring under
the usual operations of matrix addition and multiplication. This ring is
noncommutative, since it is usually the case that AB 6= BA. Also, notice
that we can have AB = 0 when neither A nor B is zero. □
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Example 16.7 For an example of a noncommutative division ring, let

1 =

(
1 0

0 1

)
, i =

(
0 1

−1 0

)
, j =

(
0 i

i 0

)
, k =

(
i 0

0 −i

)
,

where i2 = −1. These elements satisfy the following relations:

i2 = j2 = k2 = −1

ij = k
jk = i
ki = j
ji = −k
kj = −i
ik = −j.

Let H consist of elements of the form a+ bi + cj + dk, where a, b, c, d are
real numbers. Equivalently, H can be considered to be the set of all 2× 2
matrices of the form (

α β

−β α

)
,

where α = a + di and β = b + ci are complex numbers. We can define
addition and multiplication on H either by the usual matrix operations
or in terms of the generators 1, i, j, and k:

(a1 + b1i + c1j + d1k) + (a2 + b2i + c2j + d2k)
= (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k

and

(a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) = α+ βi + γj + δk,

where

α = a1a2 − b1b2 − c1c2 − d1d2

β = a1b2 + a2b1 + c1d2 − d1c2

γ = a1c2 − b1d2 + c1a2 + d1b2

δ = a1d2 + b1c2 − c1b2 + d1a2.

Though multiplication looks complicated, it is actually a straightforward
computation if we remember that we just add and multiply elements
in H like polynomials and keep in mind the relationships between the
generators i, j, and k. The ring H is called the ring of quaternions.

To show that the quaternions are a division ring, we must be able to
find an inverse for each nonzero element. Notice that

(a+ bi + cj + dk)(a− bi − cj − dk) = a2 + b2 + c2 + d2.

This element can be zero only if a, b, c, and d are all zero. So if a+ bi +
cj + dk 6= 0,

(a+ bi + cj + dk)
(
a− bi − cj − dk
a2 + b2 + c2 + d2

)
= 1.

□
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Proposition 16.8 Let R be a ring with a, b ∈ R. Then
1. a0 = 0a = 0;

2. a(−b) = (−a)b = −ab;

3. (−a)(−b) = ab.
Proof. To prove (1), observe that

a0 = a(0 + 0) = a0 + a0;

hence, a0 = 0. Similarly, 0a = 0. For (2), we have ab+a(−b) = a(b−b) =
a0 = 0; consequently, −ab = a(−b). Similarly, −ab = (−a)b. Part (3)
follows directly from (2) since (−a)(−b) = −(a(−b)) = −(−ab) = ab. ■

Just as we have subgroups of groups, we have an analogous class of
substructures for rings. A subring S of a ring R is a subset S of R such
that S is also a ring under the inherited operations from R.
Example 16.9 The ring nZ is a subring of Z. Notice that even though
the original ring may have an identity, we do not require that its subring
have an identity. We have the following chain of subrings:

Z ⊂ Q ⊂ R ⊂ C.

□
The following proposition gives us some easy criteria for determining

whether or not a subset of a ring is indeed a subring. (We will leave the
proof of this proposition as an exercise.)

Proposition 16.10 Let R be a ring and S a subset of R. Then S is a
subring of R if and only if the following conditions are satisfied.

1. S 6= ∅.

2. rs ∈ S for all r, s ∈ S.

3. r − s ∈ S for all r, s ∈ S.
Example 16.11 Let R = M2(R) be the ring of 2×2 matrices with entries
in R. If T is the set of upper triangular matrices in R; i.e.,

T =

{(
a b

0 c

)
: a, b, c ∈ R

}
,

then T is a subring of R. If

A =

(
a b

0 c

)
and B =

(
a′ b′

0 c′

)
are in T , then clearly A−B is also in T . Also,

AB =

(
aa′ ab′ + bc′

0 cc′

)
is in T . □
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16.2 Integral Domains and Fields
Let us briefly recall some definitions. If R is a commutative ring and r
is a nonzero element in R, then r is said to be a zero divisor if there is
some nonzero element s ∈ R such that rs = 0. A commutative ring with
identity is said to be an integral domain if it has no zero divisors. If an
element a in a ring R with identity has a multiplicative inverse, we say
that a is a unit. If every nonzero element in a ring R is a unit, then R is
called a division ring. A commutative division ring is called a field.

Example 16.12 If i2 = −1, then the set Z[i] = {m + ni : m,n ∈ Z}
forms a ring known as the Gaussian integers. It is easily seen that the
Gaussian integers are a subring of the complex numbers since they are
closed under addition and multiplication. Let α = a+ bi be a unit in Z[i].
Then α = a− bi is also a unit since if αβ = 1, then αβ = 1. If β = c+ di,
then

1 = αβαβ = (a2 + b2)(c2 + d2).

Therefore, a2 + b2 must either be 1 or −1; or, equivalently, a + bi = ±1
or a + bi = ±i. Therefore, units of this ring are ±1 and ±i; hence, the
Gaussian integers are not a field. We will leave it as an exercise to prove
that the Gaussian integers are an integral domain. □
Example 16.13 The set of matrices

F =

{(
1 0

0 1

)
,

(
1 1

1 0

)
,

(
0 1

1 1

)
,

(
0 0

0 0

)}
with entries in Z2 forms a field. □

Example 16.14 The set Q(
√
2 ) = {a + b

√
2 : a, b ∈ Q} is a field. The

inverse of an element a+ b
√
2 in Q(

√
2 ) is

a

a2 − 2b2
+

−b
a2 − 2b2

√
2.

□
We have the following alternative characterization of integral domains.

Proposition 16.15 Cancellation Law. Let D be a commutative ring
with identity. Then D is an integral domain if and only if for all nonzero
elements a ∈ D with ab = ac, we have b = c.
Proof. Let D be an integral domain. Then D has no zero divisors. Let
ab = ac with a 6= 0. Then a(b− c) = 0. Hence, b− c = 0 and b = c.

Conversely, let us suppose that cancellation is possible in D. That is,
suppose that ab = ac implies b = c. Let ab = 0. If a 6= 0, then ab = a0 or
b = 0. Therefore, a cannot be a zero divisor. ■

The following surprising theorem is due to Wedderburn.
Theorem 16.16 Every finite integral domain is a field.
Proof. Let D be a finite integral domain and D∗ be the set of nonzero
elements of D. We must show that every element in D∗ has an inverse.
For each a ∈ D∗ we can define a map λa : D∗ → D∗ by λa(d) = ad. This
map makes sense, because if a 6= 0 and d 6= 0, then ad 6= 0. The map λa
is one-to-one, since for d1, d2 ∈ D∗,

ad1 = λa(d1) = λa(d2) = ad2

implies d1 = d2 by left cancellation. Since D∗ is a finite set, the map λa
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must also be onto; hence, for some d ∈ D∗, λa(d) = ad = 1. Therefore, a
has a left inverse. Since D is commutative, d must also be a right inverse
for a. Consequently, D is a field. ■

For any nonnegative integer n and any element r in a ring R we write
r + · · · + r (n times) as nr. We define the characteristic of a ring R to
be the least positive integer n such that nr = 0 for all r ∈ R. If no such
integer exists, then the characteristic of R is defined to be 0. We will
denote the characteristic of R by charR.
Example 16.17 For every prime p, Zp is a field of characteristic p. By
Proposition 3.4, p. 32, every nonzero element in Zp has an inverse; hence,
Zp is a field. If a is any nonzero element in the field, then pa = 0, since
the order of any nonzero element in the abelian group Zp is p. □
Lemma 16.18 Let R be a ring with identity. If 1 has order n, then the
characteristic of R is n.
Proof. If 1 has order n, then n is the least positive integer such that
n1 = 0. Thus, for all r ∈ R,

nr = n(1r) = (n1)r = 0r = 0.

On the other hand, if no positive n exists such that n1 = 0, then the
characteristic of R is zero. ■
Theorem 16.19 The characteristic of an integral domain is either prime
or zero.
Proof. Let D be an integral domain and suppose that the characteristic
of D is n with n 6= 0. If n is not prime, then n = ab, where 1 < a < n
and 1 < b < n. By Lemma 16.18, p. 204, we need only consider the case
n1 = 0. Since 0 = n1 = (ab)1 = (a1)(b1) and there are no zero divisors
in D, either a1 = 0 or b1 = 0. Hence, the characteristic of D must be less
than n, which is a contradiction. Therefore, n must be prime. ■

16.3 Ring Homomorphisms and Ideals
In the study of groups, a homomorphism is a map that preserves the
operation of the group. Similarly, a homomorphism between rings pre-
serves the operations of addition and multiplication in the ring. More
specifically, if R and S are rings, then a ring homomorphism is a map
ϕ : R→ S satisfying

ϕ(a+ b) = ϕ(a) + ϕ(b)

ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ R. If ϕ : R → S is a one-to-one and onto homomorphism,
then ϕ is called an isomorphism of rings.

The set of elements that a ring homomorphism maps to 0 plays a
fundamental role in the theory of rings. For any ring homomorphism
ϕ : R→ S, we define the kernel of a ring homomorphism to be the set

kerϕ = {r ∈ R : ϕ(r) = 0}.
Example 16.20 For any integer n we can define a ring homomorphism
ϕ : Z → Zn by a 7→ a (mod n). This is indeed a ring homomorphism,
since

ϕ(a+ b) = (a+ b) (mod n)
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= a (mod n) + b (mod n)

= ϕ(a) + ϕ(b)

and

ϕ(ab) = ab (mod n)

= a (mod n) · b (mod n)

= ϕ(a)ϕ(b).

The kernel of the homomorphism ϕ is nZ. □
Example 16.21 Let C[a, b] be the ring of continuous real-valued func-
tions on an interval [a, b] as in Example 16.5, p. 200. For a fixed α ∈ [a, b],
we can define a ring homomorphism ϕα : C[a, b] → R by ϕα(f) = f(α).
This is a ring homomorphism since

ϕα(f + g) = (f + g)(α) = f(α) + g(α) = ϕα(f) + ϕα(g)

ϕα(fg) = (fg)(α) = f(α)g(α) = ϕα(f)ϕα(g).

Ring homomorphisms of the type ϕα are called evaluation homomor-
phisms. □

In the next proposition we will examine some fundamental properties
of ring homomorphisms. The proof of the proposition is left as an exercise.
Proposition 16.22 Let ϕ : R→ S be a ring homomorphism.

1. If R is a commutative ring, then ϕ(R) is a commutative ring.

2. ϕ(0) = 0.

3. Let 1R and 1S be the identities for R and S, respectively. If ϕ is
onto, then ϕ(1R) = 1S.

4. If R is a field and ϕ(R) 6= {0}, then ϕ(R) is a field.
In group theory we found that normal subgroups play a special role.

These subgroups have nice characteristics that make them more inter-
esting to study than arbitrary subgroups. In ring theory the objects
corresponding to normal subgroups are a special class of subrings called
ideals. An ideal in a ring R is a subring I of R such that if a is in I and
r is in R, then both ar and ra are in I; that is, rI ⊂ I and Ir ⊂ I for all
r ∈ R.
Example 16.23 Every ring R has at least two ideals, {0} and R. These
ideals are called the trivial ideals. □

Let R be a ring with identity and suppose that I is an ideal in R such
that 1 is in I. Since for any r ∈ R, r1 = r ∈ I by the definition of an
ideal, I = R.
Example 16.24 If a is any element in a commutative ring R with identity,
then the set

〈a〉 = {ar : r ∈ R}

is an ideal in R. Certainly, 〈a〉 is nonempty since both 0 = a0 and
a = a1 are in 〈a〉. The sum of two elements in 〈a〉 is again in 〈a〉 since
ar + ar′ = a(r + r′). The inverse of ar is −ar = a(−r) ∈ 〈a〉. Finally, if
we multiply an element ar ∈ 〈a〉 by an arbitrary element s ∈ R, we have
s(ar) = a(sr). Therefore, 〈a〉 satisfies the definition of an ideal. □
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If R is a commutative ring with identity, then an ideal of the form
〈a〉 = {ar : r ∈ R} is called a principal ideal.
Theorem 16.25 Every ideal in the ring of integers Z is a principal ideal.
Proof. The zero ideal {0} is a principal ideal since 〈0〉 = {0}. If I is any
nonzero ideal in Z, then I must contain some positive integer m. There
exists a least positive integer n in I by the Principle of Well-Ordering.
Now let a be any element in I. Using the division algorithm, we know
that there exist integers q and r such that

a = nq + r

where 0 ≤ r < n. This equation tells us that r = a− nq ∈ I, but r must
be 0 since n is the least positive element in I. Therefore, a = nq and
I = 〈n〉. ■
Example 16.26 The set nZ is ideal in the ring of integers. If na is in nZ
and b is in Z, then nab is in nZ as required. In fact, by Theorem 16.25,
p. 206, these are the only ideals of Z. □
Proposition 16.27 The kernel of any ring homomorphism ϕ : R→ S is
an ideal in R.
Proof. We know from group theory that kerϕ is an additive subgroup
of R. Suppose that r ∈ R and a ∈ kerϕ. Then we must show that ar
and ra are in kerϕ. However,

ϕ(ar) = ϕ(a)ϕ(r) = 0ϕ(r) = 0

and
ϕ(ra) = ϕ(r)ϕ(a) = ϕ(r)0 = 0.

■
Remark 16.28 In our definition of an ideal we have required that rI ⊂ I
and Ir ⊂ I for all r ∈ R. Such ideals are sometimes referred to as two-
sided ideals. We can also consider one-sided ideals; that is, we may
require only that either rI ⊂ I or Ir ⊂ I for r ∈ R hold but not both.
Such ideals are called left ideals and right ideals, respectively. Of course,
in a commutative ring any ideal must be two-sided. In this text we will
concentrate on two-sided ideals.
Theorem 16.29 Let I be an ideal of R. The factor group R/I is a ring
with multiplication defined by

(r + I)(s+ I) = rs+ I.
Proof. We already know that R/I is an abelian group under addition.
Let r+ I and s+ I be in R/I. We must show that the product (r+ I)(s+
I) = rs+ I is independent of the choice of coset; that is, if r′ ∈ r+ I and
s′ ∈ s + I, then r′s′ must be in rs + I. Since r′ ∈ r + I, there exists an
element a in I such that r′ = r + a. Similarly, there exists a b ∈ I such
that s′ = s+ b. Notice that

r′s′ = (r + a)(s+ b) = rs+ as+ rb+ ab

and as + rb + ab ∈ I since I is an ideal; consequently, r′s′ ∈ rs + I.
We will leave as an exercise the verification of the associative law for
multiplication and the distributive laws. ■

The ring R/I in Theorem 16.29, p. 206 is called the factor or quotient
ring. Just as with group homomorphisms and normal subgroups, there
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is a relationship between ring homomorphisms and ideals.

Theorem 16.30 Let I be an ideal of R. The map ϕ : R → R/I defined
by ϕ(r) = r + I is a ring homomorphism of R onto R/I with kernel I.
Proof. Certainly ϕ : R → R/I is a surjective abelian group homomor-
phism. It remains to show that ϕ works correctly under ring multiplica-
tion. Let r and s be in R. Then

ϕ(r)ϕ(s) = (r + I)(s+ I) = rs+ I = ϕ(rs),

which completes the proof of the theorem. ■
The map ϕ : R → R/I is often called the natural or canonical homo-

morphism. In ring theory we have isomorphism theorems relating ideals
and ring homomorphisms similar to the isomorphism theorems for groups
that relate normal subgroups and homomorphisms in Chapter 11, p. 141.
We will prove only the First Isomorphism Theorem for rings in this chap-
ter and leave the proofs of the other two theorems as exercises. All of the
proofs are similar to the proofs of the isomorphism theorems for groups.
Theorem 16.31 First Isomorphism Theorem. Let ψ : R → S be a
ring homomorphism. Then kerψ is an ideal of R. If ϕ : R → R/ kerψ
is the canonical homomorphism, then there exists a unique isomorphism
η : R/ kerψ → ψ(R) such that ψ = ηϕ.
Proof. Let K = kerψ. By the First Isomorphism Theorem for groups,
there exists a well-defined group homomorphism η : R/K → ψ(R) defined
by η(r+K) = ψ(r) for the additive abelian groups R and R/K. To show
that this is a ring homomorphism, we need only show that η((r+K)(s+
K)) = η(r +K)η(s+K); but

η((r +K)(s+K)) = η(rs+K)

= ψ(rs)

= ψ(r)ψ(s)

= η(r +K)η(s+K).

■
Theorem 16.32 Second Isomorphism Theorem. Let I be a subring
of a ring R and J an ideal of R. Then I ∩ J is an ideal of I and

I/I ∩ J ∼= (I + J)/J .
Theorem 16.33 Third Isomorphism Theorem. Let R be a ring and
I and J be ideals of R where J ⊂ I. Then

R/I ∼=
R/J

I/J
.

Theorem 16.34 Correspondence Theorem. Let I be an ideal of a
ring R. Then S 7→ S/I is a one-to-one correspondence between the set
of subrings S containing I and the set of subrings of R/I. Furthermore,
the ideals of R containing I correspond to ideals of R/I.

16.4 Maximal and Prime Ideals
In this particular section we are especially interested in certain ideals
of commutative rings. These ideals give us special types of factor rings.
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More specifically, we would like to characterize those ideals I of a com-
mutative ring R such that R/I is an integral domain or a field.

A proper ideal M of a ring R is a maximal ideal of R if the ideal
M is not a proper subset of any ideal of R except R itself. That is,
M is a maximal ideal if for any ideal I properly containing M , I =
R. The following theorem completely characterizes maximal ideals for
commutative rings with identity in terms of their corresponding factor
rings.
Theorem 16.35 Let R be a commutative ring with identity and M an
ideal in R. Then M is a maximal ideal of R if and only if R/M is a field.
Proof. Let M be a maximal ideal in R. If R is a commutative ring, then
R/M must also be a commutative ring. Clearly, 1+M acts as an identity
for R/M . We must also show that every nonzero element in R/M has
an inverse. If a +M is a nonzero element in R/M , then a /∈ M . Define
I to be the set {ra+m : r ∈ R and m ∈ M}. We will show that I is an
ideal in R. The set I is nonempty since 0a + 0 = 0 is in I. If r1a +m1

and r2a+m2 are two elements in I, then

(r1a+m1)− (r2a+m2) = (r1 − r2)a+ (m1 −m2)

is in I. Also, for any r ∈ R it is true that rI ⊂ I; hence, I is closed
under multiplication and satisfies the necessary conditions to be an ideal.
Therefore, by Proposition 16.10, p. 202 and the definition of an ideal, I
is an ideal properly containing M . Since M is a maximal ideal, I = R;
consequently, by the definition of I there must be an m in M and an
element b in R such that 1 = ab+m. Therefore,

1 +M = ab+M = ba+M = (a+M)(b+M).

Conversely, suppose that M is an ideal and R/M is a field. Since
R/M is a field, it must contain at least two elements: 0 +M = M and
1 +M . Hence, M is a proper ideal of R. Let I be any ideal properly
containing M . We need to show that I = R. Choose a in I but not in M .
Since a+M is a nonzero element in a field, there exists an element b+M
in R/M such that (a+M)(b+M) = ab+M = 1+M . Consequently, there
exists an element m ∈ M such that ab+m = 1 and 1 is in I. Therefore,
r1 = r ∈ I for all r ∈ R. Consequently, I = R. ■
Example 16.36 Let pZ be an ideal in Z, where p is prime. Then pZ is
a maximal ideal since Z/pZ ∼= Zp is a field. □

A proper ideal P in a commutative ring R is called a prime ideal if
whenever ab ∈ P , then either a ∈ P or b ∈ P .9

Example 16.37 It is easy to check that the set P = {0, 2, 4, 6, 8, 10} is
an ideal in Z12. This ideal is prime. In fact, it is a maximal ideal. □
Proposition 16.38 Let R be a commutative ring with identity 1, where
1 6= 0. Then P is a prime ideal in R if and only if R/P is an integral
domain.
Proof. First let us assume that P is an ideal in R and R/P is an integral
domain. Suppose that ab ∈ P . If a + P and b + P are two elements of
R/P such that (a + P )(b + P ) = 0 + P = P , then either a + P = P or
b + P = P . This means that either a is in P or b is in P , which shows
that P must be prime.

9It is possible to define prime ideals in a noncommutative ring. See [1] or [3].
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Conversely, suppose that P is prime and

(a+ P )(b+ P ) = ab+ P = 0 + P = P .

Then ab ∈ P . If a /∈ P , then b must be in P by the definition of a prime
ideal; hence, b+ P = 0 + P and R/P is an integral domain. ■
Example 16.39 Every ideal in Z is of the form nZ. The factor ring
Z/nZ ∼= Zn is an integral domain only when n is prime. It is actually a
field. Hence, the nonzero prime ideals in Z are the ideals pZ, where p is
prime. This example really justifies the use of the word “prime” in our
definition of prime ideals. □

Since every field is an integral domain, we have the following corollary.
Corollary 16.40 Every maximal ideal in a commutative ring with iden-
tity is also a prime ideal.

Historical Note
Amalie Emmy Noether, one of the outstanding mathematicians of the
twentieth century, was born in Erlangen, Germany in 1882. She was the
daughter of Max Noether (1844–1921), a distinguished mathematician
at the University of Erlangen. Together with Paul Gordon (1837–1912),
Emmy Noether’s father strongly influenced her early education. She en-
tered the University of Erlangen at the age of 18. Although women had
been admitted to universities in England, France, and Italy for decades,
there was great resistance to their presence at universities in Germany.
Noether was one of only two women among the university’s 986 students.
After completing her doctorate under Gordon in 1907, she continued to
do research at Erlangen, occasionally lecturing when her father was ill.
Noether went to Göttingen to study in 1916. David Hilbert and Felix
Klein tried unsuccessfully to secure her an appointment at Göttingen.
Some of the faculty objected to women lecturers, saying, “What will
our soldiers think when they return to the university and are expected
to learn at the feet of a woman?” Hilbert, annoyed at the question,
responded, “Meine Herren, I do not see that the sex of a candidate is
an argument against her admission as a Privatdozent. After all, the
Senate is not a bathhouse.” At the end of World War I, attitudes changed
and conditions greatly improved for women. After Noether passed her
habilitation examination in 1919, she was given a title and was paid a
small sum for her lectures.
In 1922, Noether became a Privatdozent at Göttingen. Over the next 11
years she used axiomatic methods to develop an abstract theory of rings
and ideals. Though she was not good at lecturing, Noether was an inspir-
ing teacher. One of her many students was B. L. van der Waerden, author
of the first text treating abstract algebra from a modern point of view.
Some of the other mathematicians Noether influenced or closely worked
with were Alexandroff, Artin, Brauer, Courant, Hasse, Hopf, Pontryagin,
von Neumann, and Weyl. One of the high points of her career was an invi-
tation to address the International Congress of Mathematicians in Zurich
in 1932. In spite of all the recognition she received from her colleagues,
Noether’s abilities were never recognized as they should have been during
her lifetime. She was never promoted to full professor by the Prussian
academic bureaucracy.
In 1933, Noether, who was Jewish, was banned from participation in all
academic activities in Germany. She emigrated to the United States, took
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a position at Bryn Mawr College, and became a member of the Institute
for Advanced Study at Princeton. Noether died suddenly on April 14,
1935. After her death she was eulogized by such notable scientists as
Albert Einstein.

16.5 An Application to Software Design
The Chinese Remainder Theorem is a result from elementary number
theory about the solution of systems of simultaneous congruences. The
Chinese mathematician Sun-tsï wrote about the theorem in the first cen-
tury A.D. This theorem has some interesting consequences in the design
of software for parallel processors.

Lemma 16.41 Let m and n be positive integers such that gcd(m,n) = 1.
Then for a, b ∈ Z the system

x ≡ a (mod m)

x ≡ b (mod n)

has a solution. If x1 and x2 are two solutions of the system, then x1 ≡ x2
(mod mn).
Proof. The equation x ≡ a (mod m) has a solution since a+km satisfies
the equation for all k ∈ Z. We must show that there exists an integer k1
such that

a+ k1m ≡ b (mod n).

This is equivalent to showing that

k1m ≡ (b− a) (mod n)

has a solution for k1. Since m and n are relatively prime, there exist
integers s and t such that ms+ nt = 1. Consequently,

(b− a)ms = (b− a)− (b− a)nt,

or
[(b− a)s]m ≡ (b− a) (mod n).

Now let k1 = (b− a)s.
To show that any two solutions are congruent modulo mn, let c1 and

c2 be two solutions of the system. That is,

ci ≡ a (mod m)

ci ≡ b (mod n)

for i = 1, 2. Then

c2 ≡ c1 (mod m)

c2 ≡ c1 (mod n).

Therefore, both m and n divide c1−c2. Consequently, c2 ≡ c1 (mod mn).
■

Example 16.42 Let us solve the system

x ≡ 3 (mod 4)

x ≡ 4 (mod 5).
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Using the Euclidean algorithm, we can find integers s and t such that
4s+ 5t = 1. Two such integers are s = 4 and t = −3. Consequently,

x = a+ k1m = 3 + 4k1 = 3 + 4[(5− 4)4] = 19.

□
Theorem 16.43 Chinese Remainder Theorem. Let n1, n2, . . . , nk
be positive integers such that gcd(ni, nj) = 1 for i 6= j. Then for any
integers a1, . . . , ak, the system

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

has a solution. Furthermore, any two solutions of the system are congru-
ent modulo n1n2 · · ·nk.
Proof. We will use mathematical induction on the number of equations
in the system. If there are k = 2 equations, then the theorem is true by
Lemma 16.41, p. 210. Now suppose that the result is true for a system of
k equations or less and that we wish to find a solution of

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...
x ≡ ak+1 (mod nk+1).

Considering the first k equations, there exists a solution that is unique
modulo n1 · · ·nk, say a. Since n1 · · ·nk and nk+1 are relatively prime, the
system

x ≡ a (mod n1 · · ·nk)
x ≡ ak+1 (mod nk+1)

has a solution that is unique modulo n1 . . . nk+1 by the lemma. ■
Example 16.44 Let us solve the system

x ≡ 3 (mod 4)

x ≡ 4 (mod 5)

x ≡ 1 (mod 9)

x ≡ 5 (mod 7).

From Example 16.42, p. 210 we know that 19 is a solution of the first
two congruences and any other solution of the system is congruent to
19 (mod 20). Hence, we can reduce the system to a system of three
congruences:

x ≡ 19 (mod 20)

x ≡ 1 (mod 9)

x ≡ 5 (mod 7).
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Solving the next two equations, we can reduce the system to

x ≡ 19 (mod 180)

x ≡ 5 (mod 7).

Solving this last system, we find that 19 is a solution for the system that
is unique up to modulo 1260. □

One interesting application of the Chinese Remainder Theorem in the
design of computer software is that the theorem allows us to break up
a calculation involving large integers into several less formidable calcula-
tions. A computer will handle integer calculations only up to a certain
size due to the size of its processor chip, which is usually a 32 or 64-bit
processor chip. For example, the largest integer available on a computer
with a 64-bit processor chip is

263 − 1 = 9,223,372,036,854,775,807.
Larger processors such as 128 or 256-bit have been proposed or are under
development. There is even talk of a 512-bit processor chip. The largest
integer that such a chip could store with be 2511 − 1, which would be
a 154 digit number. However, we would need to deal with much larger
numbers to break sophisticated encryption schemes.

Special software is required for calculations involving larger integers
which cannot be added directly by the machine. By using the Chinese
Remainder Theorem we can break down large integer additions and mul-
tiplications into calculations that the computer can handle directly. This
is especially useful on parallel processing computers which have the ability
to run several programs concurrently.

Most computers have a single central processing unit (CPU) contain-
ing one processor chip and can only add two numbers at a time. To
add a list of ten numbers, the CPU must do nine additions in sequence.
However, a parallel processing computer has more than one CPU. A com-
puter with 10 CPUs, for example, can perform 10 different additions at
the same time. If we can take a large integer and break it down into
parts, sending each part to a different CPU, then by performing several
additions or multiplications simultaneously on those parts, we can work
with an integer that the computer would not be able to handle as a whole.
Example 16.45 Suppose that we wish to multiply 2134 by 1531. We
will use the integers 95, 97, 98, and 99 because they are relatively prime.
We can break down each integer into four parts:

2134 ≡ 44 (mod 95)

2134 ≡ 0 (mod 97)

2134 ≡ 76 (mod 98)

2134 ≡ 55 (mod 99)

and

1531 ≡ 11 (mod 95)

1531 ≡ 76 (mod 97)

1531 ≡ 61 (mod 98)

1531 ≡ 46 (mod 99).

Multiplying the corresponding equations, we obtain

2134 · 1531 ≡ 44 · 11 ≡ 9 (mod 95)
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2134 · 1531 ≡ 0 · 76 ≡ 0 (mod 97)

2134 · 1531 ≡ 76 · 61 ≡ 30 (mod 98)

2134 · 1531 ≡ 55 · 46 ≡ 55 (mod 99).

Each of these four computations can be sent to a different processor if
our computer has several CPUs. By the above calculation, we know that
2134 · 1531 is a solution of the system

x ≡ 9 (mod 95)

x ≡ 0 (mod 97)

x ≡ 30 (mod 98)

x ≡ 55 (mod 99).

The Chinese Remainder Theorem tells us that solutions are unique up to
modulo 95 · 97 · 98 · 99 = 89,403,930. Solving this system of congruences
for x tells us that 2134 · 1531 = 3,267,154.

The conversion of the computation into the four subcomputations will
take some computing time. In addition, solving the system of congruences
can also take considerable time. However, if we have many computations
to be performed on a particular set of numbers, it makes sense to trans-
form the problem as we have done above and to perform the necessary
calculations simultaneously. □

Sage. Rings are at the heart of Sage’s design, so you will find a wide
range of possibilities for computing with rings and fields. Ideals, quo-
tients, and homomorphisms are all available.

16.6 Reading Questions
1. What is the fundamental difference between groups and rings?
2. Give two characterizations of an integral domain.
3. Provide two examples of fields, one infinite, one finite.
4. Who was Emmy Noether?
5. Speculate on a computer program that might use the Chinese Re-

mainder Theorem to speed up computations with large integers.

16.7 Exercises
1. Which of the following sets are rings with respect to the usual oper-

ations of addition and multiplication? If the set is a ring, is it also
a field?

(a) 7Z

(b) Z18

(c) Q(
√
2 ) = {a+ b

√
2 : a, b ∈ Q}

(d) Q(
√
2,
√
3 ) = {a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Q}

(e) Z[
√
3 ] = {a+ b

√
3 : a, b ∈ Z}

(f) R = {a+ b
3
√
3 : a, b ∈ Q}
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(g) Z[i] = {a+ bi : a, b ∈ Z and i2 = −1}

(h) Q(
3
√
3 ) = {a+ b

3
√
3 + c

3
√
9 : a, b, c ∈ Q}

2. Let R be the ring of 2× 2 matrices of the form(
a b

0 0

)
,

where a, b ∈ R. Show that although R is a ring that has no identity,
we can find a subring S of R with an identity.

3. List or characterize all of the units in each of the following rings.
(a) Z10

(b) Z12

(c) Z7

(d) M2(Z), the 2× 2 matrices with entries in Z

(e) M2(Z2), the 2× 2 matrices with entries in Z2

4. Find all of the ideals in each of the following rings. Which of these
ideals are maximal and which are prime?

(a) Z18

(b) Z25

(c) M2(R), the 2× 2 matrices with entries in R

(d) M2(Z), the 2× 2 matrices with entries in Z

(e) Q
5. For each of the following rings R with ideal I, give an addition table

and a multiplication table for R/I.
(a) R = Z and I = 6Z

(b) R = Z12 and I = {0, 3, 6, 9}
6. Find all homomorphisms ϕ : Z/6Z → Z/15Z.
7. Prove that R is not isomorphic to C.
8. Prove or disprove: The ring Q(

√
2 ) = {a + b

√
2 : a, b ∈ Q} is

isomorphic to the ring Q(
√
3 ) = {a+ b

√
3 : a, b ∈ Q}.

9. What is the characteristic of the field formed by the set of matrices

F =

{(
1 0

0 1

)
,

(
1 1

1 0

)
,

(
0 1

1 1

)
,

(
0 0

0 0

)}
with entries in Z2?

10. Define a map ϕ : C → M2(R) by

ϕ(a+ bi) =

(
a b

−b a

)
.

Show that ϕ is an isomorphism of C with its image in M2(R).
11. Prove that the Gaussian integers, Z[i], are an integral domain.
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12. Prove that Z[
√
3 i] = {a+ b

√
3 i : a, b ∈ Z} is an integral domain.

13. Solve each of the following systems of congruences.
(a)

x ≡ 2 (mod 5)

x ≡ 6 (mod 11)

(b)

x ≡ 3 (mod 7)

x ≡ 0 (mod 8)

x ≡ 5 (mod 15)

(c)

x ≡ 2 (mod 4)

x ≡ 4 (mod 7)

x ≡ 7 (mod 9)

x ≡ 5 (mod 11)

(d)

x ≡ 3 (mod 5)

x ≡ 0 (mod 8)

x ≡ 1 (mod 11)

x ≡ 5 (mod 13)

14. Use the method of parallel computation outlined in the text to cal-
culate 2234 + 4121 by dividing the calculation into four separate
additions modulo 95, 97, 98, and 99.

15. Explain why the method of parallel computation outlined in the text
fails for 2134 · 1531 if we attempt to break the calculation down into
two smaller calculations modulo 98 and 99.

16. If R is a field, show that the only two ideals of R are {0} and R
itself.

17. Let a be any element in a ring R with identity. Show that (−1)a =
−a.

18. Let ϕ : R→ S be a ring homomorphism. Prove each of the following
statements.

(a) If R is a commutative ring, then ϕ(R) is a commutative ring.

(b) ϕ(0) = 0.

(c) Let 1R and 1S be the identities for R and S, respectively. If ϕ
is onto, then ϕ(1R) = 1S .

(d) If R is a field and ϕ(R) 6= 0, then ϕ(R) is a field.
19. Prove that the associative law for multiplication and the distributive

laws hold in R/I.
20. Prove the Second Isomorphism Theorem for rings: Let I be a subring

of a ring R and J an ideal in R. Then I ∩ J is an ideal in I and

I/I ∩ J ∼= I + J/J .
21. Prove the Third Isomorphism Theorem for rings: Let R be a ring

and I and J be ideals of R, where J ⊂ I. Then

R/I ∼=
R/J

I/J
.

22. Prove the Correspondence Theorem: Let I be an ideal of a ring
R. Then S → S/I is a one-to-one correspondence between the set of
subrings S containing I and the set of subrings of R/I. Furthermore,
the ideals of R correspond to ideals of R/I.

23. Let R be a ring and S a subset of R. Show that S is a subring of R
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if and only if each of the following conditions is satisfied.
(a) S 6= ∅.

(b) rs ∈ S for all r, s ∈ S.

(c) r − s ∈ S for all r, s ∈ S.
24. Let R be a ring with a collection of subrings {Rα}. Prove that

⋂
Rα

is a subring of R. Give an example to show that the union of two
subrings is not necessarily a subring.

25. Let {Iα}α∈A be a collection of ideals in a ring R. Prove that
⋂
α∈A Iα

is also an ideal in R. Give an example to show that if I1 and I2 are
ideals in R, then I1 ∪ I2 may not be an ideal.

26. Let R be an integral domain. Show that if the only ideals in R are
{0} and R itself, R must be a field.

27. Let R be a commutative ring. An element a in R is nilpotent if
an = 0 for some positive integer n. Show that the set of all nilpotent
elements forms an ideal in R.

28. A ring R is a Boolean ring if for every a ∈ R, a2 = a. Show that
every Boolean ring is a commutative ring.

29. Let R be a ring, where a3 = a for all a ∈ R. Prove that R must be
a commutative ring.

30. Let R be a ring with identity 1R and S a subring of R with identity
1S . Prove or disprove that 1R = 1S .

31. If we do not require the identity of a ring to be distinct from 0, we
will not have a very interesting mathematical structure. Let R be a
ring such that 1 = 0. Prove that R = {0}.

32. Let R be a ring. Define the center of R to be

Z(R) = {a ∈ R : ar = ra for all r ∈ R}.

Prove that Z(R) is a commutative subring of R.
33. Let p be prime. Prove that

Z(p) = {a/b : a, b ∈ Z and gcd(b, p) = 1}

is a ring. The ring Z(p) is called the ring of integers localized at p.
34. Prove or disprove: Every finite integral domain is isomorphic to Zp.
35. Let R be a ring with identity.

(a) Let u be a unit in R. Define a map iu : R→ R by r 7→ uru−1.
Prove that iu is an automorphism of R. Such an automorphism
of R is called an inner automorphism of R. Denote the set of
all inner automorphisms of R by Inn(R).

(b) Denote the set of all automorphisms of R by Aut(R). Prove
that Inn(R) is a normal subgroup of Aut(R).

(c) Let U(R) be the group of units in R. Prove that the map

ϕ : U(R) → Inn(R)

defined by u 7→ iu is a homomorphism. Determine the kernel
of ϕ.

(d) Compute Aut(Z), Inn(Z), and U(Z).
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36. Let R and S be arbitrary rings. Show that their Cartesian product
is a ring if we define addition and multiplication in R× S by

(a) (r, s) + (r′, s′) = (r + r′, s+ s′)

(b) (r, s)(r′, s′) = (rr′, ss′)

37. An element x in a ring is called an idempotent if x2 = x. Prove that
the only idempotents in an integral domain are 0 and 1. Find a ring
with a idempotent x not equal to 0 or 1.

38. Let gcd(a, n) = d and gcd(b, d) 6= 1. Prove that ax ≡ b (mod n)
does not have a solution.

39. The Chinese Remainder Theorem for Rings. Let R be a ring
and I and J be ideals in R such that I + J = R.

(a) Show that for any r and s in R, the system of equations

x ≡ r (mod I)

x ≡ s (mod J)

has a solution.

(b) In addition, prove that any two solutions of the system are
congruent modulo I ∩ J .

(c) Let I and J be ideals in a ring R such that I + J = R. Show
that there exists a ring isomorphism

R/(I ∩ J) ∼= R/I ×R/J .

16.8 Programming Exercise
1. Write a computer program implementing fast addition and multi-

plication using the Chinese Remainder Theorem and the method
outlined in the text.
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Polynomials

Most people are fairly familiar with polynomials by the time they begin
to study abstract algebra. When we examine polynomial expressions such
as

p(x) = x3 − 3x+ 2

q(x) = 3x2 − 6x+ 5,

we have a pretty good idea of what p(x) + q(x) and p(x)q(x) mean. We
just add and multiply polynomials as functions; that is,

(p+ q)(x) = p(x) + q(x)

= (x3 − 3x+ 2) + (3x2 − 6x+ 5)

= x3 + 3x2 − 9x+ 7

and

(pq)(x) = p(x)q(x)

= (x3 − 3x+ 2)(3x2 − 6x+ 5)

= 3x5 − 6x4 − 4x3 + 24x2 − 27x+ 10.

It is probably no surprise that polynomials form a ring. In this chapter
we shall emphasize the algebraic structure of polynomials by studying
polynomial rings. We can prove many results for polynomial rings that
are similar to the theorems we proved for the integers. Analogs of prime
numbers, the division algorithm, and the Euclidean algorithm exist for
polynomials.

17.1 Polynomial Rings
Throughout this chapter we shall assume that R is a commutative ring
with identity. Any expression of the form

f(x) =

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n,

where ai ∈ R and an 6= 0, is called a polynomial over R with indeter-
minate x. The elements a0, a1, . . . , an are called the coefficients of f .

219
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The coefficient an is called the leading coefficient. A polynomial is called
monic if the leading coefficient is 1. If n is the largest nonnegative number
for which an 6= 0, we say that the degree of f is n and write deg f(x) = n.
If no such n exists—that is, if f = 0 is the zero polynomial—then the
degree of f is defined to be −∞. We will denote the set of all polynomials
with coefficients in a ring R by R[x]. Two polynomials are equal exactly
when their corresponding coefficients are equal; that is, if we let

p(x) = a0 + a1x+ · · ·+ anx
n

q(x) = b0 + b1x+ · · ·+ bmx
m,

then p(x) = q(x) if and only if ai = bi for all i ≥ 0.
To show that the set of all polynomials forms a ring, we must first

define addition and multiplication. We define the sum of two polynomials
as follows. Let

p(x) = a0 + a1x+ · · ·+ anx
n

q(x) = b0 + b1x+ · · ·+ bmx
m.

Then the sum of p(x) and q(x) is

p(x) + q(x) = c0 + c1x+ · · ·+ ckx
k,

where ci = ai + bi for each i. We define the product of p(x) and q(x) to
be

p(x)q(x) = c0 + c1x+ · · ·+ cm+nx
m+n,

where

ci =

i∑
k=0

akbi−k = a0bi + a1bi−1 + · · ·+ ai−1b1 + aib0

for each i. Notice that in each case some of the coefficients may be zero.
Example 17.1 Suppose that

p(x) = 3 + 0x+ 0x2 + 2x3 + 0x4

and
q(x) = 2 + 0x− x2 + 0x3 + 4x4

are polynomials in Z[x]. If the coefficient of some term in a polynomial
is zero, then we usually just omit that term. In this case we would write
p(x) = 3+2x3 and q(x) = 2−x2+4x4. The sum of these two polynomials
is

p(x) + q(x) = 5− x2 + 2x3 + 4x4.

The product,

p(x)q(x) = (3 + 2x3)(2− x2 + 4x4) = 6− 3x2 + 4x3 + 12x4 − 2x5 + 8x7,

can be calculated either by determining the cis in the definition or by
simply multiplying polynomials in the same way as we have always done.

□
Example 17.2 Let

p(x) = 3 + 3x3 and q(x) = 4 + 4x2 + 4x4

be polynomials in Z12[x]. The sum of p(x) and q(x) is 7+4x2+3x3+4x4.
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The product of the two polynomials is the zero polynomial. This example
tells us that we can not expect R[x] to be an integral domain if R is not
an integral domain. □
Theorem 17.3 Let R be a commutative ring with identity. Then R[x] is
a commutative ring with identity.
Proof. Our first task is to show that R[x] is an abelian group under
polynomial addition. The zero polynomial, f(x) = 0, is the additive
identity. Given a polynomial p(x) =

∑n
i=0 aix

i, the inverse of p(x) is
easily verified to be −p(x) =

∑n
i=0(−ai)xi = −

∑n
i=0 aix

i. Commutativ-
ity and associativity follow immediately from the definition of polynomial
addition and from the fact that addition in R is both commutative and
associative.

To show that polynomial multiplication is associative, let

p(x) =

m∑
i=0

aix
i,

q(x) =

n∑
i=0

bix
i,

r(x) =

p∑
i=0

cix
i.

Then

[p(x)q(x)]r(x) =

[(
m∑
i=0

aix
i

)(
n∑
i=0

bix
i

)](
p∑
i=0

cix
i

)

=

m+n∑
i=0

 i∑
j=0

ajbi−j

xi

( p∑
i=0

cix
i

)

=

m+n+p∑
i=0

 i∑
j=0

(
j∑

k=0

akbj−k

)
ci−j

xi
=

m+n+p∑
i=0

 ∑
j+k+l=i

ajbkcl

xi

=

m+n+p∑
i=0

 i∑
j=0

aj

(
i−j∑
k=0

bkci−j−k

)xi
=

(
m∑
i=0

aix
i

)n+p∑
i=0

 i∑
j=0

bjci−j

xi


=

(
m∑
i=0

aix
i

)[(
n∑
i=0

bix
i

)(
p∑
i=0

cix
i

)]
= p(x)[q(x)r(x)]

The commutativity and distribution properties of polynomial multiplica-
tion are proved in a similar manner. We shall leave the proofs of these
properties as an exercise. ■
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Proposition 17.4 Let p(x) and q(x) be polynomials in R[x], where R is
an integral domain. Then deg p(x) + deg q(x) = deg(p(x)q(x)). Further-
more, R[x] is an integral domain.
Proof. Suppose that we have two nonzero polynomials

p(x) = amx
m + · · ·+ a1x+ a0

and
q(x) = bnx

n + · · ·+ b1x+ b0

with am 6= 0 and bn 6= 0. The degrees of p(x) and q(x) are m and n,
respectively. The leading term of p(x)q(x) is ambnxm+n, which cannot
be zero since R is an integral domain; hence, the degree of p(x)q(x) is
m + n, and p(x)q(x) 6= 0. Since p(x) 6= 0 and q(x) 6= 0 imply that
p(x)q(x) 6= 0, we know that R[x] must also be an integral domain. ■

We also want to consider polynomials in two or more variables, such
as x2 − 3xy + 2y3. Let R be a ring and suppose that we are given two
indeterminates x and y. Certainly we can form the ring (R[x])[y]. It is
straightforward but perhaps tedious to show that (R[x])[y] ∼= R([y])[x].
We shall identify these two rings by this isomorphism and simply write
R[x, y]. The ring R[x, y] is called the ring of polynomials in two inde-
terminates x and y with coefficients in R. We can define the ring of
polynomials in n indeterminates with coefficients in R similarly. We
shall denote this ring by R[x1, x2, . . . , xn].

Theorem 17.5 Let R be a commutative ring with identity and α ∈ R.
Then we have a ring homomorphism ϕα : R[x] → R defined by

ϕα(p(x)) = p(α) = anα
n + · · ·+ a1α+ a0,

where p(x) = anx
n + · · ·+ a1x+ a0.

Proof. Let p(x) =
∑n
i=0 aix

i and q(x) =
∑m
i=0 bix

i. It is easy to show
that ϕα(p(x)+ q(x)) = ϕα(p(x))+ϕα(q(x)). To show that multiplication
is preserved under the map ϕα, observe that

ϕα(p(x))ϕα(q(x)) = p(α)q(α)

=

(
n∑
i=0

aiα
i

)(
m∑
i=0

biα
i

)

=

m+n∑
i=0

(
i∑

k=0

akbi−k

)
αi

= ϕα(p(x)q(x)).

■
The map ϕα : R[x] → R is called the evaluation homomorphism at

α.

17.2 The Division Algorithm
Recall that the division algorithm for integers (Theorem 2.9, p. 22) says
that if a and b are integers with b > 0, then there exist unique integers q
and r such that a = bq + r, where 0 ≤ r < b. The algorithm by which q
and r are found is just long division. A similar theorem exists for poly-
nomials. The division algorithm for polynomials has several important
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consequences. Since its proof is very similar to the corresponding proof
for integers, it is worthwhile to review Theorem 2.9, p. 22 at this point.

Theorem 17.6 Division Algorithm. Let f(x) and g(x) be polynomials
in F [x], where F is a field and g(x) is a nonzero polynomial. Then there
exist unique polynomials q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x),

where either deg r(x) < deg g(x) or r(x) is the zero polynomial.
Proof. We will first consider the existence of q(x) and r(x). If f(x) is
the zero polynomial, then

0 = 0 · g(x) + 0;

hence, both q and r must also be the zero polynomial. Now suppose that
f(x) is not the zero polynomial and that deg f(x) = n and deg g(x) = m.
If m > n, then we can let q(x) = 0 and r(x) = f(x). Hence, we may
assume that m ≤ n and proceed by induction on n. If

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0

the polynomial
f ′(x) = f(x)− an

bm
xn−mg(x)

has degree less than n or is the zero polynomial. By induction, there exist
polynomials q′(x) and r(x) such that

f ′(x) = q′(x)g(x) + r(x),

where r(x) = 0 or the degree of r(x) is less than the degree of g(x). Now
let

q(x) = q′(x) +
an
bm

xn−m.

Then
f(x) = g(x)q(x) + r(x),

with r(x) the zero polynomial or deg r(x) < deg g(x).
To show that q(x) and r(x) are unique, suppose that there exist two

other polynomials q1(x) and r1(x) such that f(x) = g(x)q1(x) + r1(x)
with deg r1(x) < deg g(x) or r1(x) = 0, so that

f(x) = g(x)q(x) + r(x) = g(x)q1(x) + r1(x),

and
g(x)[q(x)− q1(x)] = r1(x)− r(x).

If q(x)− q1(x) is not the zero polynomial, then

deg(g(x)[q(x)− q1(x)]) = deg(r1(x)− r(x)) ≥ deg g(x).

However, the degrees of both r(x) and r1(x) are strictly less than the
degree of g(x); therefore, r(x) = r1(x) and q(x) = q1(x). ■
Example 17.7 The division algorithm merely formalizes long division
of polynomials, a task we have been familiar with since high school. For
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example, suppose that we divide x3 − x2 + 2x− 3 by x− 2.
x2 + x + 4

x − 2 x3 − x2 + 2x − 3

x3 − 2x2

x2 + 2x − 3

x2 − 2x

4x − 3

4x − 8

5

Hence, x3 − x2 + 2x− 3 = (x− 2)(x2 + x+ 4) + 5. □
Let p(x) be a polynomial in F [x] and α ∈ F . We say that α is a zero

or root of p(x) if p(x) is in the kernel of the evaluation homomorphism
ϕα. All we are really saying here is that α is a zero of p(x) if p(α) = 0.

Corollary 17.8 Let F be a field. An element α ∈ F is a zero of p(x) ∈
F [x] if and only if x− α is a factor of p(x) in F [x].
Proof. Suppose that α ∈ F and p(α) = 0. By the division algorithm,
there exist polynomials q(x) and r(x) such that

p(x) = (x− α)q(x) + r(x)

and the degree of r(x) must be less than the degree of x − α. Since the
degree of r(x) is less than 1, r(x) = a for a ∈ F ; therefore,

p(x) = (x− α)q(x) + a.

But
0 = p(α) = 0 · q(α) + a = a;

consequently, p(x) = (x− α)q(x), and x− α is a factor of p(x).
Conversely, suppose that x − α is a factor of p(x); say p(x) = (x −

α)q(x). Then p(α) = 0 · q(α) = 0. ■
Corollary 17.9 Let F be a field. A nonzero polynomial p(x) of degree n
in F [x] can have at most n distinct zeros in F .
Proof. We will use induction on the degree of p(x). If deg p(x) = 0,
then p(x) is a constant polynomial and has no zeros. Let deg p(x) = 1.
Then p(x) = ax+ b for some a and b in F . If α1 and α2 are zeros of p(x),
then aα1 + b = aα2 + b or α1 = α2.

Now assume that deg p(x) > 1. If p(x) does not have a zero in F ,
then we are done. On the other hand, if α is a zero of p(x), then p(x) =
(x − α)q(x) for some q(x) ∈ F [x] by Corollary 17.8, p. 224. The degree
of q(x) is n− 1 by Proposition 17.4, p. 222. Let β be some other zero of
p(x) that is distinct from α. Then p(β) = (β − α)q(β) = 0. Since α 6= β
and F is a field, q(β) = 0. By our induction hypothesis, q(x) can have
at most n− 1 zeros in F that are distinct from α. Therefore, p(x) has at
most n distinct zeros in F . ■

Let F be a field. A monic polynomial d(x) is a greatest common
divisor of polynomials p(x), q(x) ∈ F [x] if d(x) evenly divides both p(x)
and q(x); and, if for any other polynomial d′(x) dividing both p(x) and
q(x), d′(x) | d(x). We write d(x) = gcd(p(x), q(x)). Two polynomials
p(x) and q(x) are relatively prime if gcd(p(x), q(x)) = 1.

Proposition 17.10 Let F be a field and suppose that d(x) is a greatest
common divisor of two polynomials p(x) and q(x) in F [x]. Then there
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exist polynomials r(x) and s(x) such that

d(x) = r(x)p(x) + s(x)q(x).

Furthermore, the greatest common divisor of two polynomials is unique.
Proof. Let d(x) be the monic polynomial of smallest degree in the set

S = {f(x)p(x) + g(x)q(x) : f(x), g(x) ∈ F [x]}.

We can write d(x) = r(x)p(x) + s(x)q(x) for two polynomials r(x) and
s(x) in F [x]. We need to show that d(x) divides both p(x) and q(x). We
shall first show that d(x) divides p(x). By the division algorithm, there
exist polynomials a(x) and b(x) such that p(x) = a(x)d(x) + b(x), where
b(x) is either the zero polynomial or deg b(x) < deg d(x). Therefore,

b(x) = p(x)− a(x)d(x)

= p(x)− a(x)(r(x)p(x) + s(x)q(x))

= p(x)− a(x)r(x)p(x)− a(x)s(x)q(x)

= p(x)(1− a(x)r(x)) + q(x)(−a(x)s(x))

is a linear combination of p(x) and q(x) and therefore must be in S.
However, b(x) must be the zero polynomial since d(x) was chosen to be of
smallest degree; consequently, d(x) divides p(x). A symmetric argument
shows that d(x) must also divide q(x); hence, d(x) is a common divisor
of p(x) and q(x).

To show that d(x) is a greatest common divisor of p(x) and q(x),
suppose that d′(x) is another common divisor of p(x) and q(x). We will
show that d′(x) | d(x). Since d′(x) is a common divisor of p(x) and q(x),
there exist polynomials u(x) and v(x) such that p(x) = u(x)d′(x) and
q(x) = v(x)d′(x). Therefore,

d(x) = r(x)p(x) + s(x)q(x)

= r(x)u(x)d′(x) + s(x)v(x)d′(x)

= d′(x)[r(x)u(x) + s(x)v(x)].

Since d′(x) | d(x), d(x) is a greatest common divisor of p(x) and q(x).
Finally, we must show that the greatest common divisor of p(x) and

q(x) is unique. Suppose that d′(x) is another greatest common divisor of
p(x) and q(x). We have just shown that there exist polynomials u(x) and
v(x) in F [x] such that d(x) = d′(x)[r(x)u(x) + s(x)v(x)]. Since

deg d(x) = deg d′(x) + deg[r(x)u(x) + s(x)v(x)]

and d(x) and d′(x) are both greatest common divisors, deg d(x) = deg d′(x).
Since d(x) and d′(x) are both monic polynomials of the same degree, it
must be the case that d(x) = d′(x). ■

Notice the similarity between the proof of Proposition 17.10, p. 224
and the proof of Theorem 2.10, p. 22.

17.3 Irreducible Polynomials
A nonconstant polynomial f(x) ∈ F [x] is irreducible over a field F if
f(x) cannot be expressed as a product of two polynomials g(x) and h(x)
in F [x], where the degrees of g(x) and h(x) are both smaller than the
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degree of f(x). Irreducible polynomials function as the “prime numbers”
of polynomial rings.

Example 17.11 The polynomial x2 − 2 ∈ Q[x] is irreducible since it
cannot be factored any further over the rational numbers. Similarly, x2+1
is irreducible over the real numbers. □
Example 17.12 The polynomial p(x) = x3 + x2 + 2 is irreducible over
Z3[x]. Suppose that this polynomial was reducible over Z3[x]. By the
division algorithm there would have to be a factor of the form x − a,
where a is some element in Z3[x]. Hence, it would have to be true that
p(a) = 0. However,

p(0) = 2

p(1) = 1

p(2) = 2.

Therefore, p(x) has no zeros in Z3 and must be irreducible. □
Lemma 17.13 Let p(x) ∈ Q[x]. Then

p(x) =
r

s
(a0 + a1x+ · · ·+ anx

n),

where r, s, a0, . . . , an are integers, the ai’s are relatively prime, and r and
s are relatively prime.
Proof. Suppose that

p(x) =
b0
c0

+
b1
c1
x+ · · ·+ bn

cn
xn,

where the bi’s and the ci’s are integers. We can rewrite p(x) as

p(x) =
1

c0 · · · cn
(d0 + d1x+ · · ·+ dnx

n),

where d0, . . . , dn are integers. Let d be the greatest common divisor of
d0, . . . , dn. Then

p(x) =
d

c0 · · · cn
(a0 + a1x+ · · ·+ anx

n),

where di = dai and the ai’s are relatively prime. Reducing d/(c0 · · · cn)
to its lowest terms, we can write

p(x) =
r

s
(a0 + a1x+ · · ·+ anx

n),

where gcd(r, s) = 1. ■
Theorem 17.14 Gauss’s Lemma. Let p(x) ∈ Z[x] be a monic poly-
nomial such that p(x) factors into a product of two polynomials α(x) and
β(x) in Q[x], where the degrees of both α(x) and β(x) are less than the
degree of p(x). Then p(x) = a(x)b(x), where a(x) and b(x) are monic
polynomials in Z[x] with degα(x) = deg a(x) and degβ(x) = deg b(x).
Proof. By Lemma 17.13, p. 226, we can assume that

α(x) =
c1
d1

(a0 + a1x+ · · ·+ amx
m) =

c1
d1
α1(x)
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β(x) =
c2
d2

(b0 + b1x+ · · ·+ bnx
n) =

c2
d2
β1(x),

where the ai’s are relatively prime and the bi’s are relatively prime. Con-
sequently,

p(x) = α(x)β(x) =
c1c2
d1d2

α1(x)β1(x) =
c

d
α1(x)β1(x),

where c/d is the product of c1/d1 and c2/d2 expressed in lowest terms.
Hence, dp(x) = cα1(x)β1(x).

If d = 1, then cambn = 1 since p(x) is a monic polynomial. Hence,
either c = 1 or c = −1. If c = 1, then either am = bn = 1 or am =
bn = −1. In the first case p(x) = α1(x)β1(x), where α1(x) and β1(x) are
monic polynomials with degα(x) = degα1(x) and degβ(x) = degβ1(x).
In the second case a(x) = −α1(x) and b(x) = −β1(x) are the correct
monic polynomials since p(x) = (−α1(x))(−β1(x)) = a(x)b(x). The case
in which c = −1 can be handled similarly.

Now suppose that d 6= 1. Since gcd(c, d) = 1, there exists a prime p
such that p | d and p ∤ c. Also, since the coefficients of α1(x) are relatively
prime, there exists a coefficient ai such that p ∤ ai. Similarly, there exists
a coefficient bj of β1(x) such that p ∤ bj . Let α′

1(x) and β′
1(x) be the

polynomials in Zp[x] obtained by reducing the coefficients of α1(x) and
β1(x) modulo p. Since p | d, α′

1(x)β
′
1(x) = 0 in Zp[x]. However, this is

impossible since neither α′
1(x) nor β′

1(x) is the zero polynomial and Zp[x]
is an integral domain. Therefore, d = 1 and the theorem is proven. ■
Corollary 17.15 Let p(x) = xn + an−1x

n−1 + · · · + a0 be a polynomial
with coefficients in Z and a0 6= 0. If p(x) has a zero in Q, then p(x) also
has a zero α in Z. Furthermore, α divides a0.
Proof. Let p(x) have a zero a ∈ Q. Then p(x) must have a linear factor
x − a. By Gauss’s Lemma, p(x) has a factorization with a linear factor
in Z[x]. Hence, for some α ∈ Z

p(x) = (x− α)(xn−1 + · · · − a0/α).

Thus a0/α ∈ Z and so α | a0. ■

Example 17.16 Let p(x) = x4 − 2x3 + x + 1. We shall show that p(x)
is irreducible over Q[x]. Assume that p(x) is reducible. Then either p(x)
has a linear factor, say p(x) = (x−α)q(x), where q(x) is a polynomial of
degree three, or p(x) has two quadratic factors.

If p(x) has a linear factor in Q[x], then it has a zero in Z. By Corol-
lary 17.15, p. 227, any zero must divide 1 and therefore must be ±1;
however, p(1) = 1 and p(−1) = 3. Consequently, we have eliminated the
possibility that p(x) has any linear factors.

Therefore, if p(x) is reducible it must factor into two quadratic poly-
nomials, say

p(x) = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd,

where each factor is in Z[x] by Gauss’s Lemma. Hence,

a+ c = −2

ac+ b+ d = 0

ad+ bc = 1
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bd = 1.

Since bd = 1, either b = d = 1 or b = d = −1. In either case b = d and so

ad+ bc = b(a+ c) = 1.

Since a+ c = −2, we know that −2b = 1. This is impossible since b is an
integer. Therefore, p(x) must be irreducible over Q. □
Theorem 17.17 Eisenstein’s Criterion. Let p be a prime and suppose
that

f(x) = anx
n + · · ·+ a0 ∈ Z[x].

If p | ai for i = 0, 1, . . . , n − 1, but p ∤ an and p2 ∤ a0, then f(x) is
irreducible over Q.
Proof. By Gauss’s Lemma, we need only show that f(x) does not factor
into polynomials of lower degree in Z[x]. Let

f(x) = (brx
r + · · ·+ b0)(csx

s + · · ·+ c0)

be a factorization in Z[x], with br and cs not equal to zero and r, s < n.
Since p2 does not divide a0 = b0c0, either b0 or c0 is not divisible by p.
Suppose that p ∤ b0 and p | c0. Since p ∤ an and an = brcs, neither br
nor cs is divisible by p. Let m be the smallest value of k such that p ∤ ck.
Then

am = b0cm + b1cm−1 + · · ·+ bmc0

is not divisible by p, since each term on the right-hand side of the equation
is divisible by p except for b0cm. Therefore, m = n since ai is divisible by
p for m < n. Hence, f(x) cannot be factored into polynomials of lower
degree and therefore must be irreducible. ■
Example 17.18 The polynomial

f(x) = 16x5 − 9x4 + 3x2 + 6x− 21

is easily seen to be irreducible over Q by Eisenstein’s Criterion if we let
p = 3. □

Eisenstein’s Criterion is more useful in constructing irreducible poly-
nomials of a certain degree over Q than in determining the irreducibility
of an arbitrary polynomial in Q[x]: given an arbitrary polynomial, it is
not very likely that we can apply Eisenstein’s Criterion. The real value of
Theorem 17.17, p. 228 is that we now have an easy method of generating
irreducible polynomials of any degree.

Ideals in F [x]

Let F be a field. Recall that a principal ideal in F [x] is an ideal 〈p(x)〉
generated by some polynomial p(x); that is,

〈p(x)〉 = {p(x)q(x) : q(x) ∈ F [x]}.

Example 17.19 The polynomial x2 in F [x] generates the ideal 〈x2〉
consisting of all polynomials with no constant term or term of degree 1.

□
Theorem 17.20 If F is a field, then every ideal in F [x] is a principal
ideal.
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Proof. Let I be an ideal of F [x]. If I is the zero ideal, the theorem is
easily true. Suppose that I is a nontrivial ideal in F [x], and let p(x) ∈ I
be a nonzero element of minimal degree. If deg p(x) = 0, then p(x) is
a nonzero constant and 1 must be in I. Since 1 generates all of F [x],
〈1〉 = I = F [x] and I is again a principal ideal.

Now assume that deg p(x) ≥ 1 and let f(x) be any element in I.
By the division algorithm there exist q(x) and r(x) in F [x] such that
f(x) = p(x)q(x)+ r(x) and deg r(x) < deg p(x). Since f(x), p(x) ∈ I and
I is an ideal, r(x) = f(x)−p(x)q(x) is also in I. However, since we chose
p(x) to be of minimal degree, r(x) must be the zero polynomial. Since
we can write any element f(x) in I as p(x)q(x) for some q(x) ∈ F [x], it
must be the case that I = 〈p(x)〉. ■
Example 17.21 It is not the case that every ideal in the ring F [x, y] is a
principal ideal. Consider the ideal of F [x, y] generated by the polynomials
x and y. This is the ideal of F [x, y] consisting of all polynomials with no
constant term. Since both x and y are in the ideal, no single polynomial
can generate the entire ideal. □
Theorem 17.22 Let F be a field and suppose that p(x) ∈ F [x]. Then
the ideal generated by p(x) is maximal if and only if p(x) is irreducible.
Proof. Suppose that p(x) generates a maximal ideal of F [x]. Then
〈p(x)〉 is also a prime ideal of F [x]. Since a maximal ideal must be
properly contained inside F [x], p(x) cannot be a constant polynomial.
Let us assume that p(x) factors into two polynomials of lesser degree, say
p(x) = f(x)g(x). Since 〈p(x)〉 is a prime ideal one of these factors, say
f(x), is in 〈p(x)〉 and therefore be a multiple of p(x). But this would
imply that 〈p(x)〉 ⊂ 〈f(x)〉, which is impossible since 〈p(x)〉 is maximal.

Conversely, suppose that p(x) is irreducible over F [x]. Let I be an
ideal in F [x] containing 〈p(x)〉. By Theorem 17.20, p. 228, I is a principal
ideal; hence, I = 〈f(x)〉 for some f(x) ∈ F [x]. Since p(x) ∈ I, it must
be the case that p(x) = f(x)g(x) for some g(x) ∈ F [x]. However, p(x) is
irreducible; hence, either f(x) or g(x) is a constant polynomial. If f(x) is
constant, then I = F [x] and we are done. If g(x) is constant, then f(x) is
a constant multiple of I and I = 〈p(x)〉. Thus, there are no proper ideals
of F [x] that properly contain 〈p(x)〉. ■

Sage. Polynomial rings are very important for computational approaches
to algebra, and so Sage makes it very easy to compute with polynomials,
over rings, or over fields. And it is trivial to check if a polynomial is
irreducible.

Historical Note
Throughout history, the solution of polynomial equations has been a
challenging problem. The Babylonians knew how to solve the equa-
tion ax2 + bx + c = 0. Omar Khayyam (1048–1131) devised methods
of solving cubic equations through the use of geometric constructions
and conic sections. The algebraic solution of the general cubic equation
ax3+ bx2+ cx+d = 0 was not discovered until the sixteenth century. An
Italian mathematician, Luca Pacioli (ca. 1445–1509), wrote in Summa
de Arithmetica that the solution of the cubic was impossible. This was
taken as a challenge by the rest of the mathematical community.
Scipione del Ferro (1465–1526), of the University of Bologna, solved the
“depressed cubic,”

ax3 + cx+ d = 0.
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He kept his solution an absolute secret. This may seem surprising today,
when mathematicians are usually very eager to publish their results, but
in the days of the Italian Renaissance secrecy was customary. Academic
appointments were not easy to secure and depended on the ability to
prevail in public contests. Such challenges could be issued at any time.
Consequently, any major new discovery was a valuable weapon in such
a contest. If an opponent presented a list of problems to be solved, del
Ferro could in turn present a list of depressed cubics. He kept the secret
of his discovery throughout his life, passing it on only on his deathbed to
his student Antonio Fior (ca. 1506–?).
Although Fior was not the equal of his teacher, he immediately issued
a challenge to Niccolo Fontana (1499–1557). Fontana was known as
Tartaglia (the Stammerer). As a youth he had suffered a blow from
the sword of a French soldier during an attack on his village. He survived
the savage wound, but his speech was permanently impaired. Tartaglia
sent Fior a list of 30 various mathematical problems; Fior countered by
sending Tartaglia a list of 30 depressed cubics. Tartaglia would either
solve all 30 of the problems or absolutely fail. After much effort Tartaglia
finally succeeded in solving the depressed cubic and defeated Fior, who
faded into obscurity.
At this point another mathematician, Gerolamo Cardano (1501–1576),
entered the story. Cardano wrote to Tartaglia, begging him for the so-
lution to the depressed cubic. Tartaglia refused several of his requests,
then finally revealed the solution to Cardano after the latter swore an
oath not to publish the secret or to pass it on to anyone else. Using
the knowledge that he had obtained from Tartaglia, Cardano eventually
solved the general cubic

ax3 + bx2 + cx+ d = 0.

Cardano shared the secret with his student, Ludovico Ferrari (1522–1565),
who solved the general quartic equation,

ax4 + bx3 + cx2 + dx+ e = 0.

In 1543, Cardano and Ferrari examined del Ferro’s papers and discovered
that he had also solved the depressed cubic. Cardano felt that this re-
lieved him of his obligation to Tartaglia, so he proceeded to publish the
solutions in Ars Magna (1545), in which he gave credit to del Ferro for
solving the special case of the cubic. This resulted in a bitter dispute
between Cardano and Tartaglia, who published the story of the oath a
year later.

17.4 Reading Questions
1. Suppose p(x) is a polynomial of degree n with coefficients from any

field. How many roots can p(x) have? How does this generalize your
high school algebra experience?

2. What is the definition of an irreducible polynomial?
3. Find the remainder upon division of 8x5− 18x4+20x3− 25x2+20

by 4x2 − x− 2.
4. A single theorem in this chapter connects many of the ideas of this

chapter to many of the ideas of the previous chapter. State a para-
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phrased version of this theorem.
5. Early in this chapter, we say, “We can prove many results for poly-

nomial rings that are similar to the theorems we proved for the
integers.” Write a short essay (or a very long paragraph) justifying
this assertion.

17.5 Exercises
1. List all of the polynomials of degree 3 or less in Z2[x].
2. Compute each of the following.

(a) (5x2 + 3x− 4) + (4x2 − x+ 9) in Z12[x]

(b) (5x2 + 3x− 4)(4x2 − x+ 9) in Z12[x]

(c) (7x3 + 3x2 − x) + (6x2 − 8x+ 4) in Z9[x]

(d) (3x2 + 2x− 4) + (4x2 + 2) in Z5[x]

(e) (3x2 + 2x− 4)(4x2 + 2) in Z5[x]

(f) (5x2 + 3x− 2)2 in Z12[x]

3. Use the division algorithm to find q(x) and r(x) such that a(x) =
q(x)b(x) + r(x) with deg r(x) < deg b(x) for each of the following
pairs of polynomials.

(a) a(x) = 5x3 + 6x2 − 3x+ 4 and b(x) = x− 2 in Z7[x]

(b) a(x) = 6x4 − 2x3 + x2 − 3x+ 1 and b(x) = x2 + x− 2 in Z7[x]

(c) a(x) = 4x5 − x3 + x2 + 4 and b(x) = x3 − 2 in Z5[x]

(d) a(x) = x5 + x3 − x2 − x and b(x) = x3 + x in Z2[x]

4. Find the greatest common divisor of each of the following pairs p(x)
and q(x) of polynomials. If d(x) = gcd(p(x), q(x)), find two polyno-
mials a(x) and b(x) such that a(x)p(x) + b(x)q(x) = d(x).

(a) p(x) = x3 − 6x2 + 14x − 15 and q(x) = x3 − 8x2 + 21x − 18,
where p(x), q(x) ∈ Q[x]

(b) p(x) = x3+x2−x+1 and q(x) = x3+x−1, where p(x), q(x) ∈
Z2[x]

(c) p(x) = x3+x2−4x+4 and q(x) = x3+3x−2, where p(x), q(x) ∈
Z5[x]

(d) p(x) = x3 − 2x+ 4 and q(x) = 4x3 + x+ 3, where p(x), q(x) ∈
Q[x]

5. Find all of the zeros for each of the following polynomials.
(a) 5x3 + 4x2 − x+ 9 in Z12[x]

(b) 3x3 − 4x2 − x+ 4 in Z5[x]

(c) 5x4 + 2x2 − 3 in Z7[x]

(d) x3 + x+ 1 in Z2[x]

6. Find all of the units in Z[x].
7. Find a unit p(x) in Z4[x] such that deg p(x) > 1.
8. Which of the following polynomials are irreducible over Q[x]?

(a) x4 − 2x3 + 2x2 + x+ 4

(b) x4 − 5x3 + 3x− 2

(c) 3x5 − 4x3 − 6x2 + 6

(d) 5x5 − 6x4 − 3x2 + 9x− 15
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9. Find all of the irreducible polynomials of degrees 2 and 3 in Z2[x].
10. Give two different factorizations of x2 + x+ 8 in Z10[x].
11. Prove or disprove: There exists a polynomial p(x) in Z6[x] of degree

n with more than n distinct zeros.
12. If F is a field, show that F [x1, . . . , xn] is an integral domain.
13. Show that the division algorithm does not hold for Z[x]. Why does

it fail?
14. Prove or disprove: xp + a is irreducible for any a ∈ Zp, where p is

prime.
15. Let f(x) be irreducible in F [x], where F is a field. If f(x) | p(x)q(x),

prove that either f(x) | p(x) or f(x) | q(x).
16. Suppose that R and S are isomorphic rings. Prove that R[x] ∼= S[x].
17. Let F be a field and a ∈ F . If p(x) ∈ F [x], show that p(a) is the

remainder obtained when p(x) is divided by x− a.
18. The Rational Root Theorem. Let

p(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x],

where an 6= 0. Prove that if p(r/s) = 0, where gcd(r, s) = 1, then
r | a0 and s | an.

19. Let Q∗ be the multiplicative group of positive rational numbers.
Prove that Q∗ is isomorphic to (Z[x],+).

20. Cyclotomic Polynomials. The polynomial

Φn(x) =
xn − 1

x− 1
= xn−1 + xn−2 + · · ·+ x+ 1

is called the cyclotomic polynomial. Show that Φp(x) is irreducible
over Q for any prime p.

21. If F is a field, show that there are infinitely many irreducible poly-
nomials in F [x].

22. Let R be a commutative ring with identity. Prove that multiplication
is commutative in R[x].

23. Let R be a commutative ring with identity. Prove that multiplication
is distributive in R[x].

24. Show that xp−x has p distinct zeros in Zp, for any prime p. Conclude
that

xp − x = x(x− 1)(x− 2) · · · (x− (p− 1)).
25. Let F be a field and f(x) = a0+a1x+ · · ·+anxn be in F [x]. Define

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 to be the derivative of f(x).

(a) Prove that
(f + g)′(x) = f ′(x) + g′(x).

Conclude that we can define a homomorphism of abelian groups
D : F [x] → F [x] by D(f(x)) = f ′(x).

(b) Calculate the kernel of D if charF = 0.

(c) Calculate the kernel of D if charF = p.

(d) Prove that

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).
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(e) Suppose that we can factor a polynomial f(x) ∈ F [x] into
linear factors, say

f(x) = a(x− a1)(x− a2) · · · (x− an).

Prove that f(x) has no repeated factors if and only if f(x) and
f ′(x) are relatively prime.

26. Let F be a field. Show that F [x] is never a field.
27. Let R be an integral domain. Prove that R[x1, . . . , xn] is an integral

domain.
28. Let R be a commutative ring with identity. Show that R[x] has a

subring R′ isomorphic to R.
29. Let p(x) and q(x) be polynomials in R[x], where R is a commutative

ring with identity. Prove that deg(p(x)+q(x)) ≤ max(deg p(x),deg q(x)).

17.6 Additional Exercises: Solving the Cubic
and Quartic Equations

1. Complete the square to solve the general quadratic equation

ax2 + bx+ c = 0

to obtain
x =

−b±
√
b2 − 4ac

2a
.

The discriminant of the quadratic equation ∆ = b2−4ac determines
the nature of the solutions of the equation. If ∆ > 0, the equation
has two distinct real solutions. If ∆ = 0, the equation has a sin-
gle repeated real root. If ∆ < 0, there are two distinct imaginary
solutions.

2. Show that any cubic equation of the form

x3 + bx2 + cx+ d = 0

can be reduced to the form y3+py+q = 0 by making the substitution
x = y − b/3.

3. Prove that the cube roots of 1 are given by

ω =
−1 + i

√
3

2

ω2 =
−1− i

√
3

2

ω3 = 1.
4. Make the substitution

y = z − p

3z

for y in the equation y3+py+ q = 0 and obtain two solutions A and
B for z3.

5. Show that the product of the solutions obtained in (4) is −p3/27,
deducing that 3

√
AB = −p/3.
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6. Prove that the possible solutions for z in (4) are given by

3
√
A, ω

3
√
A, ω2 3

√
A,

3
√
B, ω

3
√
B, ω2 3

√
B

and use this result to show that the three possible solutions for y are

ωi
3

√
−q
2
+

√
p3

27
+
q2

4
+ ω2i 3

√
−q
2
−
√

p3

27
+
q2

4
,

where i = 0, 1, 2.
7. The discriminant of the cubic equation is

∆ =
p3

27
+
q2

4
.

Show that y3 + py + q = 0

(a) has three real roots, at least two of which are equal, if ∆ = 0.

(b) has one real root and two conjugate imaginary roots if ∆ > 0.

(c) has three distinct real roots if ∆ < 0.
8. Solve the following cubic equations.

(a) x3 − 4x2 + 11x+ 30 = 0

(b) x3 − 3x+ 5 = 0

(c) x3 − 3x+ 2 = 0

(d) x3 + x+ 3 = 0

9. Show that the general quartic equation

x4 + ax3 + bx2 + cx+ d = 0

can be reduced to
y4 + py2 + qy + r = 0

by using the substitution x = y − a/4.
10. Show that (

y2 +
1

2
z

)2

= (z − p)y2 − qy +

(
1

4
z2 − r

)
.

11. Show that the right-hand side of Exercise 17.6.10, p. 234 can be put
in the form (my + k)2 if and only if

q2 − 4(z − p)

(
1

4
z2 − r

)
= 0.

12. From Exercise 17.6.11, p. 234 obtain the resolvent cubic equation

z3 − pz2 − 4rz + (4pr − q2) = 0.

Solving the resolvent cubic equation, put the equation found in Ex-
ercise 17.6.10, p. 234 in the form(

y2 +
1

2
z

)2

= (my + k)2

to obtain the solution of the quartic equation.
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13. Use this method to solve the following quartic equations.
(a) x4 − x2 − 3x+ 2 = 0

(b) x4 + x3 − 7x2 − x+ 6 = 0

(c) x4 − 2x2 + 4x− 3 = 0

(d) x4 − 4x3 + 3x2 − 5x+ 2 = 0
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18

Integral Domains

One of the most important rings we study is the ring of integers. It was
our first example of an algebraic structure: the first polynomial ring that
we examined was Z[x]. We also know that the integers sit naturally inside
the field of rational numbers, Q. The ring of integers is the model for
all integral domains. In this chapter we will examine integral domains in
general, answering questions about the ideal structure of integral domains,
polynomial rings over integral domains, and whether or not an integral
domain can be embedded in a field.

18.1 Fields of Fractions
Every field is also an integral domain; however, there are many integral
domains that are not fields. For example, the integers Z form an integral
domain but not a field. A question that naturally arises is how we might
associate an integral domain with a field. There is a natural way to con-
struct the rationals Q from the integers: the rationals can be represented
as formal quotients of two integers. The rational numbers are certainly
a field. In fact, it can be shown that the rationals are the smallest field
that contains the integers. Given an integral domain D, our question
now becomes how to construct a smallest field F containing D. We will
do this in the same way as we constructed the rationals from the integers.

An element p/q ∈ Q is the quotient of two integers p and q; however,
different pairs of integers can represent the same rational number. For
instance, 1/2 = 2/4 = 3/6. We know that

a

b
=
c

d

if and only if ad = bc. A more formal way of considering this problem is
to examine fractions in terms of equivalence relations. We can think of
elements in Q as ordered pairs in Z × Z. A quotient p/q can be written
as (p, q). For instance, (3, 7) would represent the fraction 3/7. However,
there are problems if we consider all possible pairs in Z× Z. There is no
fraction 5/0 corresponding to the pair (5, 0). Also, the pairs (3, 6) and
(2, 4) both represent the fraction 1/2. The first problem is easily solved if
we require the second coordinate to be nonzero. The second problem is
solved by considering two pairs (a, b) and (c, d) to be equivalent if ad = bc.

237
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If we use the approach of ordered pairs instead of fractions, then we
can study integral domains in general. Let D be any integral domain and
let

S = {(a, b) : a, b ∈ D and b 6= 0}.
Define a relation on S by (a, b) ∼ (c, d) if ad = bc.

Lemma 18.1 The relation ∼ between elements of S is an equivalence
relation.
Proof. Since D is commutative, ab = ba; hence, ∼ is reflexive on D.
Now suppose that (a, b) ∼ (c, d). Then ad = bc or cb = da. Therefore,
(c, d) ∼ (a, b) and the relation is symmetric. Finally, to show that the
relation is transitive, let (a, b) ∼ (c, d) and (c, d) ∼ (e, f). In this case
ad = bc and cf = de. Multiplying both sides of ad = bc by f yields

afd = adf = bcf = bde = bed.

Since D is an integral domain, we can deduce that af = be or (a, b) ∼
(e, f). ■

We will denote the set of equivalence classes on S by FD. We now need
to define the operations of addition and multiplication on FD. Recall how
fractions are added and multiplied in Q:

a

b
+
c

d
=
ad+ bc

bd
;

a

b
· c
d
=
ac

bd
.

It seems reasonable to define the operations of addition and multiplica-
tion on FD in a similar manner. If we denote the equivalence class of
(a, b) ∈ S by [a, b], then we are led to define the operations of addition
and multiplication on FD by

[a, b] + [c, d] = [ad+ bc, bd]

and
[a, b] · [c, d] = [ac, bd],

respectively. The next lemma demonstrates that these operations are
independent of the choice of representatives from each equivalence class.
Lemma 18.2 The operations of addition and multiplication on FD are
well-defined.
Proof. We will prove that the operation of addition is well-defined.
The proof that multiplication is well-defined is left as an exercise. Let
[a1, b1] = [a2, b2] and [c1, d1] = [c2, d2]. We must show that

[a1d1 + b1c1, b1d1] = [a2d2 + b2c2, b2d2]

or, equivalently, that

(a1d1 + b1c1)(b2d2) = (b1d1)(a2d2 + b2c2).

Since [a1, b1] = [a2, b2] and [c1, d1] = [c2, d2], we know that a1b2 = b1a2
and c1d2 = d1c2. Therefore,

(a1d1 + b1c1)(b2d2) = a1d1b2d2 + b1c1b2d2

= a1b2d1d2 + b1b2c1d2

= b1a2d1d2 + b1b2d1c2
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= (b1d1)(a2d2 + b2c2).

■
Lemma 18.3 The set of equivalence classes of S, FD, under the equiva-
lence relation ∼, together with the operations of addition and multiplica-
tion defined by

[a, b] + [c, d] = [ad+ bc, bd]

[a, b] · [c, d] = [ac, bd],

is a field.
Proof. The additive and multiplicative identities are [0, 1] and [1, 1],
respectively. To show that [0, 1] is the additive identity, observe that

[a, b] + [0, 1] = [a1 + b0, b1] = [a, b].

It is easy to show that [1, 1] is the multiplicative identity. Let [a, b] ∈ FD
such that a 6= 0. Then [b, a] is also in FD and [a, b] · [b, a] = [1, 1]; hence,
[b, a] is the multiplicative inverse for [a, b]. Similarly, [−a, b] is the additive
inverse of [a, b]. We leave as exercises the verification of the associative
and commutative properties of multiplication in FD. We also leave it to
the reader to show that FD is an abelian group under addition.

It remains to show that the distributive property holds in FD; how-
ever,

[a, b][e, f ] + [c, d][e, f ] = [ae, bf ] + [ce, df ]

= [aedf + bfce, bdf2]

= [aed+ bce, bdf ]

= [ade+ bce, bdf ]

= ([a, b] + [c, d])[e, f ]

and the lemma is proved. ■
The field FD in Lemma 18.3, p. 239 is called the field of fractions or

field of quotients of the integral domain D.
Theorem 18.4 Let D be an integral domain. Then D can be embedded
in a field of fractions FD, where any element in FD can be expressed as
the quotient of two elements in D. Furthermore, the field of fractions FD
is unique in the sense that if E is any field containing D, then there exists
a map ψ : FD → E giving an isomorphism with a subfield of E such that
ψ(a) = a for all elements a ∈ D, where we identify a with its image in
FD.
Proof. We will first demonstrate that D can be embedded in the field
FD. Define a map ϕ : D → FD by ϕ(a) = [a, 1]. Then for a and b in D,

ϕ(a+ b) = [a+ b, 1] = [a, 1] + [b, 1] = ϕ(a) + ϕ(b)

and
ϕ(ab) = [ab, 1] = [a, 1][b, 1] = ϕ(a)ϕ(b);

hence, ϕ is a homomorphism. To show that ϕ is one-to-one, suppose that
ϕ(a) = ϕ(b). Then [a, 1] = [b, 1], or a = a1 = 1b = b. Finally, any element
of FD can be expressed as the quotient of two elements in D, since

ϕ(a)[ϕ(b)]−1 = [a, 1][b, 1]−1 = [a, 1] · [1, b] = [a, b].
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Now let E be a field containing D and define a map ψ : FD → E
by ψ([a, b]) = ab−1. To show that ψ is well-defined, let [a1, b1] = [a2, b2].
Then a1b2 = b1a2. Therefore, a1b−1

1 = a2b
−1
2 and ψ([a1, b1]) = ψ([a2, b2]).

If [a, b] and [c, d] are in FD, then

ψ([a, b] + [c, d]) = ψ([ad+ bc, bd])

= (ad+ bc)(bd)−1

= ab−1 + cd−1

= ψ([a, b]) + ψ([c, d])

and

ψ([a, b] · [c, d]) = ψ([ac, bd])

= (ac)(bd)−1

= ab−1cd−1

= ψ([a, b])ψ([c, d]).

Therefore, ψ is a homomorphism.
To complete the proof of the theorem, we need to show that ψ is

one-to-one. Suppose that ψ([a, b]) = ab−1 = 0. Then a = 0b = 0 and
[a, b] = [0, b]. Therefore, the kernel of ψ is the zero element [0, b] in FD,
and ψ is injective. ■
Example 18.5 Since Q is a field, Q[x] is an integral domain. The field
of fractions of Q[x] is the set of all rational expressions p(x)/q(x), where
p(x) and q(x) are polynomials over the rationals and q(x) is not the zero
polynomial. We will denote this field by Q(x). □

We will leave the proofs of the following corollaries of Theorem 18.4,
p. 239 as exercises.
Corollary 18.6 Let F be a field of characteristic zero. Then F contains
a subfield isomorphic to Q.
Corollary 18.7 Let F be a field of characteristic p. Then F contains a
subfield isomorphic to Zp.

18.2 Factorization in Integral Domains
The building blocks of the integers are the prime numbers. If F is a field,
then irreducible polynomials in F [x] play a role that is very similar to
that of the prime numbers in the ring of integers. Given an arbitrary
integral domain, we are led to the following series of definitions.

Let R be a commutative ring with identity, and let a and b be elements
in R. We say that a divides b, and write a | b, if there exists an element
c ∈ R such that b = ac. A unit in R is an element that has a multiplicative
inverse. Two elements a and b in R are said to be associates if there exists
a unit u in R such that a = ub.

Let D be an integral domain. A nonzero element p ∈ D that is not
a unit is said to be irreducible provided that whenever p = ab, either a
or b is a unit. Furthermore, p is prime if whenever p | ab either p | a or
p | b.

Example 18.8 It is important to notice that prime and irreducible el-
ements do not always coincide. Let R be the subring (with identity) of
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Q[x, y] generated by x2, y2, and xy. Each of these elements is irreducible
in R; however, xy is not prime, since xy divides x2y2 but does not divide
either x2 or y2. □

The Fundamental Theorem of Arithmetic states that every positive
integer n > 1 can be factored into a product of prime numbers p1 · · · pk,
where the pi’s are not necessarily distinct. We also know that such fac-
torizations are unique up to the order of the pi’s. We can easily extend
this result to the integers. The question arises of whether or not such
factorizations are possible in other rings. Generalizing this definition, we
say an integral domain D is a unique factorization domain, or ufd, if D
satisfies the following criteria.

1. Let a ∈ D such that a 6= 0 and a is not a unit. Then a can be
written as the product of irreducible elements in D.

2. Let a = p1 · · · pr = q1 · · · qs, where the pi’s and the qi’s are irre-
ducible. Then r = s and there is a π ∈ Sr such that pi and qπ(j)
are associates for j = 1, . . . , r.

Example 18.9 The integers are a unique factorization domain by the
Fundamental Theorem of Arithmetic. □
Example 18.10 Not every integral domain is a unique factorization
domain. The subring Z[

√
3 i] = {a + b

√
3 i} of the complex numbers

is an integral domain (Exercise 16.7.12, p. 214, Chapter 16, p. 199). Let
z = a+b

√
3 i and define ν : Z[

√
3 i] → N∪{0} by ν(z) = |z|2 = a2+3b2. It

is clear that ν(z) ≥ 0 with equality when z = 0. Also, from our knowledge
of complex numbers we know that ν(zw) = ν(z)ν(w). It is easy to show
that if ν(z) = 1, then z is a unit, and that the only units of Z[

√
3 i] are 1

and −1.
We claim that 4 has two distinct factorizations into irreducible ele-

ments:
4 = 2 · 2 = (1−

√
3 i)(1 +

√
3 i).

We must show that each of these factors is an irreducible element in
Z[
√
3 i]. If 2 is not irreducible, then 2 = zw for elements z, w in Z[

√
3 i]

where ν(z) = ν(w) = 2. However, there does not exist an element in z
in Z[

√
3 i] such that ν(z) = 2 because the equation a2 + 3b2 = 2 has no

integer solutions. Therefore, 2 must be irreducible. A similar argument
shows that both 1 −

√
3 i and 1 +

√
3 i are irreducible. Since 2 is not a

unit multiple of either 1 −
√
3 i or 1 +

√
3 i, 4 has at least two distinct

factorizations into irreducible elements. □

Principal Ideal Domains
Let R be a commutative ring with identity. Recall that a principal ideal
generated by a ∈ R is an ideal of the form 〈a〉 = {ra : r ∈ R}. An integral
domain in which every ideal is principal is called a principal ideal domain,
or pid.
Lemma 18.11 Let D be an integral domain and let a, b ∈ D. Then

1. a | b if and only if 〈b〉 ⊂ 〈a〉.

2. a and b are associates if and only if 〈b〉 = 〈a〉.

3. a is a unit in D if and only if 〈a〉 = D.
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Proof. (1) Suppose that a | b. Then b = ax for some x ∈ D. Hence, for
every r in D, br = (ax)r = a(xr) and 〈b〉 ⊂ 〈a〉. Conversely, suppose that
〈b〉 ⊂ 〈a〉. Then b ∈ 〈a〉. Consequently, b = ax for some x ∈ D. Thus,
a | b.

(2) Since a and b are associates, there exists a unit u such that a = ub.
Therefore, b | a and 〈a〉 ⊂ 〈b〉. Similarly, 〈b〉 ⊂ 〈a〉. It follows that
〈a〉 = 〈b〉. Conversely, suppose that 〈a〉 = 〈b〉. By part (1), a | b and b | a.
Then a = bx and b = ay for some x, y ∈ D. Therefore, a = bx = ayx.
Since D is an integral domain, xy = 1; that is, x and y are units and a
and b are associates.

(3) An element a ∈ D is a unit if and only if a is an associate of 1.
However, a is an associate of 1 if and only if 〈a〉 = 〈1〉 = D. ■
Theorem 18.12 Let D be a pid and 〈p〉 be a nonzero ideal in D. Then
〈p〉 is a maximal ideal if and only if p is irreducible.
Proof. Suppose that 〈p〉 is a maximal ideal. If some element a in
D divides p, then 〈p〉 ⊂ 〈a〉. Since 〈p〉 is maximal, either D = 〈a〉 or
〈p〉 = 〈a〉. Consequently, either a and p are associates or a is a unit.
Therefore, p is irreducible.

Conversely, let p be irreducible. If 〈a〉 is an ideal in D such that
〈p〉 ⊂ 〈a〉 ⊂ D, then a | p. Since p is irreducible, either a must be a unit
or a and p are associates. Therefore, either D = 〈a〉 or 〈p〉 = 〈a〉. Thus,
〈p〉 is a maximal ideal. ■
Corollary 18.13 Let D be a pid. If p is irreducible, then p is prime.
Proof. Let p be irreducible and suppose that p | ab. Then 〈ab〉 ⊂ 〈p〉.
By Corollary 16.40, p. 209, since 〈p〉 is a maximal ideal, 〈p〉 must also be
a prime ideal. Thus, either a ∈ 〈p〉 or b ∈ 〈p〉. Hence, either p | a or p | b.

■
Lemma 18.14 Let D be a pid. Let I1, I2, . . . be a set of ideals such that
I1 ⊂ I2 ⊂ · · ·. Then there exists an integer N such that In = IN for all
n ≥ N .
Proof. We claim that I =

⋃∞
i=1 Ii is an ideal of D. Certainly I is not

empty, since I1 ⊂ I and 0 ∈ I. If a, b ∈ I, then a ∈ Ii and b ∈ Ij for
some i and j in N. Without loss of generality we can assume that i ≤ j.
Hence, a and b are both in Ij and so a − b is also in Ij . Now let r ∈ D
and a ∈ I. Again, we note that a ∈ Ii for some positive integer i. Since
Ii is an ideal, ra ∈ Ii and hence must be in I. Therefore, we have shown
that I is an ideal in D.

Since D is a principal ideal domain, there exists an element a ∈ D that
generates I. Since a is in IN for some N ∈ N, we know that IN = I = 〈a〉.
Consequently, In = IN for n ≥ N . ■

Any commutative ring satisfying the condition in Lemma 18.14, p. 242
is said to satisfy the ascending chain condition, or ACC. Such rings are
called Noetherian rings, after Emmy Noether.
Theorem 18.15 Every pid is a ufd.
Proof. Existence of a factorization. Let D be a pid and a be a nonzero
element in D that is not a unit. If a is irreducible, then we are done.
If not, then there exists a factorization a = a1b1, where neither a1 nor
b1 is a unit. Hence, 〈a〉 ⊂ 〈a1〉. By Lemma 18.11, p. 241, we know
that 〈a〉 6= 〈a1〉; otherwise, a and a1 would be associates and b1 would
be a unit, which would contradict our assumption. Now suppose that
a1 = a2b2, where neither a2 nor b2 is a unit. By the same argument as
before, 〈a1〉 ⊂ 〈a2〉. We can continue with this construction to obtain an
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ascending chain of ideals

〈a〉 ⊂ 〈a1〉 ⊂ 〈a2〉 ⊂ · · · .

By Lemma 18.14, p. 242, there exists a positive integerN such that 〈an〉 =
〈aN 〉 for all n ≥ N . Consequently, aN must be irreducible. We have
now shown that a is the product of two elements, one of which must be
irreducible.

Now suppose that a = c1p1, where p1 is irreducible. If c1 is not a
unit, we can repeat the preceding argument to conclude that 〈a〉 ⊂ 〈c1〉.
Either c1 is irreducible or c1 = c2p2, where p2 is irreducible and c2 is not
a unit. Continuing in this manner, we obtain another chain of ideals

〈a〉 ⊂ 〈c1〉 ⊂ 〈c2〉 ⊂ · · · .

This chain must satisfy the ascending chain condition; therefore,

a = p1p2 · · · pr

for irreducible elements p1, . . . , pr.
Uniqueness of the factorization. To show uniqueness, let

a = p1p2 · · · pr = q1q2 · · · qs,

where each pi and each qi is irreducible. Without loss of generality, we
can assume that r < s. Since p1 divides q1q2 · · · qs, by Corollary 18.13,
p. 242 it must divide some qi. By rearranging the qi’s, we can assume
that p1 | q1; hence, q1 = u1p1 for some unit u1 in D. Therefore,

a = p1p2 · · · pr = u1p1q2 · · · qs

or
p2 · · · pr = u1q2 · · · qs.

Continuing in this manner, we can arrange the qi’s such that p2 = q2, p3 =
q3, . . . , pr = qr, to obtain

u1u2 · · ·urqr+1 · · · qs = 1.

In this case qr+1 · · · qs is a unit, which contradicts the fact that qr+1, . . . , qs
are irreducibles. Therefore, r = s and the factorization of a is unique. ■
Corollary 18.16 Let F be a field. Then F [x] is a ufd.
Example 18.17 Every pid is a ufd, but it is not the case that every
ufd is a pid. In Corollary 18.31, p. 247, we will prove that Z[x] is a ufd.
However, Z[x] is not a pid. Let I = {5f(x) + xg(x) : f(x), g(x) ∈ Z[x]}.
We can easily show that I is an ideal of Z[x]. Suppose that I = 〈p(x)〉.
Since 5 ∈ I, 5 = f(x)p(x). In this case p(x) = p must be a constant. Since
x ∈ I, x = pg(x); consequently, p = ±1. However, it follows from this
fact that 〈p(x)〉 = Z[x]. But this would mean that 3 is in I. Therefore, we
can write 3 = 5f(x) + xg(x) for some f(x) and g(x) in Z[x]. Examining
the constant term of this polynomial, we see that 3 = 5f(x), which is
impossible. □
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Euclidean Domains
We have repeatedly used the division algorithm when proving results
about either Z or F [x], where F is a field. We should now ask when a
division algorithm is available for an integral domain.

Let D be an integral domain such that there is a function ν : D\{0} →
N satisfying the following conditions.

1. If a and b are nonzero elements in D, then ν(a) ≤ ν(ab).

2. Let a, b ∈ D and suppose that b 6= 0. Then there exist elements
q, r ∈ D such that a = bq + r and either r = 0 or ν(r) < ν(b).

ThenD is called a Euclidean domain and ν is called a Euclidean valuation.

Example 18.18 Absolute value on Z is a Euclidean valuation. □
Example 18.19 Let F be a field. Then the degree of a polynomial in
F [x] is a Euclidean valuation. □
Example 18.20 Recall that the Gaussian integers in Example 16.12,
p. 203 of Chapter 16, p. 199 are defined by

Z[i] = {a+ bi : a, b ∈ Z}.

We usually measure the size of a complex number a + bi by its absolute
value,. |a+bi| =

√
a2 + b2; however,

√
a2 + b2 may not be an integer. For

our valuation we will let ν(a + bi) = a2 + b2 to ensure that we have an
integer.

We claim that ν(a+bi) = a2+b2 is a Euclidean valuation on Z[i]. Let
z, w ∈ Z[i]. Then ν(zw) = |zw|2 = |z|2|w|2 = ν(z)ν(w). Since ν(z) ≥ 1
for every nonzero z ∈ Z[i], ν(z) ≤ ν(z)ν(w).

Next, we must show that for any z = a + bi and w = c + di in Z[i]
with w 6= 0, there exist elements q and r in Z[i] such that z = qw + r
with either r = 0 or ν(r) < ν(w). We can view z and w as elements in
Q(i) = {p+ qi : p, q ∈ Q}, the field of fractions of Z[i]. Observe that

zw−1 = (a+ bi)
c− di

c2 + d2

=
ac+ bd

c2 + d2
+
bc− ad

c2 + d2
i

=

(
m1 +

n1
c2 + d2

)
+

(
m2 +

n2
c2 + d2

)
i

= (m1 +m2i) +

(
n1

c2 + d2
+

n2
c2 + d2

i

)
= (m1 +m2i) + (s+ ti)

in Q(i). In the last steps we are writing the real and imaginary parts as
an integer plus a proper fraction. That is, we take the closest integer mi

such that the fractional part satisfies |ni/(a2 + b2)| ≤ 1/2. For example,
we write

9

8
= 1 +

1

8
15

8
= 2− 1

8
.

Thus, s and t are the “fractional parts” of zw−1 = (m1 +m2i) + (s+ ti).
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We also know that s2 + t2 ≤ 1/4+1/4 = 1/2. Multiplying by w, we have

z = zw−1w = w(m1 +m2i) + w(s+ ti) = qw + r,

where q = m1+m2i and r = w(s+ ti). Since z and qw are in Z[i], r must
be in Z[i]. Finally, we need to show that either r = 0 or ν(r) < ν(w).
However,

ν(r) = ν(w)ν(s+ ti) ≤ 1

2
ν(w) < ν(w).

□
Theorem 18.21 Every Euclidean domain is a principal ideal domain.
Proof. Let D be a Euclidean domain and let ν be a Euclidean valuation
on D. Suppose I is a nontrivial ideal in D and choose a nonzero element
b ∈ I such that ν(b) is minimal for all a ∈ I. Since D is a Euclidean
domain, there exist elements q and r in D such that a = bq+r and either
r = 0 or ν(r) < ν(b). But r = a− bq is in I since I is an ideal; therefore,
r = 0 by the minimality of b. It follows that a = bq and I = 〈b〉. ■
Corollary 18.22 Every Euclidean domain is a unique factorization do-
main.

Factorization in D[x]

One of the most important polynomial rings is Z[x]. One of the first
questions that come to mind about Z[x] is whether or not it is a ufd.
We will prove a more general statement here. Our first task is to obtain
a more general version of Gauss’s Lemma (Theorem 17.14, p. 226).

Let D be a unique factorization domain and suppose that

p(x) = anx
n + · · ·+ a1x+ a0

in D[x]. Then the content of p(x) is the greatest common divisor of
a0, . . . , an. We say that p(x) is primitive if gcd(a0, . . . , an) = 1.

Example 18.23 In Z[x] the polynomial p(x) = 5x4 − 3x3 + x − 4 is a
primitive polynomial since the greatest common divisor of the coefficients
is 1; however, the polynomial q(x) = 4x2 − 6x + 8 is not primitive since
the content of q(x) is 2. □
Theorem 18.24 Gauss’s Lemma. Let D be a ufd and let f(x) and
g(x) be primitive polynomials in D[x]. Then f(x)g(x) is primitive.
Proof. Let f(x) =

∑m
i=0 aix

i and g(x) =
∑n
i=0 bix

i. Suppose that p
is a prime dividing the coefficients of f(x)g(x). Let r be the smallest
integer such that p ∤ ar and s be the smallest integer such that p ∤ bs.
The coefficient of xr+s in f(x)g(x) is

cr+s = a0br+s + a1br+s−1 + · · ·+ ar+s−1b1 + ar+sb0.

Since p divides a0, . . . , ar−1 and b0, . . . , bs−1, p divides every term of cr+s
except for the term arbs. However, since p | cr+s, either p divides ar or p
divides bs. But this is impossible. ■
Lemma 18.25 Let D be a ufd, and let p(x) and q(x) be in D[x]. Then
the content of p(x)q(x) is equal to the product of the contents of p(x) and
q(x).
Proof. Let p(x) = cp1(x) and q(x) = dq1(x), where c and d are the con-
tents of p(x) and q(x), respectively. Then p1(x) and q1(x) are primitive.
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We can now write p(x)q(x) = cdp1(x)q1(x). Since p1(x)q1(x) is primitive,
the content of p(x)q(x) must be cd. ■
Lemma 18.26 Let D be a ufd and F its field of fractions. Suppose
that p(x) ∈ D[x] and p(x) = f(x)g(x), where f(x) and g(x) are in F [x].
Then p(x) = f1(x)g1(x), where f1(x) and g1(x) are in D[x]. Furthermore,
deg f(x) = deg f1(x) and deg g(x) = deg g1(x).
Proof. Let a and b be nonzero elements of D such that af(x), bg(x)
are in D[x]. We can find a1, b1 ∈ D such that af(x) = a1f1(x) and
bg(x) = b1g1(x), where f1(x) and g1(x) are primitive polynomials in
D[x]. Therefore, abp(x) = (a1f1(x))(b1g1(x)). Since f1(x) and g1(x)
are primitive polynomials, it must be the case that ab | a1b1 by Gauss’s
Lemma. Thus there exists a c ∈ D such that p(x) = cf1(x)g1(x). Clearly,
deg f(x) = deg f1(x) and deg g(x) = deg g1(x). ■

The following corollaries are direct consequences of Lemma 18.26,
p. 246.
Corollary 18.27 Let D be a ufd and F its field of fractions. A primitive
polynomial p(x) in D[x] is irreducible in F [x] if and only if it is irreducible
in D[x].

Corollary 18.28 Let D be a ufd and F its field of fractions. If p(x) is
a monic polynomial in D[x] with p(x) = f(x)g(x) in F [x], then p(x) =
f1(x)g1(x), where f1(x) and g1(x) are in D[x]. Furthermore, deg f(x) =
deg f1(x) and deg g(x) = deg g1(x).

Theorem 18.29 If D is a ufd, then D[x] is a ufd.
Proof. Let p(x) be a nonzero polynomial in D[x]. If p(x) is a constant
polynomial, then it must have a unique factorization since D is a ufd.
Now suppose that p(x) is a polynomial of positive degree in D[x]. Let
F be the field of fractions of D, and let p(x) = f1(x)f2(x) · · · fn(x) by a
factorization of p(x), where each fi(x) is irreducible. Choose ai ∈ D such
that aifi(x) is in D[x]. There exist b1, . . . , bn ∈ D such that aifi(x) =
bigi(x), where gi(x) is a primitive polynomial in D[x]. By Corollary 18.27,
p. 246, each gi(x) is irreducible in D[x]. Consequently, we can write

a1 · · · anp(x) = b1 · · · bng1(x) · · · gn(x).

Let b = b1 · · · bn. Since g1(x) · · · gn(x) is primitive, a1 · · · an divides b.
Therefore, p(x) = ag1(x) · · · gn(x), where a ∈ D. Since D is a ufd,
we can factor a as uc1 · · · ck, where u is a unit and each of the ci’s is
irreducible in D.

We will now show the uniqueness of this factorization. Let

p(x) = a1 · · · amf1(x) · · · fn(x) = b1 · · · brg1(x) · · · gs(x)

be two factorizations of p(x), where all of the factors are irreducible in
D[x]. By Corollary 18.27, p. 246, each of the fi’s and gi’s is irreducible in
F [x]. The ai’s and the bi’s are units in F . Since F [x] is a pid, it is a ufd;
therefore, n = s. Now rearrange the gi(x)’s so that fi(x) and gi(x) are
associates for i = 1, . . . , n. Then there exist c1, . . . , cn and d1, . . . , dn in
D such that (ci/di)fi(x) = gi(x) or cifi(x) = digi(x). The polynomials
fi(x) and gi(x) are primitive; hence, ci and di are associates in D. Thus,
a1 · · · am = ub1 · · · br in D, where u is a unit in D. Since D is a unique
factorization domain, m = s. Finally, we can reorder the bi’s so that ai
and bi are associates for each i. This completes the uniqueness part of
the proof. ■
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The theorem that we have just proven has several obvious but impor-
tant corollaries.
Corollary 18.30 Let F be a field. Then F [x] is a ufd.

Corollary 18.31 The ring of polynomials over the integers, Z[x], is a
ufd.
Corollary 18.32 Let D be a ufd. Then D[x1, . . . , xn] is a ufd.
Remark 18.33 It is important to notice that every Euclidean domain is
a pid and every pid is a ufd. However, as demonstrated by our examples,
the converse of each of these statements fails. There are principal ideal do-
mains that are not Euclidean domains, and there are unique factorization
domains that are not principal ideal domains (Z[x]).

Sage. Sage supports distinctions between “plain” rings, domains, princi-
pal ideal domains and fields. Support is often very good for constructions
and computations with PID’s, but sometimes problems get significantly
harder (computationally) when a ring has less structure that that of a
PID. So be aware when using Sage that some questions may go unan-
swered for rings with less structure.

Historical Note
Karl Friedrich Gauss, born in Brunswick, Germany on April 30, 1777, is
considered to be one of the greatest mathematicians who ever lived. Gauss
was truly a child prodigy. At the age of three he was able to detect errors
in the books of his father’s business. Gauss entered college at the age of
15. Before the age of 20, Gauss was able to construct a regular 17-sided
polygon with a ruler and compass. This was the first new construction
of a regular n-sided polygon since the time of the ancient Greeks. Gauss
succeeded in showing that if N = 22

n

+1 was prime, then it was possible
to construct a regular N -sided polygon.
Gauss obtained his Ph.D. in 1799 under the direction of Pfaff at the
University of Helmstedt. In his dissertation he gave the first complete
proof of the Fundamental Theorem of Algebra, which states that every
polynomial with real coefficients can be factored into linear factors over
the complex numbers. The acceptance of complex numbers was brought
about by Gauss, who was the first person to use the notation of i for√
−1.

Gauss then turned his attention toward number theory; in 1801, he pub-
lished his famous book on number theory, Disquisitiones Arithmeticae.
Throughout his life Gauss was intrigued with this branch of mathematics.
He once wrote, “Mathematics is the queen of the sciences, and the theory
of numbers is the queen of mathematics.”
In 1807, Gauss was appointed director of the Observatory at the Uni-
versity of Göttingen, a position he held until his death. This position
required him to study applications of mathematics to the sciences. He
succeeded in making contributions to fields such as astronomy, mechan-
ics, optics, geodesy, and magnetism. Along with Wilhelm Weber, he
coinvented the first practical electric telegraph some years before a bet-
ter version was invented by Samuel F. B. Morse.
Gauss was clearly the most prominent mathematician in the world in the
early nineteenth century. His status naturally made his discoveries subject
to intense scrutiny. Gauss’s cold and distant personality many times led
him to ignore the work of his contemporaries, making him many enemies.
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He did not enjoy teaching very much, and young mathematicians who
sought him out for encouragement were often rebuffed. Nevertheless, he
had many outstanding students, including Eisenstein, Riemann, Kummer,
Dirichlet, and Dedekind. Gauss also offered a great deal of encouragement
to Sophie Germain (1776–1831), who overcame the many obstacles facing
women in her day to become a very prominent mathematician. Gauss died
at the age of 78 in Göttingen on February 23, 1855.

18.3 Reading Questions
1. Integral domains are an abstraction of which two fundamental rings

that we have already studied?
2. What are the various types of integral domains defined in this sec-

tion?
3. The field of fractions of a ring abstracts what idea from basic math-

ematics?
4. In the previous chapter we had a theorem about irreducible poly-

nomials generating maximal ideals. Which theorem in this chapter
generalizes this previous result?

5. Describe an example which is a ufd, but not a pid.

18.4 Exercises

1. Let z = a + b
√
3 i be in Z[

√
3 i]. If a2 + 3b2 = 1, show that z must

be a unit. Show that the only units of Z[
√
3 i] are 1 and −1.

2. The Gaussian integers, Z[i], are a ufd. Factor each of the following
elements in Z[i] into a product of irreducibles.

(a) 5

(b) 1 + 3i

(c) 6 + 8i

(d) 2

3. Let D be an integral domain.
(a) Prove that FD is an abelian group under the operation of ad-

dition.

(b) Show that the operation of multiplication is well-defined in the
field of fractions, FD.

(c) Verify the associative and commutative properties for multipli-
cation in FD.

4. Prove or disprove: Any subring of a field F containing 1 is an integral
domain.

5. Prove or disprove: If D is an integral domain, then every prime
element in D is also irreducible in D.

6. Let F be a field of characteristic zero. Prove that F contains a
subfield isomorphic to Q.

7. Let F be a field.
(a) Prove that the field of fractions of F [x], denoted by F (x), is

isomorphic to the set all rational expressions p(x)/q(x), where
q(x) is not the zero polynomial.

(b) Let p(x1, . . . , xn) and q(x1, . . . , xn) be polynomials in F [x1, . . . , xn].
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Show that the set of all rational expressions p(x1, . . . , xn)/q(x1, . . . , xn)
is isomorphic to the field of fractions of F [x1, . . . , xn]. We de-
note the field of fractions of F [x1, . . . , xn] by F (x1, . . . , xn).

8. Let p be prime and denote the field of fractions of Zp[x] by Zp(x).
Prove that Zp(x) is an infinite field of characteristic p.

9. Prove that the field of fractions of the Gaussian integers, Z[i], is

Q(i) = {p+ qi : p, q ∈ Q}.
10. A field F is called a prime field if it has no proper subfields. If E is

a subfield of F and E is a prime field, then E is a prime subfield of
F .

(a) Prove that every field contains a unique prime subfield.

(b) If F is a field of characteristic 0, prove that the prime subfield
of F is isomorphic to the field of rational numbers, Q.

(c) If F is a field of characteristic p, prove that the prime subfield
of F is isomorphic to Zp.

11. Let Z[
√
2 ] = {a+ b

√
2 : a, b ∈ Z}.

(a) Prove that Z[
√
2 ] is an integral domain.

(b) Find all of the units in Z[
√
2 ].

(c) Determine the field of fractions of Z[
√
2 ].

(d) Prove that Z[
√
2i] is a Euclidean domain under the Euclidean

valuation ν(a+ b
√
2 i) = a2 + 2b2.

12. Let D be a ufd. An element d ∈ D is a greatest common divisor of
a and b in D if d | a and d | b and d is divisible by any other element
dividing both a and b.

(a) If D is a pid and a and b are both nonzero elements of D, prove
there exists a unique greatest common divisor of a and b up
to associates. That is, if d and d′ are both greatest common
divisors of a and b, then d and d′ are associates. We write
gcd(a, b) for the greatest common divisor of a and b.

(b) Let D be a pid and a and b be nonzero elements of D. Prove
that there exist elements s and t in D such that gcd(a, b) =
as+ bt.

13. Let D be an integral domain. Define a relation on D by a ∼ b if a
and b are associates in D. Prove that ∼ is an equivalence relation
on D.

14. Let D be a Euclidean domain with Euclidean valuation ν. If u is a
unit in D, show that ν(u) = ν(1).

15. Let D be a Euclidean domain with Euclidean valuation ν. If a and
b are associates in D, prove that ν(a) = ν(b).

16. Show that Z[
√
5 i] is not a unique factorization domain.

17. Prove or disprove: Every subdomain of a ufd is also a ufd.
18. An ideal of a commutative ring R is said to be finitely generated

if there exist elements a1, . . . , an in R such that every element r in
the ideal can be written as a1r1 + · · · + anrn for some r1, . . . , rn in



250 CHAPTER 18. INTEGRAL DOMAINS

R. Prove that R satisfies the ascending chain condition if and only
if every ideal of R is finitely generated.

19. Let D be an integral domain with a descending chain of ideals I1 ⊃
I2 ⊃ I3 ⊃ · · ·. Suppose that there exists an N such that Ik = IN
for all k ≥ N . A ring satisfying this condition is said to satisfy
the descending chain condition, or DCC. Rings satisfying the DCC
are called Artinian rings, after Emil Artin. Show that if D satisfies
the descending chain condition, it must satisfy the ascending chain
condition.

20. Let R be a commutative ring with identity. We define a multiplica-
tive subset of R to be a subset S such that 1 ∈ S and ab ∈ S if
a, b ∈ S.

(a) Define a relation ∼ on R× S by (a, s) ∼ (a′, s′) if there exists
an s∗ ∈ S such that s∗(s′a − sa′) = 0. Show that ∼ is an
equivalence relation on R× S.

(b) Let a/s denote the equivalence class of (a, s) ∈ R × S and let
S−1R be the set of all equivalence classes with respect to ∼.
Define the operations of addition and multiplication on S−1R
by

a

s
+
b

t
=
at+ bs

st
a

s

b

t
=
ab

st
,

respectively. Prove that these operations are well-defined on
S−1R and that S−1R is a ring with identity under these op-
erations. The ring S−1R is called the ring of quotients of R
with respect to S.

(c) Show that the map ψ : R → S−1R defined by ψ(a) = a/1 is a
ring homomorphism.

(d) If R has no zero divisors and 0 /∈ S, show that ψ is one-to-one.

(e) Prove that P is a prime ideal of R if and only if S = R \ P is
a multiplicative subset of R.

(f) If P is a prime ideal of R and S = R \ P , show that the ring
of quotients S−1R has a unique maximal ideal. Any ring that
has a unique maximal ideal is called a local ring.

18.5 References and Suggested Readings
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Springer, New York, 1975, 1960.
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Lattices and Boolean Algebras

The axioms of a ring give structure to the operations of addition and
multiplication on a set. However, we can construct algebraic structures,
known as lattices and Boolean algebras, that generalize other types of
operations. For example, the important operations on sets are inclusion,
union, and intersection. Lattices are generalizations of order relations on
algebraic spaces, such as set inclusion in set theory and inequality in the
familiar number systems N, Z, Q, and R. Boolean algebras generalize the
operations of intersection and union. Lattices and Boolean algebras have
found applications in logic, circuit theory, and probability.

19.1 Lattices

Partially Ordered Sets
We begin the study of lattices and Boolean algebras by generalizing the
idea of inequality. Recall that a relation on a set X is a subset of X ×X.
A relation P on X is called a partial order of X if it satisfies the following
axioms.

1. The relation is reflexive: (a, a) ∈ P for all a ∈ X.

2. The relation is antisymmetric: if (a, b) ∈ P and (b, a) ∈ P , then
a = b.

3. The relation is transitive: if (a, b) ∈ P and (b, c) ∈ P , then (a, c) ∈
P .

We will usually write a � b to mean (a, b) ∈ P unless some symbol is
naturally associated with a particular partial order, such as a ≤ b with
integers a and b, or A ⊂ B with sets A and B. A set X together with a
partial order � is called a partially ordered set, or poset.
Example 19.1 The set of integers (or rationals or reals) is a poset where
a ≤ b has the usual meaning for two integers a and b in Z. □
Example 19.2 Let X be any set. We will define the power set of X to
be the set of all subsets of X. We denote the power set of X by P(X).
For example, let X = {a, b, c}. Then P(X) is the set of all subsets of the
set {a, b, c}:

∅ {a} {b} {c}

251
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{a, b} {a, c} {b, c} {a, b, c}.

On any power set of a set X, set inclusion, ⊂, is a partial order. We can
represent the order on {a, b, c} schematically by a diagram such as the
one in Figure 19.3, p. 252. □

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Figure 19.3 Partial order on P({a, b, c})

Example 19.4 Let G be a group. The set of subgroups of G is a poset,
where the partial order is set inclusion. □
Example 19.5 There can be more than one partial order on a particular
set. We can form a partial order on N by a � b if a | b. The relation
is certainly reflexive since a | a for all a ∈ N. If m | n and n | m,
then m = n; hence, the relation is also antisymmetric. The relation is
transitive, because if m | n and n | p, then m | p. □
Example 19.6 Let X = {1, 2, 3, 4, 6, 8, 12, 24} be the set of divisors of
24 with the partial order defined in Example 19.5, p. 252. Figure 19.7,
p. 252 shows the partial order on X. □

24

8 12

4 6

2 3

1

Figure 19.7 A partial order on the divisors of 24
Let Y be a subset of a poset X. An element u in X is an upper bound

of Y if a � u for every element a ∈ Y . If u is an upper bound of Y such
that u � v for every other upper bound v of Y , then u is called a least
upper bound or supremum of Y . An element l in X is said to be a lower
bound of Y if l � a for all a ∈ Y . If l is a lower bound of Y such that
k � l for every other lower bound k of Y , then l is called a greatest lower
bound or infimum of Y .
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Example 19.8 Let Y = {2, 3, 4, 6} be contained in the set X of Exam-
ple 19.6, p. 252. Then Y has upper bounds 12 and 24, with 12 as a least
upper bound. The only lower bound is 1; hence, it must be a greatest
lower bound. □

As it turns out, least upper bounds and greatest lower bounds are
unique if they exist.
Theorem 19.9 Let Y be a nonempty subset of a poset X. If Y has a
least upper bound, then Y has a unique least upper bound. If Y has a
greatest lower bound, then Y has a unique greatest lower bound.
Proof. Let u1 and u2 be least upper bounds for Y . By the definition of
the least upper bound, u1 � u for all upper bounds u of Y . In particular,
u1 � u2. Similarly, u2 � u1. Therefore, u1 = u2 by antisymmetry. A
similar argument show that the greatest lower bound is unique. ■

On many posets it is possible to define binary operations by using
the greatest lower bound and the least upper bound of two elements. A
lattice is a poset L such that every pair of elements in L has a least upper
bound and a greatest lower bound. The least upper bound of a, b ∈ L
is called the join of a and b and is denoted by a ∨ b. The greatest lower
bound of a, b ∈ L is called the meet of a and b and is denoted by a ∧ b.

Example 19.10 Let X be a set. Then the power set of X, P(X), is a
lattice. For two sets A and B in P(X), the least upper bound of A and B
is A∪B. Certainly A∪B is an upper bound of A and B, since A ⊂ A∪B
and B ⊂ A∪B. If C is some other set containing both A and B, then C
must contain A ∪ B; hence, A ∪ B is the least upper bound of A and B.
Similarly, the greatest lower bound of A and B is A ∩B. □
Example 19.11 Let G be a group and suppose that X is the set of
subgroups of G. Then X is a poset ordered by set-theoretic inclusion, ⊂.
The set of subgroups of G is also a lattice. If H and K are subgroups of
G, the greatest lower bound of H and K is H ∩K. The set H ∪K may
not be a subgroup of G. We leave it as an exercise to show that the least
upper bound of H and K is the subgroup generated by H ∪K. □

In set theory we have certain duality conditions. For example, by De
Morgan’s laws, any statement about sets that is true about (A∪B)′ must
also be true about A′ ∩B′. We also have a duality principle for lattices.
Axiom 19.12 Principle of Duality. Any statement that is true for all
lattices remains true when � is replaced by � and ∨ and ∧ are interchanged
throughout the statement.

The following theorem tells us that a lattice is an algebraic structure
with two binary operations that satisfy certain axioms.
Theorem 19.13 If L is a lattice, then the binary operations ∨ and ∧
satisfy the following properties for a, b, c ∈ L.

1. Commutative laws: a ∨ b = b ∨ a and a ∧ b = b ∧ a.

2. Associative laws: a∨ (b∨ c) = (a∨ b)∨ c and a∧ (b∧ c) = (a∧ b)∧ c.

3. Idempotent laws: a ∨ a = a and a ∧ a = a.

4. Absorption laws: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.
Proof. By the Principle of Duality, we need only prove the first state-
ment in each part.

(1) By definition a ∨ b is the least upper bound of {a, b}, and b ∨ a is
the least upper bound of {b, a}; however, {a, b} = {b, a}.
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(2) We will show that a ∨ (b ∨ c) and (a ∨ b) ∨ c are both least upper
bounds of {a, b, c}. Let d = a ∨ b. Then c � d ∨ c = (a ∨ b) ∨ c. We also
know that

a � a ∨ b = d � d ∨ c = (a ∨ b) ∨ c.

A similar argument demonstrates that b � (a∨b)∨c. Therefore, (a∨b)∨c
is an upper bound of {a, b, c}. We now need to show that (a ∨ b) ∨ c is
the least upper bound of {a, b, c}. Let u be some other upper bound of
{a, b, c}. Then a � u and b � u; hence, d = a ∨ b � u. Since c � u, it
follows that (a∨ b)∨c = d∨c � u. Therefore, (a∨ b)∨c must be the least
upper bound of {a, b, c}. The argument that shows a∨ (b∨ c) is the least
upper bound of {a, b, c} is the same. Consequently, a∨(b∨c) = (a∨b)∨c.

(3) The join of a and a is the least upper bound of {a}; hence, a∨a = a.
(4) Let d = a ∧ b. Then a � a ∨ d. On the other hand, d = a ∧ b � a,

and so a ∨ d � a. Therefore, a ∨ (a ∧ b) = a. ■
Given any arbitrary set L with operations ∨ and ∧, satisfying the

conditions of the previous theorem, it is natural to ask whether or not
this set comes from some lattice. The following theorem says that this is
always the case.
Theorem 19.14 Let L be a nonempty set with two binary operations ∨
and ∧ satisfying the commutative, associative, idempotent, and absorption
laws. We can define a partial order on L by a � b if a∨b = b. Furthermore,
L is a lattice with respect to � if for all a, b ∈ L, we define the least upper
bound and greatest lower bound of a and b by a∨ b and a∧ b, respectively.
Proof. We first show that L is a poset under �. Since a ∨ a = a,
a � a and � is reflexive. To show that � is antisymmetric, let a � b
and b � a. Then a ∨ b = b and b ∨ a = a. By the commutative law,
b = a ∨ b = b ∨ a = a. Finally, we must show that � is transitive. Let
a � b and b � c. Then a ∨ b = b and b ∨ c = c. Thus,

a ∨ c = a ∨ (b ∨ c) = (a ∨ b) ∨ c = b ∨ c = c,

or a � c.
To show that L is a lattice, we must prove that a ∨ b and a ∧ b are,

respectively, the least upper and greatest lower bounds of a and b. Since
a = (a∨ b)∧ a = a∧ (a∨ b), it follows that a � a∨ b. Similarly, b � a∨ b.
Therefore, a∨ b is an upper bound for a and b. Let u be any other upper
bound of both a and b. Then a � u and b � u. But a ∨ b � u since

(a ∨ b) ∨ u = a ∨ (b ∨ u) = a ∨ u = u.

The proof that a ∧ b is the greatest lower bound of a and b is left as an
exercise. ■

19.2 Boolean Algebras
Let us investigate the example of the power set, P(X), of a set X more
closely. The power set is a lattice that is ordered by inclusion. By the
definition of the power set, the largest element in P(X) is X itself and
the smallest element is ∅, the empty set. For any set A in P(X), we know
that A∩X = A and A∪∅ = A. This suggests the following definition for
lattices. An element I in a poset X is a largest element if a � I for all
a ∈ X. An element O is a smallest element of X if O � a for all a ∈ X.
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Let A be in P(X). Recall that the complement of A is

A′ = X \A = {x : x ∈ X and x /∈ A}.

We know that A ∪ A′ = X and A ∩ A′ = ∅. We can generalize this
example for lattices. A lattice L with a largest element I and a smallest
element O is complemented if for each a ∈ L, there exists an a′ such that
a ∨ a′ = I and a ∧ a′ = O.

In a lattice L, the binary operations ∨ and ∧ satisfy commutative and
associative laws; however, they need not satisfy the distributive law

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);

however, in P(X) the distributive law is satisfied since

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

for A,B,C ∈ P(X). We will say that a lattice L is distributive if the
following distributive law holds:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ L.
Theorem 19.15 A lattice L is distributive if and only if

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

for all a, b, c ∈ L.
Proof. Let us assume that L is a distributive lattice.

a ∨ (b ∧ c) = [a ∨ (a ∧ c)] ∨ (b ∧ c)
= a ∨ [(a ∧ c) ∨ (b ∧ c)]
= a ∨ [(c ∧ a) ∨ (c ∧ b)]
= a ∨ [c ∧ (a ∨ b)]
= a ∨ [(a ∨ b) ∧ c]
= [(a ∨ b) ∧ a] ∨ [(a ∨ b) ∧ c]
= (a ∨ b) ∧ (a ∨ c).

The converse follows directly from the Duality Principle. ■
A Boolean algebra is a lattice B with a greatest element I and a

smallest element O such that B is both distributive and complemented.
The power set of X, P(X), is our prototype for a Boolean algebra. As
it turns out, it is also one of the most important Boolean algebras. The
following theorem allows us to characterize Boolean algebras in terms of
the binary relations ∨ and ∧ without mention of the fact that a Boolean
algebra is a poset.
Theorem 19.16 A set B is a Boolean algebra if and only if there exist
binary operations ∨ and ∧ on B satisfying the following axioms.

1. a ∨ b = b ∨ a and a ∧ b = b ∧ a for a, b ∈ B.

2. a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c for a, b, c ∈ B.

3. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for
a, b, c ∈ B.
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4. There exist elements I and O such that a ∨ O = a and a ∧ I = a
for all a ∈ B.

5. For every a ∈ B there exists an a′ ∈ B such that a ∨ a′ = I and
a ∧ a′ = O.

Proof. Let B be a set satisfying (1)–(5) in the theorem. One of the
idempotent laws is satisfied since

a = a ∨O
= a ∨ (a ∧ a′)
= (a ∨ a) ∧ (a ∨ a′)
= (a ∨ a) ∧ I
= a ∨ a.

Observe that

I ∨ b = (b ∨ b′) ∨ b = (b′ ∨ b) ∨ b = b′ ∨ (b ∨ b) = b′ ∨ b = I.

Consequently, the first of the two absorption laws holds, since

a ∨ (a ∧ b) = (a ∧ I) ∨ (a ∧ b)
= a ∧ (I ∨ b)
= a ∧ I
= a.

The other idempotent and absorption laws are proven similarly. Since
B also satisfies (1)–(3), the conditions of Theorem 19.14, p. 254 are met;
therefore, B must be a lattice. Condition (4) tells us that B is a distrib-
utive lattice.

For a ∈ B, O ∨ a = a; hence, O � a and O is the smallest element
in B. To show that I is the largest element in B, we will first show that
a ∨ b = b is equivalent to a ∧ b = a. Since a ∨ I = a for all a ∈ B, using
the absorption laws we can determine that

a ∨ I = (a ∧ I) ∨ I = I ∨ (I ∧ a) = I

or a � I for all a in B. Finally, since we know that B is complemented
by (5), B must be a Boolean algebra.

Conversely, suppose that B is a Boolean algebra. Let I and O be
the greatest and least elements in B, respectively. If we define a ∨ b and
a ∧ b as least upper and greatest lower bounds of {a, b}, then B is a
Boolean algebra by Theorem 19.14, p. 254, Theorem 19.15, p. 255, and
our hypothesis. ■

Many other identities hold in Boolean algebras. Some of these identi-
ties are listed in the following theorem.
Theorem 19.17 Let B be a Boolean algebra. Then

1. a ∨ I = I and a ∧O = O for all a ∈ B.

2. If a ∨ b = a ∨ c and a ∧ b = a ∧ c for a, b, c ∈ B, then b = c.

3. If a ∨ b = I and a ∧ b = O, then b = a′.

4. (a′)′ = a for all a ∈ B.

5. I ′ = O and O′ = I.
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6. (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′ (De Morgan’s Laws).
Proof. We will prove only (2). The rest of the identities are left as
exercises. For a ∨ b = a ∨ c and a ∧ b = a ∧ c, we have

b = b ∨ (b ∧ a)
= b ∨ (a ∧ b)
= b ∨ (a ∧ c)
= (b ∨ a) ∧ (b ∨ c)
= (a ∨ b) ∧ (b ∨ c)
= (a ∨ c) ∧ (b ∨ c)
= (c ∨ a) ∧ (c ∨ b)
= c ∨ (a ∧ b)
= c ∨ (a ∧ c)
= c ∨ (c ∧ a)
= c.

■

Finite Boolean Algebras
A Boolean algebra is a finite Boolean algebra if it contains a finite number
of elements as a set. Finite Boolean algebras are particularly nice since
we can classify them up to isomorphism.

Let B and C be Boolean algebras. A bijective map ϕ : B → C is an
isomorphism of Boolean algebras if

ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b)
ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b)

for all a and b in B.
We will show that any finite Boolean algebra is isomorphic to the

Boolean algebra obtained by taking the power set of some finite set X.
We will need a few lemmas and definitions before we prove this result.
Let B be a finite Boolean algebra. An element a ∈ B is an atom of B if
a 6= O and a∧ b = a for all b ∈ B with b 6= O. Equivalently, a is an atom
of B if there is no b ∈ B with b 6= O distinct from a such that O � b � a.
Lemma 19.18 Let B be a finite Boolean algebra. If b is a element of B
with b 6= O, then there is an atom a in B such that a � b.
Proof. If b is an atom, let a = b. Otherwise, choose an element b1, not
equal to O or b, such that b1 � b. We are guaranteed that this is possible
since b is not an atom. If b1 is an atom, then we are done. If not, choose
b2, not equal to O or b1, such that b2 � b1. Again, if b2 is an atom, let
a = b2. Continuing this process, we can obtain a chain

O � · · · � b3 � b2 � b1 � b.

Since B is a finite Boolean algebra, this chain must be finite. That is, for
some k, bk is an atom. Let a = bk. ■
Lemma 19.19 Let a and b be atoms in a finite Boolean algebra B such
that a 6= b. Then a ∧ b = O.
Proof. Since a∧ b is the greatest lower bound of a and b, we know that
a∧b � a. Hence, either a∧b = a or a∧b = O. However, if a∧b = a, then
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either a � b or a = O. In either case we have a contradiction because a
and b are both atoms; therefore, a ∧ b = O. ■
Lemma 19.20 Let B be a Boolean algebra and a, b ∈ B. The following
statements are equivalent.

1. a � b.

2. a ∧ b′ = O.

3. a′ ∨ b = I.
Proof. (1) ⇒ (2). If a � b, then a ∨ b = b. Therefore,

a ∧ b′ = a ∧ (a ∨ b)′

= a ∧ (a′ ∧ b′)
= (a ∧ a′) ∧ b′

= O ∧ b′

= O.

(2) ⇒ (3). If a ∧ b′ = O, then a′ ∨ b = (a ∧ b′)′ = O′ = I.
(3) ⇒ (1). If a′ ∨ b = I, then

a = a ∧ (a′ ∨ b)
= (a ∧ a′) ∨ (a ∧ b)
= O ∨ (a ∧ b)
= a ∧ b.

Thus, a � b. ■
Lemma 19.21 Let B be a Boolean algebra and b and c be elements in B
such that b 6� c. Then there exists an atom a ∈ B such that a � b and
a 6� c.
Proof. By Lemma 19.20, p. 258, b∧c′ 6= O. Hence, there exists an atom
a such that a � b ∧ c′. Consequently, a � b and a 6� c. ■
Lemma 19.22 Let b ∈ B and a1, . . . , an be the atoms of B such that
ai � b. Then b = a1 ∨ · · · ∨ an. Furthermore, if a, a1, . . . , an are atoms
of B such that a � b, ai � b, and b = a ∨ a1 ∨ · · · ∨ an, then a = ai for
some i = 1, . . . , n.
Proof. Let b1 = a1 ∨ · · · ∨ an. Since ai � b for each i, we know
that b1 � b. If we can show that b � b1, then the lemma is true by
antisymmetry. Assume b 6� b1. Then there exists an atom a such that
a � b and a 6� b1. Since a is an atom and a � b, we can deduce that
a = ai for some ai. However, this is impossible since a � b1. Therefore,
b � b1.

Now suppose that b = a1 ∨ · · · ∨ an. If a is an atom less than b,

a = a ∧ b = a ∧ (a1 ∨ · · · ∨ an) = (a ∧ a1) ∨ · · · ∨ (a ∧ an).

But each term is O or a with a ∧ ai occurring for only one ai. Hence, by
Lemma 19.19, p. 257, a = ai for some i. ■
Theorem 19.23 Let B be a finite Boolean algebra. Then there exists a
set X such that B is isomorphic to P(X).
Proof. We will show that B is isomorphic to P(X), where X is the
set of atoms of B. Let a ∈ B. By Lemma 19.22, p. 258, we can write a
uniquely as a = a1 ∨ · · · ∨ an for a1, . . . , an ∈ X. Consequently, we can
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define a map ϕ : B → P(X) by

ϕ(a) = ϕ(a1 ∨ · · · ∨ an) = {a1, . . . , an}.

Clearly, ϕ is onto.
Now let a = a1 ∨ · · · ∨ an and b = b1 ∨ · · · ∨ bm be elements in B,

where each ai and each bi is an atom. If ϕ(a) = ϕ(b), then {a1, . . . , an} =
{b1, . . . , bm} and a = b. Consequently, ϕ is injective.

The join of a and b is preserved by ϕ since

ϕ(a ∨ b) = ϕ(a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm)

= {a1, . . . , an, b1, . . . , bm}
= {a1, . . . , an} ∪ {b1, . . . , bm}
= ϕ(a1 ∨ · · · ∨ an) ∪ ϕ(b1 ∧ · · · ∨ bm)

= ϕ(a) ∪ ϕ(b).

Similarly, ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b). ■
We leave the proof of the following corollary as an exercise.

Corollary 19.24 The order of any finite Boolean algebra must be 2n for
some positive integer n.

19.3 The Algebra of Electrical Circuits
The usefulness of Boolean algebras has become increasingly apparent over
the past several decades with the development of the modern computer.
The circuit design of computer chips can be expressed in terms of Boolean
algebras. In this section we will develop the Boolean algebra of electrical
circuits and switches; however, these results can easily be generalized to
the design of integrated computer circuitry.

A switch is a device, located at some point in an electrical circuit,
that controls the flow of current through the circuit. Each switch has
two possible states: it can be open, and not allow the passage of current
through the circuit, or a it can be closed, and allow the passage of current.
These states are mutually exclusive. We require that every switch be in
one state or the other—a switch cannot be open and closed at the same
time. Also, if one switch is always in the same state as another, we will
denote both by the same letter; that is, two switches that are both labeled
with the same letter a will always be open at the same time and closed
at the same time.

Given two switches, we can construct two fundamental types of cir-
cuits. Two switches a and b are in series if they make up a circuit of the
type that is illustrated in Figure 19.25, p. 259. Current can pass between
the terminals A and B in a series circuit only if both of the switches a
and b are closed. We will denote this combination of switches by a ∧ b.
Two switches a and b are in parallel if they form a circuit of the type that
appears in Figure 19.26, p. 260. In the case of a parallel circuit, current
can pass between A and B if either one of the switches is closed. We
denote a parallel combination of circuits a and b by a ∨ b.

A a b B

Figure 19.25 a ∧ b
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A

a

B

b

Figure 19.26 a ∨ b
We can build more complicated electrical circuits out of series and

parallel circuits by replacing any switch in the circuit with one of these
two fundamental types of circuits. Circuits constructed in this manner
are called series-parallel circuits.

We will consider two circuits equivalent if they act the same. That
is, if we set the switches in equivalent circuits exactly the same we will
obtain the same result. For example, in a series circuit a ∧ b is exactly
the same as b ∧ a. Notice that this is exactly the commutative law for
Boolean algebras. In fact, the set of all series-parallel circuits forms a
Boolean algebra under the operations of ∨ and ∧. We can use diagrams
to verify the different axioms of a Boolean algebra. The distributive law,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), is illustrated in Figure 19.27, p. 260. If
a is a switch, then a′ is the switch that is always open when a is closed
and always closed when a is open. A circuit that is always closed is I in
our algebra; a circuit that is always open is O. The laws for a ∧ a′ = O
and a∨ a′ = I are shown in Figure 19.28, p. 260 and Figure 19.29, p. 260,
respectively.

a

b

c

a

a

b

c

Figure 19.27 a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a a′

Figure 19.28 a ∧ a′ = O

a

a′

Figure 19.29 a ∨ a′ = I

Example 19.30 Every Boolean expression represents a switching circuit.
For example, given the expression (a∨b)∧(a∨b′)∧(a∨b), we can construct
the circuit in Figure 19.33, p. 261. □
Theorem 19.31 The set of all circuits is a Boolean algebra.

We leave as an exercise the proof of this theorem for the Boolean
algebra axioms not yet verified. We can now apply the techniques of
Boolean algebras to switching theory.
Example 19.32 Given a complex circuit, we can now apply the tech-
niques of Boolean algebra to reduce it to a simpler one. Consider the
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circuit in Figure 19.33, p. 261. Since

(a ∨ b) ∧ (a ∨ b′) ∧ (a ∨ b) = (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b′)
= (a ∨ b) ∧ (a ∨ b′)
= a ∨ (b ∧ b′)
= a ∨O
= a,

we can replace the more complicated circuit with a circuit containing the
single switch a and achieve the same function. □

a

b

a

b′

a

b

Figure 19.33 (a ∨ b) ∧ (a ∨ b′) ∧ (a ∨ b)

Sage. Sage has a full suite of functionality for both posets and lattices,
all as part of its excellent support for combinatorics. There is little in
this chapter that cannot be investigated with Sage.

Historical Note
George Boole (1815–1864) was the first person to study lattices. In 1847,
he published The Investigation of the Laws of Thought, a book in which
he used lattices to formalize logic and the calculus of propositions. Boole
believed that mathematics was the study of form rather than of content;
that is, he was not so much concerned with what he was calculating as
with how he was calculating it. Boole’s work was carried on by his friend
Augustus De Morgan (1806–1871). De Morgan observed that the princi-
ple of duality often held in set theory, as is illustrated by De Morgan’s
laws for set theory. He believed, as did Boole, that mathematics was the
study of symbols and abstract operations.
Set theory and logic were further advanced by such mathematicians as
Alfred North Whitehead (1861–1947), Bertrand Russell (1872–1970), and
David Hilbert (1862–1943). In Principia Mathematica, Whitehead and
Russell attempted to show the connection between mathematics and logic
by the deduction of the natural number system from the rules of formal
logic. If the natural numbers could be determined from logic itself, then
so could much of the rest of existing mathematics. Hilbert attempted
to build up mathematics by using symbolic logic in a way that would
prove the consistency of mathematics. His approach was dealt a mortal
blow by Kurt Gödel (1906–1978), who proved that there will always be
“undecidable” problems in any sufficiently rich axiomatic system; that is,
that in any mathematical system of any consequence, there will always
be statements that can never be proven either true or false.
As often occurs, this basic research in pure mathematics later became
indispensable in a wide variety of applications. Boolean algebras and logic
have become essential in the design of the large-scale integrated circuitry
found on today’s computer chips. Sociologists have used lattices and
Boolean algebras to model social hierarchies; biologists have used them
to describe biosystems.
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19.4 Reading Questions
1. Describe succinctly what a poset is. Do not just list the defining

properties, but give a description that another student of algebra
who has never seen a poset might understand. For example, part of
your answer might include what type of common algebraic topics a
poset generalizes, and your answer should be short on symbols.

2. How does a lattice differ from a poset? Answer this in the spirit of
the previous question.

3. How does a Boolean algebra differ from a lattice? Again, answer
this in the spirit of the previous two questions.

4. Give two (perhaps related) reasons why any discussion of finite
Boolean algebras might center on the example of the power set of a
finite set.

5. Describe a major innovation of the middle twentieth century made
possible by Boolean algebra.

19.5 Exercises
1. Draw the lattice diagram for the power set of X = {a, b, c, d} with

the set inclusion relation, ⊂.
2. Draw the diagram for the set of positive integers that are divisors of

30. Is this poset a Boolean algebra?
3. Draw a diagram of the lattice of subgroups of Z12.
4. Let B be the set of positive integers that are divisors of 210. Define

an order on B by a � b if a | b. Prove that B is a Boolean algebra.
Find a set X such that B is isomorphic to P(X).

5. Prove or disprove: Z is a poset under the relation a � b if a | b.
6. Draw the switching circuit for each of the following Boolean expres-

sions.
(a) (a ∨ b ∨ a′) ∧ a

(b) (a ∨ b)′ ∧ (a ∨ b)

(c) a ∨ (a ∧ b)

(d) (c ∨ a ∨ b) ∧ c′ ∧ (a ∨ b)′
7. Draw a circuit that will be closed exactly when only one of three

switches a, b, and c are closed.
8. Prove or disprove that the two circuits shown are equivalent.

a b c

a′ b

a c′

a

a

b

c′

9. Let X be a finite set containing n elements. Prove that |P(X)| = 2n.
Conclude that the order of any finite Boolean algebra must be 2n

for some n ∈ N.
10. For each of the following circuits, write a Boolean expression. If the

circuit can be replaced by one with fewer switches, give the Boolean
expression and draw a diagram for the new circuit.
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a′

a

b

b′

a a b

a′

b a′ b

a b c

a′ b′ c

a b′ c′

11. Prove or disprove: The set of all nonzero integers is a lattice, where
a � b is defined by a | b.

12. Let L be a nonempty set with two binary operations ∨ and ∧ satisfy-
ing the commutative, associative, idempotent, and absorption laws.
We can define a partial order on L, as in Theorem 19.14, p. 254, by
a � b if a ∨ b = b. Prove that the greatest lower bound of a and b is
a ∧ b.

13. Let G be a group and X be the set of subgroups of G ordered by
set-theoretic inclusion. If H and K are subgroups of G, show that
the least upper bound of H and K is the subgroup generated by
H ∪K.

14. Let R be a ring and suppose that X is the set of ideals of R. Show
that X is a poset ordered by set-theoretic inclusion, ⊂. Define the
meet of two ideals I and J in X by I ∩ J and the join of I and J
by I + J . Prove that the set of ideals of R is a lattice under these
operations.

15. Let B be a Boolean algebra. Prove each of the following identities.
(a) a ∨ I = I and a ∧O = O for all a ∈ B.

(b) If a ∨ b = I and a ∧ b = O, then b = a′.

(c) (a′)′ = a for all a ∈ B.

(d) I ′ = O and O′ = I.

(e) (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′ (De Morgan’s laws).
16. By drawing the appropriate diagrams, complete the proof of The-

orem 19.31, p. 260 to show that the switching functions form a
Boolean algebra.

17. Let B be a Boolean algebra. Define binary operations + and · on B
by

a+ b = (a ∧ b′) ∨ (a′ ∧ b)
a · b = a ∧ b.

Prove that B is a commutative ring under these operations satisfying
a2 = a for all a ∈ B.
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18. Let X be a poset such that for every a and b in X, either a � b or
b � a. Then X is said to be a totally ordered set.

(a) Is a | b a total order on N?

(b) Prove that N, Z, Q, and R are totally ordered sets under the
usual ordering ≤.

19. Let X and Y be posets. A map ϕ : X → Y is order-preserving if
a � b implies that ϕ(a) � ϕ(b). Let L and M be lattices. A map ψ :
L→M is a lattice homomorphism if ψ(a∨b) = ψ(a)∨ψ(b) and ψ(a∧
b) = ψ(a) ∧ ψ(b). Show that every lattice homomorphism is order-
preserving, but that it is not the case that every order-preserving
homomorphism is a lattice homomorphism.

20. Let B be a Boolean algebra. Prove that a = b if and only if (a ∧
b′) ∨ (a′ ∧ b) = O for a, b ∈ B.

21. Let B be a Boolean algebra. Prove that a = O if and only if (a ∧
b′) ∨ (a′ ∧ b) = b for all b ∈ B.

22. Let L and M be lattices. Define an order relation on L × M by
(a, b) � (c, d) if a � c and b � d. Show that L×M is a lattice under
this partial order.

19.6 Programming Exercises
1. A Boolean or switching function on n variables is a map f :

{O, I}n → {0, I}. A Boolean polynomial is a special type of Boolean
function: it is any type of Boolean expression formed from a finite
combination of variables x1, . . . , xn together with O and I, using the
operations ∨, ∧, and ′. The values of the functions are defined in
Table 19.34, p. 264. Write a program to evaluate Boolean polynomi-
als.
Table 19.34 Boolean polynomials

x y x′ x ∨ y x ∧ y
0 0 1 0 0

0 1 1 1 0

1 0 0 1 0

1 1 0 1 1
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20

Vector Spaces

In a physical system a quantity can often be described with a single
number. For example, we need to know only a single number to describe
temperature, mass, or volume. However, for some quantities, such as
location, we need several numbers. To give the location of a point in
space, we need x, y, and z coordinates. Temperature distribution over
a solid object requires four numbers: three to identify each point within
the object and a fourth to describe the temperature at that point. Often
n-tuples of numbers, or vectors, also have certain algebraic properties,
such as addition or scalar multiplication.

In this chapter we will examine mathematical structures called vector
spaces. As with groups and rings, it is desirable to give a simple list of
axioms that must be satisfied to make a set of vectors a structure worth
studying.

20.1 Definitions and Examples
A vector space V over a field F is an abelian group with a scalar product
α · v or αv defined for all α ∈ F and all v ∈ V satisfying the following
axioms.

• α(βv) = (αβ)v;

• (α+ β)v = αv + βv;

• α(u+ v) = αu+ αv;

• 1v = v;

where α, β ∈ F and u, v ∈ V .
The elements of V are called vectors; the elements of F are called

scalars. It is important to notice that in most cases two vectors cannot
be multiplied. In general, it is only possible to multiply a vector with a
scalar. To differentiate between the scalar zero and the vector zero, we
will write them as 0 and 0, respectively.

Let us examine several examples of vector spaces. Some of them will
be quite familiar; others will seem less so.
Example 20.1 The n-tuples of real numbers, denoted by Rn, form a
vector space over R. Given vectors u = (u1, . . . , un) and v = (v1, . . . , vn)

267
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in Rn and α in R, we can define vector addition by

u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

and scalar multiplication by

αu = α(u1, . . . , un) = (αu1, . . . , αun).

□
Example 20.2 If F is a field, then F [x] is a vector space over F . The
vectors in F [x] are simply polynomials, and vector addition is just poly-
nomial addition. If α ∈ F and p(x) ∈ F [x], then scalar multiplication is
defined by αp(x). □
Example 20.3 The set of all continuous real-valued functions on a closed
interval [a, b] is a vector space over R. If f(x) and g(x) are continuous on
[a, b], then (f + g)(x) is defined to be f(x) + g(x). Scalar multiplication
is defined by (αf)(x) = αf(x) for α ∈ R. For example, if f(x) = sinx
and g(x) = x2, then (2f + 5g)(x) = 2 sinx+ 5x2. □

Example 20.4 Let V = Q(
√
2 ) = {a + b

√
2 : a, b ∈ Q}. Then V is a

vector space over Q. If u = a + b
√
2 and v = c + d

√
2, then u + v =

(a + c) + (b + d)
√
2 is again in V . Also, for α ∈ Q, αv is in V . We will

leave it as an exercise to verify that all of the vector space axioms hold
for V . □
Proposition 20.5 Let V be a vector space over F . Then each of the
following statements is true.

1. 0v = 0 for all v ∈ V .

2. α0 = 0 for all α ∈ F .

3. If αv = 0, then either α = 0 or v = 0.

4. (−1)v = −v for all v ∈ V .

5. −(αv) = (−α)v = α(−v) for all α ∈ F and all v ∈ V .
Proof. To prove (1), observe that

0v = (0 + 0)v = 0v + 0v;

consequently, 0 + 0v = 0v + 0v. Since V is an abelian group, 0 = 0v.
The proof of (2) is almost identical to the proof of (1). For (3), we

are done if α = 0. Suppose that α 6= 0. Multiplying both sides of αv = 0
by 1/α, we have v = 0.

To show (4), observe that

v + (−1)v = 1v + (−1)v = (1− 1)v = 0v = 0,

and so −v = (−1)v. We will leave the proof of (5) as an exercise. ■

20.2 Subspaces
Just as groups have subgroups and rings have subrings, vector spaces
also have substructures. Let V be a vector space over a field F , and W
a subset of V . Then W is a subspace of V if it is closed under vector
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addition and scalar multiplication; that is, if u, v ∈W and α ∈ F , it will
always be the case that u+ v and αv are also in W .

Example 20.6 Let W be the subspace of R3 defined by W = {(x1, 2x1+
x2, x1 − x2) : x1, x2 ∈ R}. We claim that W is a subspace of R3. Since

α(x1, 2x1 + x2, x1 − x2) = (αx1, α(2x1 + x2), α(x1 − x2))

= (αx1, 2(αx1) + αx2, αx1 − αx2),

W is closed under scalar multiplication. To show that W is closed under
vector addition, let u = (x1, 2x1+x2, x1−x2) and v = (y1, 2y1+y2, y1−y2)
be vectors in W . Then

u+ v = (x1 + y1, 2(x1 + y1) + (x2 + y2), (x1 + y1)− (x2 + y2)).

□
Example 20.7 Let W be the subset of polynomials of F [x] with no odd-
power terms. If p(x) and q(x) have no odd-power terms, then neither will
p(x) + q(x). Also, αp(x) ∈W for α ∈ F and p(x) ∈W . □

Let V be any vector space over a field F and suppose that v1, v2, . . . , vn
are vectors in V and α1, α2, . . . , αn are scalars in F . Any vector w in V
of the form

w =

n∑
i=1

αivi = α1v1 + α2v2 + · · ·+ αnvn

is called a linear combination of the vectors v1, v2, . . . , vn. The spanning
set of vectors v1, v2, . . . , vn is the set of vectors obtained from all pos-
sible linear combinations of v1, v2, . . . , vn. If W is the spanning set of
v1, v2, . . . , vn, then we say that W is spanned by v1, v2, . . . , vn.

Proposition 20.8 Let S = {v1, v2, . . . , vn} be vectors in a vector space
V . Then the span of S is a subspace of V .
Proof. Let u and v be in S. We can write both of these vectors as linear
combinations of the vi’s:

u = α1v1 + α2v2 + · · ·+ αnvn

v = β1v1 + β2v2 + · · ·+ βnvn.

Then

u+ v = (α1 + β1)v1 + (α2 + β2)v2 + · · ·+ (αn + βn)vn

is a linear combination of the vi’s. For α ∈ F ,

αu = (αα1)v1 + (αα2)v2 + · · ·+ (ααn)vn

is in the span of S. ■

20.3 Linear Independence
Let S = {v1, v2, . . . , vn} be a set of vectors in a vector space V . If there
exist scalars α1, α2 . . . αn ∈ F such that not all of the αi’s are zero and

α1v1 + α2v2 + · · ·+ αnvn = 0,
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then S is said to be linearly dependent. If the set S is not linearly
dependent, then it is said to be linearly independent. More specifically,
S is a linearly independent set if

α1v1 + α2v2 + · · ·+ αnvn = 0

implies that
α1 = α2 = · · · = αn = 0

for any set of scalars {α1, α2 . . . αn}.

Proposition 20.9 Let {v1, v2, . . . , vn} be a set of linearly independent
vectors in a vector space. Suppose that

v = α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn.

Then α1 = β1, α2 = β2, . . . , αn = βn.
Proof. If

v = α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn,

then
(α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn = 0.

Since v1, . . . , vn are linearly independent, αi−βi = 0 for i = 1, . . . , n. ■
The definition of linear dependence makes more sense if we consider

the following proposition.

Proposition 20.10 A set {v1, v2, . . . , vn} of vectors in a vector space V
is linearly dependent if and only if one of the vi’s is a linear combination
of the rest.
Proof. Suppose that {v1, v2, . . . , vn} is a set of linearly dependent vec-
tors. Then there exist scalars α1, . . . , αn such that

α1v1 + α2v2 + · · ·+ αnvn = 0,

with at least one of the αi’s not equal to zero. Suppose that αk 6= 0.
Then

vk = −α1

αk
v1 − · · · − αk−1

αk
vk−1 −

αk+1

αk
vk+1 − · · · − αn

αk
vn.

Conversely, suppose that

vk = β1v1 + · · ·+ βk−1vk−1 + βk+1vk+1 + · · ·+ βnvn.

Then

β1v1 + · · ·+ βk−1vk−1 − vk + βk+1vk+1 + · · ·+ βnvn = 0.

■
The following proposition is a consequence of the fact that any system

of homogeneous linear equations with more unknowns than equations will
have a nontrivial solution. We leave the details of the proof for the end-
of-chapter exercises.
Proposition 20.11 Suppose that a vector space V is spanned by n vectors.
If m > n, then any set of m vectors in V must be linearly dependent.

A set {e1, e2, . . . , en} of vectors in a vector space V is called a basis
for V if {e1, e2, . . . , en} is a linearly independent set that spans V .
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Example 20.12 The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 =
(0, 0, 1) form a basis for R3. The set certainly spans R3, since any arbitrary
vector (x1, x2, x3) in R3 can be written as x1e1 +x2e2 +x3e3. Also, none
of the vectors e1, e2, e3 can be written as a linear combination of the other
two; hence, they are linearly independent. The vectors e1, e2, e3 are not
the only basis of R3: the set {(3, 2, 1), (3, 2, 0), (1, 1, 1)} is also a basis for
R3. □
Example 20.13 Let Q(

√
2 ) = {a + b

√
2 : a, b ∈ Q}. The sets {1,

√
2 }

and {1 +
√
2, 1−

√
2 } are both bases of Q(

√
2 ). □

From the last two examples it should be clear that a given vector space
has several bases. In fact, there are an infinite number of bases for both
of these examples. In general, there is no unique basis for a vector space.
However, every basis of R3 consists of exactly three vectors, and every
basis of Q(

√
2 ) consists of exactly two vectors. This is a consequence of

the next proposition.

Proposition 20.14 Let {e1, e2, . . . , em} and {f1, f2, . . . , fn} be two bases
for a vector space V . Then m = n.
Proof. Since {e1, e2, . . . , em} is a basis, it is a linearly independent
set. By Proposition 20.11, p. 268, n ≤ m. Similarly, {f1, f2, . . . , fn} is
a linearly independent set, and the last proposition implies that m ≤ n.
Consequently, m = n. ■

If {e1, e2, . . . , en} is a basis for a vector space V , then we say that the
dimension of V is n and we write dimV = n. We will leave the proof of
the following theorem as an exercise.
Theorem 20.15 Let V be a vector space of dimension n.

1. If S = {v1, . . . , vn} is a set of linearly independent vectors for V ,
then S is a basis for V .

2. If S = {v1, . . . , vn} spans V , then S is a basis for V .

3. If S = {v1, . . . , vk} is a set of linearly independent vectors for V
with k < n, then there exist vectors vk+1, . . . , vn such that

{v1, . . . , vk, vk+1, . . . , vn}

is a basis for V .

Sage. Many of Sage’s computations, in a wide variety of algebraic set-
tings, come from solving problems in linear algebra. So you will find a
wealth of linear algebra functionality. Further, you can use structures
such as finite fields to find vector spaces in new settings.

20.4 Reading Questions
1. Why do the axioms of a vector space appear to only have four condi-

tions, rather than the ten you may have seen the first time you saw
an axiomatic definition?

2. The set V = Q(
√
11) = {a+b

√
11 | a, b ∈ Q} is a vector space. Care-

fully define the operations on this set that will make this possible.
Describe the subspace spanned by S = {u}, where u = 3+ 2

7

√
11 ∈ V .
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3. Write a long paragraph, or a short essay, on the importance of linear
independence in linear algebra.

4. Write a long paragraph, or a short essay, on the importance of span-
ning sets in linear algebra.

5. “Linear algebra is all about linear combinations.” Explain why you
might say this.

20.5 Exercises
1. If F is a field, show that F [x] is a vector space over F , where the vec-

tors in F [x] are polynomials. Vector addition is polynomial addition,
and scalar multiplication is defined by αp(x) for α ∈ F .

2. Prove that Q(
√
2 ) is a vector space.

3. Let Q(
√
2,
√
3 ) be the field generated by elements of the form a +

b
√
2+ c

√
3+d

√
6, where a, b, c, d are in Q. Prove that Q(

√
2,
√
3 ) is

a vector space of dimension 4 over Q. Find a basis for Q(
√
2,
√
3 ).

4. Prove that the complex numbers are a vector space of dimension 2
over R.

5. Prove that the set Pn of all polynomials of degree less than n form a
subspace of the vector space F [x]. Find a basis for Pn and compute
the dimension of Pn.

6. Let F be a field and denote the set of n-tuples of F by Fn. Given
vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Fn and α in F ,
define vector addition by

u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

and scalar multiplication by

αu = α(u1, . . . , un) = (αu1, . . . , αun).

Prove that Fn is a vector space of dimension n under these opera-
tions.

7. Which of the following sets are subspaces of R3? If the set is indeed
a subspace, find a basis for the subspace and compute its dimension.

(a) {(x1, x2, x3) : 3x1 − 2x2 + x3 = 0}

(b) {(x1, x2, x3) : 3x1 + 4x3 = 0, 2x1 − x2 + x3 = 0}

(c) {(x1, x2, x3) : x1 − 2x2 + 2x3 = 2}

(d) {(x1, x2, x3) : 3x1 − 2x22 = 0}
8. Show that the set of all possible solutions (x, y, z) ∈ R3 of the equa-

tions

Ax+By + Cz = 0

Dx+ Ey + Cz = 0

form a subspace of R3.
9. Let W be the subset of continuous functions on [0, 1] such that

f(0) = 0. Prove that W is a subspace of C[0, 1].
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10. Let V be a vector space over F . Prove that −(αv) = (−α)v = α(−v)
for all α ∈ F and all v ∈ V .

11. Let V be a vector space of dimension n. Prove each of the following
statements.

(a) If S = {v1, . . . , vn} is a set of linearly independent vectors for
V , then S is a basis for V .

(b) If S = {v1, . . . , vn} spans V , then S is a basis for V .

(c) If S = {v1, . . . , vk} is a set of linearly independent vectors for
V with k < n, then there exist vectors vk+1, . . . , vn such that

{v1, . . . , vk, vk+1, . . . , vn}

is a basis for V .
12. Prove that any set of vectors containing 0 is linearly dependent.
13. Let V be a vector space. Show that {0} is a subspace of V of

dimension zero.
14. If a vector space V is spanned by n vectors, show that any set of m

vectors in V must be linearly dependent for m > n.
15. Linear Transformations. Let V and W be vector spaces over a

field F , of dimensions m and n, respectively. If T : V →W is a map
satisfying

T (u+ v) = T (u) + T (v)

T (αv) = αT (v)

for all α ∈ F and all u, v ∈ V , then T is called a linear transformation
from V into W .

(a) Prove that the kernel of T , ker(T ) = {v ∈ V : T (v) = 0}, is
a subspace of V . The kernel of T is sometimes called the null
space of T .

(b) Prove that the range or range space of T , R(V ) = {w ∈ W :
T (v) = w for some v ∈ V }, is a subspace of W .

(c) Show that T : V →W is injective if and only if ker(T ) = {0}.

(d) Let {v1, . . . , vk} be a basis for the null space of T . We can
extend this basis to be a basis {v1, . . . , vk, vk+1, . . . , vm} of V .
Why? Prove that {T (vk+1), . . . , T (vm)} is a basis for the range
of T . Conclude that the range of T has dimension m− k.

(e) Let dimV = dimW . Show that a linear transformation T :
V →W is injective if and only if it is surjective.

16. Let V and W be finite dimensional vector spaces of dimension n over
a field F . Suppose that T : V → W is a vector space isomorphism.
If {v1, . . . , vn} is a basis of V , show that {T (v1), . . . , T (vn)} is a basis
of W . Conclude that any vector space over a field F of dimension n
is isomorphic to Fn.

17. Direct Sums. Let U and V be subspaces of a vector space W . The
sum of U and V , denoted U+V , is defined to be the set of all vectors
of the form u+ v, where u ∈ U and v ∈ V .

(a) Prove that U + V and U ∩ V are subspaces of W .
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(b) If U + V =W and U ∩ V = 0, then W is said to be the direct
sum. In this case, we write W = U ⊕ V . Show that every
element w ∈ W can be written uniquely as w = u + v, where
u ∈ U and v ∈ V .

(c) Let U be a subspace of dimension k of a vector space W of
dimension n. Prove that there exists a subspace V of dimension
n− k such that W = U ⊕ V . Is the subspace V unique?

(d) If U and V are arbitrary subspaces of a vector space W , show
that

dim(U + V ) = dimU + dimV − dim(U ∩ V ).
18. Dual Spaces. Let V and W be finite dimensional vector spaces

over a field F .
(a) Show that the set of all linear transformations from V into W ,

denoted by Hom(V,W ), is a vector space over F , where we
define vector addition as follows:

(S + T )(v) = S(v) + T (v)

(αS)(v) = αS(v),

where S, T ∈ Hom(V,W ), α ∈ F , and v ∈ V .

(b) Let V be an F -vector space. Define the dual space of V to be
V ∗ = Hom(V, F ). Elements in the dual space of V are called
linear functionals. Let v1, . . . , vn be an ordered basis for V .
If v = α1v1 + · · · + αnvn is any vector in V , define a linear
functional ϕi : V → F by ϕi(v) = αi. Show that the ϕi’s form
a basis for V ∗. This basis is called the dual basis of v1, . . . , vn
(or simply the dual basis if the context makes the meaning
clear).

(c) Consider the basis {(3, 1), (2,−2)} for R2. What is the dual
basis for (R2)∗?

(d) Let V be a vector space of dimension n over a field F and let
V ∗∗ be the dual space of V ∗. Show that each element v ∈ V
gives rise to an element λv in V ∗∗ and that the map v 7→ λv is
an isomorphism of V with V ∗∗.
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21

Fields

It is natural to ask whether or not some field F is contained in a larger
field. We think of the rational numbers, which reside inside the real
numbers, while in turn, the real numbers live inside the complex numbers.
We can also study the fields between Q and R and inquire as to the nature
of these fields.

More specifically if we are given a field F and a polynomial p(x) ∈
F [x], we can ask whether or not we can find a field E containing F such
that p(x) factors into linear factors over E[x]. For example, if we consider
the polynomial

p(x) = x4 − 5x2 + 6

in Q[x], then p(x) factors as (x2 − 2)(x2 − 3). However, both of these
factors are irreducible in Q[x]. If we wish to find a zero of p(x), we must
go to a larger field. Certainly the field of real numbers will work, since

p(x) = (x−
√
2)(x+

√
2)(x−

√
3)(x+

√
3).

It is possible to find a smaller field in which p(x) has a zero, namely

Q(
√
2) = {a+ b

√
2 : a, b ∈ Q}.

We wish to be able to compute and study such fields for arbitrary poly-
nomials over a field F .

21.1 Extension Fields
A field E is an extension field of a field F if F is a subfield of E. The
field F is called the base field. We write F ⊂ E.
Example 21.1 For example, let

F = Q(
√
2 ) = {a+ b

√
2 : a, b ∈ Q}

and let E = Q(
√
2 +

√
3 ) be the smallest field containing both Q and√

2+
√
3. Both E and F are extension fields of the rational numbers. We

claim that E is an extension field of F . To see this, we need only show
that

√
2 is in E. Since

√
2 +

√
3 is in E, 1/(

√
2 +

√
3 ) =

√
3−

√
2 must

also be in E. Taking linear combinations of
√
2 +

√
3 and

√
3 −

√
2, we

find that
√
2 and

√
3 must both be in E. □

277
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Example 21.2 Let p(x) = x2 + x + 1 ∈ Z2[x]. Since neither 0 nor 1 is
a root of this polynomial, we know that p(x) is irreducible over Z2. We
will construct a field extension of Z2 containing an element α such that
p(α) = 0. By Theorem 17.22, p. 229, the ideal 〈p(x)〉 generated by p(x) is
maximal; hence, Z2[x]/〈p(x)〉 is a field. Let f(x)+ 〈p(x)〉 be an arbitrary
element of Z2[x]/〈p(x)〉. By the division algorithm,

f(x) = (x2 + x+ 1)q(x) + r(x),

where the degree of r(x) is less than the degree of x2 + x+ 1. Therefore,

f(x) + 〈x2 + x+ 1〉 = r(x) + 〈x2 + x+ 1〉.

The only possibilities for r(x) are then 0, 1, x, and 1 + x. Consequently,
E = Z2[x]/〈x2 + x+ 1〉 is a field with four elements and must be a field
extension of Z2, containing a zero α of p(x). The field Z2(α) consists of
elements

0 + 0α = 0

1 + 0α = 1

0 + 1α = α

1 + 1α = 1 + α.

Notice that α2 + α+ 1 = 0; hence, if we compute (1 + α)2,

(1 + α)(1 + α) = 1 + α+ α+ (α)2 = α.

Other calculations are accomplished in a similar manner. We summarize
these computations in the following tables, which tell us how to add and
multiply elements in E. □

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1

1 + α 1 + α α 1 0

Figure 21.3 Addition Table for Z2(α)

· 0 1 α 1 + α

0 0 0 0 0

1 0 1 α 1 + α

α 0 α 1 + α 1

1 + α 0 1 + α 1 α

Figure 21.4 Multiplication Table for Z2(α)

The following theorem, due to Kronecker, is so important and so basic
to our understanding of fields that it is often known as the Fundamental
Theorem of Field Theory.

Theorem 21.5 Let F be a field and let p(x) be a nonconstant polynomial
in F [x]. Then there exists an extension field E of F and an element
α ∈ E such that p(α) = 0.
Proof. To prove this theorem, we will employ the method that we
used to construct Example 21.2, p. 276. Clearly, we can assume that
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p(x) is an irreducible polynomial. We wish to find an extension field
E of F containing an element α such that p(α) = 0. The ideal 〈p(x)〉
generated by p(x) is a maximal ideal in F [x] by Theorem 17.22, p. 229;
hence, F [x]/〈p(x)〉 is a field. We claim that E = F [x]/〈p(x)〉 is the desired
field.

We first show that E is a field extension of F . We can define a
homomorphism of commutative rings by the map ψ : F → F [x]/〈p(x)〉,
where ψ(a) = a+ 〈p(x)〉 for a ∈ F . It is easy to check that ψ is indeed a
ring homomorphism. Observe that

ψ(a) + ψ(b) = (a+ 〈p(x)〉) + (b+ 〈p(x)〉) = (a+ b) + 〈p(x)〉 = ψ(a+ b)

and

ψ(a)ψ(b) = (a+ 〈p(x)〉)(b+ 〈p(x)〉) = ab+ 〈p(x)〉 = ψ(ab).

To prove that ψ is one-to-one, assume that

a+ 〈p(x)〉 = ψ(a) = ψ(b) = b+ 〈p(x)〉.

Then a − b is a multiple of p(x), since it lives in the ideal 〈p(x)〉. Since
p(x) is a nonconstant polynomial, the only possibility is that a − b = 0.
Consequently, a = b and ψ is injective. Since ψ is one-to-one, we can
identify F with the subfield {a+ 〈p(x)〉 : a ∈ F} of E and view E as an
extension field of F .

It remains for us to prove that p(x) has a zero α ∈ E. Set α =
x+ 〈p(x)〉. Then α is in E. If p(x) = a0 + a1x+ · · ·+ anx

n, then

p(α) = a0 + a1(x+ 〈p(x)〉) + · · ·+ an(x+ 〈p(x)〉)n

= a0 + (a1x+ 〈p(x)〉) + · · ·+ (anx
n + 〈p(x)〉)

= a0 + a1x+ · · ·+ anx
n + 〈p(x)〉

= 0 + 〈p(x)〉.

Therefore, we have found an element α ∈ E = F [x]/〈p(x)〉 such that α is
a zero of p(x). ■

Example 21.6 Let p(x) = x5+x4+1 ∈ Z2[x]. Then p(x) has irreducible
factors x2 + x + 1 and x3 + x + 1. For a field extension E of Z2 such
that p(x) has a root in E, we can let E be either Z2[x]/〈x2 + x + 1〉 or
Z2[x]/〈x3+x+1〉. We will leave it as an exercise to show that Z2[x]/〈x3+
x+ 1〉 is a field with 23 = 8 elements. □

Algebraic Elements
An element α in an extension field E over F is algebraic over F if f(α) = 0
for some nonzero polynomial f(x) ∈ F [x]. An element in E that is not
algebraic over F is transcendental over F . An extension field E of a field
F is an algebraic extension of F if every element in E is algebraic over
F . If E is a field extension of F and α1, . . . , αn are contained in E, we
denote the smallest field containing F and α1, . . . , αn by F (α1, . . . , αn).
If E = F (α) for some α ∈ E, then E is a simple extension of F .

Example 21.7 Both
√
2 and i are algebraic over Q since they are zeros

of the polynomials x2 − 2 and x2 + 1, respectively. Clearly π and e
are algebraic over the real numbers; however, it is a nontrivial fact that
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they are transcendental over Q. Numbers in R that are algebraic over Q
are in fact quite rare. Almost all real numbers are transcendental over
Q.10(In many cases we do not know whether or not a particular number
is transcendental; for example, it is still not known whether π + e is
transcendental or algebraic.) □

A complex number that is algebraic over Q is an algebraic number.
A transcendental number is an element of C that is transcendental over
Q.

Example 21.8 We will show that
√
2 +

√
3 is algebraic over Q. If α =√

2 +
√
3, then α2 = 2 +

√
3. Hence, α2 − 2 =

√
3 and (α2 − 2)2 = 3.

Since α4− 4α2+1 = 0, it must be true that α is a zero of the polynomial
x4 − 4x2 + 1 ∈ Q[x]. □

It is very easy to give an example of an extension field E over a field
F , where E contains an element transcendental over F . The following
theorem characterizes transcendental extensions.
Theorem 21.9 Let E be an extension field of F and α ∈ E. Then α is
transcendental over F if and only if F (α) is isomorphic to F (x), the field
of fractions of F [x].
Proof. Let ϕα : F [x] → E be the evaluation homomorphism for α.
Then α is transcendental over F if and only if ϕα(p(x)) = p(α) 6= 0
for all nonconstant polynomials p(x) ∈ F [x]. This is true if and only if
kerϕα = {0}; that is, it is true exactly when ϕα is one-to-one. Hence,
E must contain a copy of F [x]. The smallest field containing F [x] is the
field of fractions F (x). By Theorem 18.4, p. 239, E must contain a copy
of this field. ■

We have a more interesting situation in the case of algebraic exten-
sions.
Theorem 21.10 Let E be an extension field of a field F and α ∈ E with
α algebraic over F . Then there is a unique irreducible monic polynomial
p(x) ∈ F [x] of smallest degree such that p(α) = 0. If f(x) is another
polynomial in F [x] such that f(α) = 0, then p(x) divides f(x).
Proof. Let ϕα : F [x] → E be the evaluation homomorphism. The
kernel of ϕα is a principal ideal generated by some p(x) ∈ F [x] with
deg p(x) ≥ 1. We know that such a polynomial exists, since F [x] is
a principal ideal domain and α is algebraic. The ideal 〈p(x)〉 consists
exactly of those elements of F [x] having α as a zero. If f(α) = 0 and f(x)
is not the zero polynomial, then f(x) ∈ 〈p(x)〉 and p(x) divides f(x). So
p(x) is a polynomial of minimal degree having α as a zero. Any other
polynomial of the same degree having α as a zero must have the form
βp(x) for some β ∈ F .

Suppose now that p(x) = r(x)s(x) is a factorization of p(x) into poly-
nomials of lower degree. Since p(α) = 0, r(α)s(α) = 0; consequently,
either r(α) = 0 or s(α) = 0, which contradicts the fact that p is of
minimal degree. Therefore, p(x) must be irreducible. ■

Let E be an extension field of F and α ∈ E be algebraic over F . The
unique monic polynomial p(x) of the last theorem is called the minimal
polynomial for α over F . The degree of p(x) is the degree of α over F .

Example 21.11 Let f(x) = x2 − 2 and g(x) = x4 − 4x2 +1. These poly-
nomials are the minimal polynomials of

√
2 and

√
2 +

√
3, respectively.

11The probability that a real number chosen at random from the interval [0, 1] will
be transcendental over the rational numbers is one.
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□
Proposition 21.12 Let E be a field extension of F and α ∈ E be algebraic
over F . Then F (α) ∼= F [x]/〈p(x)〉, where p(x) is the minimal polynomial
of α over F .
Proof. Let ϕα : F [x] → E be the evaluation homomorphism. The
kernel of this map is 〈p(x)〉, where p(x) is the minimal polynomial of α.
By the First Isomorphism Theorem for rings, the image of ϕα in E is
isomorphic to F (α) since it contains both F and α. ■
Theorem 21.13 Let E = F (α) be a simple extension of F , where α ∈ E
is algebraic over F . Suppose that the degree of α over F is n. Then every
element β ∈ E can be expressed uniquely in the form

β = b0 + b1α+ · · ·+ bn−1α
n−1

for bi ∈ F .
Proof. Since ϕα(F [x]) ∼= F (α), every element in E = F (α) must be
of the form ϕα(f(x)) = f(α), where f(α) is a polynomial in α with
coefficients in F . Let

p(x) = xn + an−1x
n−1 + · · ·+ a0

be the minimal polynomial of α. Then p(α) = 0; hence,

αn = −an−1α
n−1 − · · · − a0.

Similarly,

αn+1 = ααn

= −an−1α
n − an−2α

n−1 − · · · − a0α

= −an−1(−an−1α
n−1 − · · · − a0)− an−2α

n−1 − · · · − a0α.

Continuing in this manner, we can express every monomial αm, m ≥ n,
as a linear combination of powers of α that are less than n. Hence, any
β ∈ F (α) can be written as

β = b0 + b1α+ · · ·+ bn−1α
n−1.

To show uniqueness, suppose that

β = b0 + b1α+ · · ·+ bn−1α
n−1 = c0 + c1α+ · · ·+ cn−1α

n−1

for bi and ci in F . Then

g(x) = (b0 − c0) + (b1 − c1)x+ · · ·+ (bn−1 − cn−1)x
n−1

is in F [x] and g(α) = 0. Since the degree of g(x) is less than the degree of
p(x), the irreducible polynomial of α, g(x) must be the zero polynomial.
Consequently,

b0 − c0 = b1 − c1 = · · · = bn−1 − cn−1 = 0,

or bi = ci for i = 0, 1, . . . , n − 1. Therefore, we have shown uniqueness.
■

Example 21.14 Since x2+1 is irreducible over R, 〈x2+1〉 is a maximal
ideal in R[x]. So E = R[x]/〈x2+1〉 is a field extension of R that contains
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a root of x2+1. Let α = x+〈x2+1〉. We can identify E with the complex
numbers. By Proposition 21.12, p. 279, E is isomorphic to R(α) = {a +
bα : a, b ∈ R}. We know that α2 = −1 in E, since

α2 + 1 = (x+ 〈x2 + 1〉)2 + (1 + 〈x2 + 1〉)
= (x2 + 1) + 〈x2 + 1〉
= 0.

Hence, we have an isomorphism of R(α) with C defined by the map that
takes a+ bα to a+ bi. □

Let E be a field extension of a field F . If we regard E as a vector space
over F , then we can bring the machinery of linear algebra to bear on the
problems that we will encounter in our study of fields. The elements in
the field E are vectors; the elements in the field F are scalars. We can
think of addition in E as adding vectors. When we multiply an element
in E by an element of F , we are multiplying a vector by a scalar. This
view of field extensions is especially fruitful if a field extension E of F
is a finite dimensional vector space over F , and Theorem 21.13, p. 279
states that E = F (α) is finite dimensional vector space over F with basis
{1, α, α2, . . . , αn−1}.

If an extension field E of a field F is a finite dimensional vector space
over F of dimension n, then we say that E is a finite extension of degree
n over F . We write

[E : F ] = n.

to indicate the dimension of E over F .
Theorem 21.15 Every finite extension field E of a field F is an algebraic
extension.
Proof. Let α ∈ E. Since [E : F ] = n, the elements

1, α, . . . , αn

cannot be linearly independent. Hence, there exist ai ∈ F , not all zero,
such that

anα
n + an−1α

n−1 + · · ·+ a1α+ a0 = 0.

Therefore,
p(x) = anx

n + · · ·+ a0 ∈ F [x]

is a nonzero polynomial with p(α) = 0. ■
Remark 21.16 Theorem 21.15, p. 280 says that every finite extension of
a field F is an algebraic extension. The converse is false, however. We
will leave it as an exercise to show that the set of all elements in R that
are algebraic over Q forms an infinite field extension of Q.

The next theorem is a counting theorem, similar to Lagrange’s Theo-
rem in group theory. Theorem 21.17, p. 280 will prove to be an extremely
useful tool in our investigation of finite field extensions.
Theorem 21.17 If E is a finite extension of F and K is a finite extension
of E, then K is a finite extension of F and

[K : F ] = [K : E][E : F ].
Proof. Let {α1, . . . , αn} be a basis for E as a vector space over F and
{β1, . . . , βm} be a basis for K as a vector space over E. We claim that
{αiβj} is a basis for K over F . We will first show that these vectors span
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K. Let u ∈ K. Then u =
∑m
j=1 bjβj and bj =

∑n
i=1 aijαi, where bj ∈ E

and aij ∈ F . Then

u =

m∑
j=1

(
n∑
i=1

aijαi

)
βj =

∑
i,j

aij(αiβj).

So the mn vectors αiβj must span K over F .
We must show that {αiβj} are linearly independent. Recall that a set

of vectors v1, v2, . . . , vn in a vector space V are linearly independent if

c1v1 + c2v2 + · · ·+ cnvn = 0

implies that
c1 = c2 = · · · = cn = 0.

Let
u =

∑
i,j

cij(αiβj) = 0

for cij ∈ F . We need to prove that all of the cij ’s are zero. We can
rewrite u as

m∑
j=1

(
n∑
i=1

cijαi

)
βj = 0,

where
∑
i cijαi ∈ E. Since the βj ’s are linearly independent over E, it

must be the case that
n∑
i=1

cijαi = 0

for all j. However, the αj are also linearly independent over F . Therefore,
cij = 0 for all i and j, which completes the proof. ■

The following corollary is easily proved using mathematical induction.
Corollary 21.18 If Fi is a field for i = 1, . . . , k and Fi+1 is a finite
extension of Fi, then Fk is a finite extension of F1 and

[Fk : F1] = [Fk : Fk−1] · · · [F2 : F1].
Corollary 21.19 Let E be an extension field of F . If α ∈ E is alge-
braic over F with minimal polynomial p(x) and β ∈ F (α) with minimal
polynomial q(x), then deg q(x) divides deg p(x).
Proof. We know that deg p(x) = [F (α) : F ] and deg q(x) = [F (β) : F ].
Since F ⊂ F (β) ⊂ F (α),

[F (α) : F ] = [F (α) : F (β)][F (β) : F ].

■
Example 21.20 Let us determine an extension field of Q containing√
3+

√
5. It is easy to determine that the minimal polynomial of

√
3+

√
5

is x4 − 16x2 + 4. It follows that

[Q(
√
3 +

√
5 ) : Q] = 4.

We know that {1,
√
3 } is a basis for Q(

√
3 ) over Q. Hence,

√
3+

√
5 can-

not be in Q(
√
3 ). It follows that

√
5 cannot be in Q(

√
3 ) either. There-

fore, {1,
√
5 } is a basis for Q(

√
3,
√
5 ) = (Q(

√
3 ))(

√
5 ) over Q(

√
3 ) and

{1,
√
3,
√
5,
√
3
√
5 =

√
15 } is a basis for Q(

√
3,
√
5 ) = Q(

√
3+

√
5 ) over Q.



284 CHAPTER 21. FIELDS

This example shows that it is possible that some extension F (α1, . . . , αn)
is actually a simple extension of F even though n > 1. □

Example 21.21 Let us compute a basis for Q( 3
√
5,
√
5 i), where

√
5 is

the positive square root of 5 and 3
√
5 is the real cube root of 5. We know

that
√
5 i /∈ Q( 3

√
5 ), so

[Q(
3
√
5,
√
5 i) : Q(

3
√
5 )] = 2.

It is easy to determine that {1,
√
5i } is a basis for Q( 3

√
5,
√
5 i) over

Q( 3
√
5 ). We also know that {1, 3

√
5, ( 3

√
5 )2} is a basis for Q( 3

√
5 ) over

Q. Hence, a basis for Q( 3
√
5,
√
5 i) over Q is

{1,
√
5 i,

3
√
5, (

3
√
5 )2, (

6
√
5 )5i, (

6
√
5 )7i = 5

6
√
5 i or 6

√
5 i}.

Notice that 6
√
5 i is a zero of x6 + 5. We can show that this polynomial

is irreducible over Q using Eisenstein’s Criterion, where we let p = 5.
Consequently,

Q ⊂ Q(
6
√
5 i) ⊂ Q(

3
√
5,
√
5 i).

But it must be the case that Q( 6
√
5 i) = Q( 3

√
5,
√
5 i), since the degree of

both of these extensions is 6. □
Theorem 21.22 Let E be a field extension of F . Then the following
statements are equivalent.

1. E is a finite extension of F .

2. There exists a finite number of algebraic elements α1, . . . , αn ∈ E
such that E = F (α1, . . . , αn).

3. There exists a sequence of fields

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ · · · ⊃ F (α1) ⊃ F ,

where each field F (α1, . . . , αi) is algebraic over F (α1, . . . , αi−1).
Proof. (1) ⇒ (2). Let E be a finite algebraic extension of F . Then E is a
finite dimensional vector space over F and there exists a basis consisting
of elements α1, . . . , αn in E such that E = F (α1, . . . , αn). Each αi is
algebraic over F by Theorem 21.15, p. 280.

(2) ⇒ (3). Suppose that E = F (α1, . . . , αn), where every αi is alge-
braic over F . Then

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ · · · ⊃ F (α1) ⊃ F ,

where each field F (α1, . . . , αi) is algebraic over F (α1, . . . , αi−1).
(3) ⇒ (1). Let

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ · · · ⊃ F (α1) ⊃ F ,

where each field F (α1, . . . , αi) is algebraic over F (α1, . . . , αi−1). Since

F (α1, . . . , αi) = F (α1, . . . , αi−1)(αi)

is simple extension and αi is algebraic over F (α1, . . . , αi−1), it follows
that

[F (α1, . . . , αi) : F (α1, . . . , αi−1)]

is finite for each i. Therefore, [E : F ] is finite. ■
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Algebraic Closure
Given a field F , the question arises as to whether or not we can find a
field E such that every polynomial p(x) has a root in E. This leads us
to the following theorem.
Theorem 21.23 Let E be an extension field of F . The set of elements
in E that are algebraic over F form a field.
Proof. Let α, β ∈ E be algebraic over F . Then F (α, β) is a finite
extension of F . Since every element of F (α, β) is algebraic over F , α±β,
αβ, and α/β (β 6= 0) are all algebraic over F . Consequently, the set of
elements in E that are algebraic over F form a field. ■
Corollary 21.24 The set of all algebraic numbers forms a field; that is,
the set of all complex numbers that are algebraic over Q makes up a field.

Let E be a field extension of a field F . We define the algebraic closure
of a field F in E to be the field consisting of all elements in E that are
algebraic over F . A field F is algebraically closed if every nonconstant
polynomial in F [x] has a root in F .

Theorem 21.25 A field F is algebraically closed if and only if every
nonconstant polynomial in F [x] factors into linear factors over F [x].
Proof. Let F be an algebraically closed field. If p(x) ∈ F [x] is a
nonconstant polynomial, then p(x) has a zero in F , say α. Therefore, x−α
must be a factor of p(x) and so p(x) = (x − α)q1(x), where deg q1(x) =
deg p(x)− 1. Continue this process with q1(x) to find a factorization

p(x) = (x− α)(x− β)q2(x),

where deg q2(x) = deg p(x) − 2. The process must eventually stop since
the degree of p(x) is finite.

Conversely, suppose that every nonconstant polynomial p(x) in F [x]
factors into linear factors. Let ax− b be such a factor. Then p(b/a) = 0.
Consequently, F is algebraically closed. ■
Corollary 21.26 An algebraically closed field F has no proper algebraic
extension E.
Proof. Let E be an algebraic extension of F ; then F ⊂ E. For α ∈ E,
the minimal polynomial of α is x− α. Therefore, α ∈ F and F = E. ■
Theorem 21.27 Every field F has a unique algebraic closure.

It is a nontrivial fact that every field has a unique algebraic closure.
The proof is not extremely difficult, but requires some rather sophisti-
cated set theory. We refer the reader to [3], [4], or [8] for a proof of this
result.

We now state the Fundamental Theorem of Algebra, first proven by
Gauss at the age of 22 in his doctoral thesis. This theorem states that
every polynomial with coefficients in the complex numbers has a root
in the complex numbers. The proof of this theorem will be given in
Chapter 23, p. 311.
Theorem 21.28 Fundamental Theorem of Algebra. The field of
complex numbers is algebraically closed.
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21.2 Splitting Fields
Let F be a field and p(x) be a nonconstant polynomial in F [x]. We
already know that we can find a field extension of F that contains a
root of p(x). However, we would like to know whether an extension E
of F containing all of the roots of p(x) exists. In other words, can we
find a field extension of F such that p(x) factors into a product of linear
polynomials? What is the “smallest” extension containing all the roots
of p(x)?

Let F be a field and p(x) = a0 + a1x + · · · + anx
n be a nonconstant

polynomial in F [x]. An extension field E of F is a splitting field of p(x)
if there exist elements α1, . . . , αn in E such that E = F (α1, . . . , αn) and

p(x) = (x− α1)(x− α2) · · · (x− αn).

A polynomial p(x) ∈ F [x] splits in E if it is the product of linear factors
in E[x].

Example 21.29 Let p(x) = x4 + 2x2 − 8 be in Q[x]. Then p(x) has
irreducible factors x2 − 2 and x2 + 4. Therefore, the field Q(

√
2, i) is a

splitting field for p(x). □

Example 21.30 Let p(x) = x3 − 3 be in Q[x]. Then p(x) has a root in
the field Q( 3

√
3 ). However, this field is not a splitting field for p(x) since

the complex cube roots of 3,

− 3
√
3± ( 6

√
3 )5i

2
,

are not in Q( 3
√
3 ). □

Theorem 21.31 Let p(x) ∈ F [x] be a nonconstant polynomial. Then
there exists a splitting field E for p(x).
Proof. We will use mathematical induction on the degree of p(x). If
deg p(x) = 1, then p(x) is a linear polynomial and E = F . Assume that
the theorem is true for all polynomials of degree k with 1 ≤ k < n and let
deg p(x) = n. We can assume that p(x) is irreducible; otherwise, by our
induction hypothesis, we are done. By Theorem 21.5, p. 276, there exists
a field K such that p(x) has a zero α1 in K. Hence, p(x) = (x− α1)q(x),
where q(x) ∈ K[x]. Since deg q(x) = n − 1, there exists a splitting field
E ⊃ K of q(x) that contains the zeros α2, . . . , αn of p(x) by our induction
hypothesis. Consequently,

E = K(α2, . . . , αn) = F (α1, . . . , αn)

is a splitting field of p(x). ■
The question of uniqueness now arises for splitting fields. This ques-

tion is answered in the affirmative. Given two splitting fields K and L
of a polynomial p(x) ∈ F [x], there exists a field isomorphism ϕ : K → L
that preserves F . In order to prove this result, we must first prove a
lemma.
Lemma 21.32 Let ϕ : E → F be an isomorphism of fields. Let K be
an extension field of E and α ∈ K be algebraic over E with minimal
polynomial p(x). Suppose that L is an extension field of F such that β
is root of the polynomial in F [x] obtained from p(x) under the image of
ϕ. Then ϕ extends to a unique isomorphism ϕ : E(α) → F (β) such that
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ϕ(α) = β and ϕ agrees with ϕ on E.
Proof. If p(x) has degree n, then by Theorem 21.13, p. 279 we can write
any element in E(α) as a linear combination of 1, α, . . . , αn−1. Therefore,
the isomorphism that we are seeking must be

ϕ(a0 + a1α+ · · ·+ an−1α
n−1) = ϕ(a0) + ϕ(a1)β + · · ·+ ϕ(an−1)β

n−1,

where
a0 + a1α+ · · ·+ an−1α

n−1

is an element in E(α). The fact that ϕ is an isomorphism could be
checked by direct computation; however, it is easier to observe that ϕ is
a composition of maps that we already know to be isomorphisms.

We can extend ϕ to be an isomorphism from E[x] to F [x], which we
will also denote by ϕ, by letting

ϕ(a0 + a1x+ · · ·+ anx
n) = ϕ(a0) + ϕ(a1)x+ · · ·+ ϕ(an)x

n.

This extension agrees with the original isomorphism ϕ : E → F , since
constant polynomials get mapped to constant polynomials. By assump-
tion, ϕ(p(x)) = q(x); hence, ϕ maps 〈p(x)〉 onto 〈q(x)〉. Consequently,
we have an isomorphism ψ : E[x]/〈p(x)〉 → F [x]/〈q(x)〉. By Proposi-
tion 21.12, p. 279, we have isomorphisms σ : E[x]/〈p(x)〉 → E(α) and
τ : F [x]/〈q(x)〉 → F (β), defined by evaluation at α and β, respectively.
Therefore, ϕ = τψσ−1 is the required isomorphism (see Figure 21.33,
p. 285).

E[x]/〈p(x)〉 ψ−−−−→ F [x]/〈q(x)〉yσ yτ
E(α)

ϕ−−−−→ F (β)y y
E

ϕ−−−−→ F

Figure 21.33
We leave the proof of uniqueness as a exercise. ■

Theorem 21.34 Let ϕ : E → F be an isomorphism of fields and let
p(x) be a nonconstant polynomial in E[x] and q(x) the corresponding
polynomial in F [x] under the isomorphism. If K is a splitting field of
p(x) and L is a splitting field of q(x), then ϕ extends to an isomorphism
ψ : K → L.
Proof. We will use mathematical induction on the degree of p(x). We
can assume that p(x) is irreducible over E. Therefore, q(x) is also irre-
ducible over F . If deg p(x) = 1, then by the definition of a splitting field,
K = E and L = F and there is nothing to prove.

Assume that the theorem holds for all polynomials of degree less than
n. Since K is a splitting field of p(x), all of the roots of p(x) are in K.
Choose one of these roots, say α, such that E ⊂ E(α) ⊂ K. Similarly, we
can find a root β of q(x) in L such that F ⊂ F (β) ⊂ L. By Lemma 21.32,
p. 284, there exists an isomorphism ϕ : E(α) → F (β) such that ϕ(α) = β
and ϕ agrees with ϕ on E (see Figure 21.35, p. 286).
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K
ψ−−−−→ Lyσ yτ

E(α)
ϕ−−−−→ F (β)y y

E
ϕ−−−−→ F

Figure 21.35
Now write p(x) = (x − α)f(x) and q(x) = (x − β)g(x), where the

degrees of f(x) and g(x) are less than the degrees of p(x) and q(x), re-
spectively. The field extension K is a splitting field for f(x) over E(α),
and L is a splitting field for g(x) over F (β). By our induction hypothesis
there exists an isomorphism ψ : K → L such that ψ agrees with ϕ on
E(α). Hence, there exists an isomorphism ψ : K → L such that ψ agrees
with ϕ on E. ■
Corollary 21.36 Let p(x) be a polynomial in F [x]. Then there exists a
splitting field K of p(x) that is unique up to isomorphism.

21.3 Geometric Constructions
In ancient Greece, three classic problems were posed. These problems are
geometric in nature and involve straightedge-and-compass constructions
from what is now high school geometry; that is, we are allowed to use
only a straightedge and compass to solve them. The problems can be
stated as follows.

1. Given an arbitrary angle, can one trisect the angle into three equal
subangles using only a straightedge and compass?

2. Given an arbitrary circle, can one construct a square with the same
area using only a straightedge and compass?

3. Given a cube, can one construct the edge of another cube having
twice the volume of the original? Again, we are only allowed to use
a straightedge and compass to do the construction.

After puzzling mathematicians for over two thousand years, each of these
constructions was finally shown to be impossible. We will use the theory
of fields to provide a proof that the solutions do not exist. It is quite
remarkable that the long-sought solution to each of these three geometric
problems came from abstract algebra.

First, let us determine more specifically what we mean by a straight-
edge and compass, and also examine the nature of these problems in a
bit more depth. To begin with, a straightedge is not a ruler. We cannot
measure arbitrary lengths with a straightedge. It is merely a tool for
drawing a line through two points. The statement that the trisection of
an arbitrary angle is impossible means that there is at least one angle
that is impossible to trisect with a straightedge-and-compass construc-
tion. Certainly it is possible to trisect an angle in special cases. We can
construct a 30◦ angle; hence, it is possible to trisect a 90◦ angle. However,
we will show that it is impossible to construct a 20◦ angle. Therefore, we
cannot trisect a 60◦ angle.
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Constructible Numbers
A real number α is constructible if we can construct a line segment of
length |α| in a finite number of steps from a segment of unit length by
using a straightedge and compass.
Theorem 21.37 The set of all constructible real numbers forms a subfield
F of the field of real numbers.
Proof. Let α and β be constructible numbers. We must show that
α + β, α − β, αβ, and α/β (β 6= 0) are also constructible numbers. We
can assume that both α and β are positive with α > β. It is quite obvious
how to construct α+β and α−β. To find a line segment with length αβ,
we assume that β > 1 and construct the triangle in Figure 21.38, p. 287
such that triangles 4ABC and 4ADE are similar. Since α/1 = x/β,
the line segment x has length αβ. A similar construction can be made if
β < 1. We will leave it as an exercise to show that the same triangle can
be used to construct α/β for β 6= 0. ■

A

B

C

D

E

1

α

β

x

Figure 21.38 Construction of products

Lemma 21.39 If α is a constructible number, then
√
α is a constructible

number.
Proof. In Figure 21.40, p. 287 the triangles 4ABD, 4BCD, and
4ABC are similar; hence, 1/x = x/α, or x2 = α. ■

A

B

CD

α1

x

Figure 21.40 Construction of roots
By Theorem 21.37, p. 287, we can locate in the plane any point P =

(p, q) that has rational coordinates p and q. We need to know what other
points can be constructed with a compass and straightedge from points
with rational coordinates.
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Lemma 21.41 Let F be a subfield of R.
1. If a line contains two points in F , then it has the equation ax+ by+

c = 0, where a, b, and c are in F .

2. If a circle has a center at a point with coordinates in F and a radius
that is also in F , then it has the equation x2+ y2+ dx+ ey+ f = 0,
where d, e, and f are in F .

Proof. Let (x1, y1) and (x2, y2) be points on a line whose coordinates
are in F . If x1 = x2, then the equation of the line through the two points
is x − x1 = 0, which has the form ax + by + c = 0. If x1 6= x2, then the
equation of the line through the two points is given by

y − y1 =

(
y2 − y1
x2 − x1

)
(x− x1),

which can also be put into the proper form.
To prove the second part of the lemma, suppose that (x1, y1) is the

center of a circle of radius r. Then the circle has the equation

(x− x1)
2 + (y − y1)

2 − r2 = 0.

This equation can easily be put into the appropriate form. ■
Starting with a field of constructible numbers F , we have three pos-

sible ways of constructing additional points in R with a compass and
straightedge.

1. To find possible new points in R, we can take the intersection of
two lines, each of which passes through two known points with
coordinates in F .

2. The intersection of a line that passes through two points that have
coordinates in F and a circle whose center has coordinates in F
with radius of a length in F will give new points in R.

3. We can obtain new points in R by intersecting two circles whose
centers have coordinates in F and whose radii are of lengths in F .

The first case gives no new points in R, since the solution of two equations
of the form ax+ by + c = 0 having coefficients in F will always be in F .
The third case can be reduced to the second case. Let

x2 + y2 + d1x+ e1y + f1 = 0

x2 + y2 + d2x+ e2y + f2 = 0

be the equations of two circles, where di, ei, and fi are in F for i = 1, 2.
These circles have the same intersection as the circle

x2 + y2 + d1x+ e1x+ f1 = 0

and the line

(d1 − d2)x+ b(e2 − e1)y + (f2 − f1) = 0.

The last equation is that of the chord passing through the intersection
points of the two circles. Hence, the intersection of two circles can be
reduced to the case of an intersection of a line with a circle.
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Considering the case of the intersection of a line and a circle, we must
determine the nature of the solutions of the equations

ax+ by + c = 0

x2 + y2 + dx+ ey + f = 0.

If we eliminate y from these equations, we obtain an equation of the form
Ax2+Bx+C = 0, where A, B, and C are in F . The x coordinate of the
intersection points is given by

x =
−B ±

√
B2 − 4AC

2A

and is in F (
√
α ), where α = B2−4AC > 0. We have proven the following

lemma.
Lemma 21.42 Let F be a field of constructible numbers. Then the points
determined by the intersections of lines and circles in F lie in the field
F (

√
α ) for some α in F .

Theorem 21.43 A real number α is a constructible number if and only
if there exists a sequence of fields

Q = F0 ⊂ F1 ⊂ · · · ⊂ Fk

such that Fi = Fi−1(
√
αi ) with αi ∈ Fi and α ∈ Fk. In particular, there

exists an integer k > 0 such that [Q(α) : Q] = 2k.
Proof. The existence of the Fi’s and the αi’s is a direct consequence of
Lemma 21.42, p. 289 and of the fact that

[Fk : Q] = [Fk : Fk−1][Fk−1 : Fk−2] · · · [F1 : Q] = 2k.

■
Corollary 21.44 The field of all constructible numbers is an algebraic
extension of Q.

As we can see by the field of constructible numbers, not every algebraic
extension of a field is a finite extension.

Doubling the Cube and Squaring the Circle
We are now ready to investigate the classical problems of doubling the
cube and squaring the circle. We can use the field of constructible num-
bers to show exactly when a particular geometric construction can be
accomplished.

Doubling the cube is impossible. Given the edge of the cube, it is
impossible to construct with a straightedge and compass the edge of the
cube that has twice the volume of the original cube. Let the original
cube have an edge of length 1 and, therefore, a volume of 1. If we could
construct a cube having a volume of 2, then this new cube would have an
edge of length 3

√
2. However, 3

√
2 is a zero of the irreducible polynomial

x3 − 2 over Q; hence,
[Q(

3
√
2 ) : Q] = 3

This is impossible, since 3 is not a power of 2.
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Squaring the circle. Suppose that we have a circle of radius 1. The
area of the circle is π; therefore, we must be able to construct a square
with side

√
π. This is impossible since π and consequently

√
π are both

transcendental. Therefore, using a straightedge and compass, it is not
possible to construct a square with the same area as the circle.

Trisecting an Angle
Trisecting an arbitrary angle is impossible. We will show that it is im-
possible to construct a 20◦ angle. Consequently, a 60◦ angle cannot be
trisected. We first need to calculate the triple-angle formula for the co-
sine:

cos 3θ = cos(2θ + θ)

= cos 2θ cos θ − sin 2θ sin θ
= (2 cos2 θ − 1) cos θ − 2 sin2 θ cos θ
= (2 cos2 θ − 1) cos θ − 2(1− cos2 θ) cos θ
= 4 cos3 θ − 3 cos θ.

The angle θ can be constructed if and only if α = cos θ is constructible.
Let θ = 20◦. Then cos 3θ = cos 60◦ = 1/2. By the triple-angle formula
for the cosine,

4α3 − 3α =
1

2
.

Therefore, α is a zero of 8x3 − 6x− 1. This polynomial has no factors in
Z[x], and hence is irreducible over Q[x]. Thus, [Q(α) : Q] = 3. Conse-
quently, α cannot be a constructible number.

Sage. Extensions of the field of rational numbers are a central object
of study in number theory, so with Sage’s roots in this discipline, it is
no surprise that there is extensive support for fields and for extensions of
the rationals. Sage also contains an implementation of the entire field of
algebraic numbers, with exact representations.

Historical Note
Algebraic number theory uses the tools of algebra to solve problems in
number theory. Modern algebraic number theory began with Pierre de
Fermat (1601–1665). Certainly we can find many positive integers that
satisfy the equation x2 + y2 = z2; Fermat conjectured that the equation
xn+yn = zn has no positive integer solutions for n ≥ 3. He stated in the
margin of his copy of the Latin translation of Diophantus’ Arithmetica
that he had found a marvelous proof of this theorem, but that the margin
of the book was too narrow to contain it. Building on work of other
mathematicians, it was Andrew Wiles who finally succeeded in proving
Fermat’s Last Theorem in the 1990s. Wiles’s achievement was reported
on the front page of the New York Times.
Attempts to prove Fermat’s Last Theorem have led to important con-
tributions to algebraic number theory by such notable mathematicians
as Leonhard Euler (1707–1783). Significant advances in the understand-
ing of Fermat’s Last Theorem were made by Ernst Kummer (1810–1893).
Kummer’s student, Leopold Kronecker (1823–1891), became one of the
leading algebraists of the nineteenth century. Kronecker’s theory of ideals
and his study of algebraic number theory added much to the understand-
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ing of fields.
David Hilbert (1862–1943) and Hermann Minkowski (1864–1909) were
among the mathematicians who led the way in this subject at the begin-
ning of the twentieth century. Hilbert and Minkowski were both mathe-
maticians at Göttingen University in Germany. Göttingen was truly one
the most important centers of mathematical research during the last two
centuries. The large number of exceptional mathematicians who studied
there included Gauss, Dirichlet, Riemann, Dedekind, Noether, and Weyl.
André Weil answered questions in number theory using algebraic geome-
try, a field of mathematics that studies geometry by studying commuta-
tive rings. From about 1955 to 1970, Alexander Grothendieck dominated
the field of algebraic geometry. Pierre Deligne, a student of Grothendieck,
solved several of Weil’s number-theoretic conjectures. One of the most
recent contributions to algebra and number theory is Gerd Falting’s proof
of the Mordell-Weil conjecture. This conjecture of Mordell and Weil es-
sentially says that certain polynomials p(x, y) in Z[x, y] have only a finite
number of integral solutions.

21.4 Reading Questions
1. What does it mean for an extension field E of a field F to be a simple

extension of F?
2. What is the definition of a minimal polynomial of an element α ∈ E,

where E is an extension of F , and α is algebraic over F?
3. Describe how linear algebra enters into this chapter. What critical

result relies on a proof that is almost entirely linear algebra?
4. What is the definition of an algebraically closed field?
5. What is a splitting field of a polynomial p(x) ∈ F [x]?

21.5 Exercises
1. Show that each of the following numbers is algebraic over Q by find-

ing the minimal polynomial of the number over Q.

(a)
√
1/3 +

√
7

(b)
√
3 +

3
√
5

(c)
√
3 +

√
2 i

(d) cos θ + i sin θ for θ = 2π/n with n ∈ N

(e)
√

3
√
2− i

2. Find a basis for each of the following field extensions. What is the
degree of each extension?

(a) Q(
√
3,
√
6 ) over Q

(b) Q( 3
√
2, 3

√
3 ) over Q

(c) Q(
√
2, i) over Q

(d) Q(
√
3,
√
5,
√
7 ) over Q
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(e) Q(
√
2, 3

√
2 ) over Q

(f) Q(
√
8 ) over Q(

√
2 )

(g) Q(i,
√
2 + i,

√
3 + i) over Q

(h) Q(
√
2 +

√
5 ) over Q(

√
5 )

(i) Q(
√
2,
√
6 +

√
10 ) over Q(

√
3 +

√
5 )

3. Find the splitting field for each of the following polynomials.
(a) x4 − 10x2 + 21 over Q

(b) x4 + 1 over Q

(c) x3 + 2x+ 2 over Z3

(d) x3 − 3 over Q
4. Consider the field extension Q( 4

√
3, i) over Q.

(a) Find a basis for the field extension Q( 4
√
3, i) over Q. Conclude

that [Q( 4
√
3, i) : Q] = 8.

(b) Find all subfields F of Q( 4
√
3, i) such that [F : Q] = 2.

(c) Find all subfields F of Q( 4
√
3, i) such that [F : Q] = 4.

5. Show that Z2[x]/〈x3+x+1〉 is a field with eight elements. Construct
a multiplication table for the multiplicative group of the field.

6. Show that the regular 9-gon is not constructible with a straightedge
and compass, but that the regular 20-gon is constructible.

7. Prove that the cosine of one degree (cos 1◦) is algebraic over Q but
not constructible.

8. Can a cube be constructed with three times the volume of a given
cube?

9. Prove that Q(
√
3, 4

√
3, 8

√
3, . . .) is an algebraic extension of Q but not

a finite extension.
10. Prove or disprove: π is algebraic over Q(π3).
11. Let p(x) be a nonconstant polynomial of degree n in F [x]. Prove

that there exists a splitting field E for p(x) such that [E : F ] ≤ n!.
12. Prove or disprove: Q(

√
2 ) ∼= Q(

√
3 ).

13. Prove that the fields Q( 4
√
3 ) and Q( 4

√
3 i) are isomorphic but not

equal.
14. Let K be an algebraic extension of E, and E an algebraic extension

of F . Prove that K is algebraic over F . [Caution: Do not assume
that the extensions are finite.]

15. Prove or disprove: Z[x]/〈x3 − 2〉 is a field.
16. Let F be a field of characteristic p. Prove that p(x) = xp − a either

is irreducible over F or splits in F .
17. Let E be the algebraic closure of a field F . Prove that every poly-

nomial p(x) in F [x] splits in E.
18. If every irreducible polynomial p(x) in F [x] is linear, show that F is

an algebraically closed field.
19. Prove that if α and β are constructible numbers such that β 6= 0,

then so is α/β.
20. Show that the set of all elements in R that are algebraic over Q form

a field extension of Q that is not finite.
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21. Let E be an algebraic extension of a field F , and let σ be an auto-
morphism of E leaving F fixed. Let α ∈ E. Show that σ induces a
permutation of the set of all zeros of the minimal polynomial of α
that are in E.

22. Show that Q(
√
3,
√
7 ) = Q(

√
3 +

√
7 ). Extend your proof to show

that Q(
√
a,
√
b ) = Q(

√
a+

√
b ), where a 6= b and neither a nor b is

a perfect square.
23. Let E be a finite extension of a field F . If [E : F ] = 2, show that E

is a splitting field of F for some polynomial f(x) ∈ F [x].
24. Prove or disprove: Given a polynomial p(x) in Z6[x], it is possible

to construct a ring R such that p(x) has a root in R.
25. Let E be a field extension of F and α ∈ E. Determine [F (α) :

F (α3)].
26. Let α, β be transcendental over Q. Prove that either αβ or α+ β is

also transcendental.
27. Let E be an extension field of F and α ∈ E be transcendental

over F . Prove that every element in F (α) that is not in F is also
transcendental over F .

28. Let α be a root of an irreducible monic polynomial p(x) ∈ F [x], with
deg p = n. Prove that [F (α) : F ] = n.

21.6 References and Suggested Readings
[1] Dean, R. A. Elements of Abstract Algebra . Wiley, New York, 1966.
[2] Dudley, U. A Budget of Trisections. Springer-Verlag, New York,

1987. An interesting and entertaining account of how not to trisect
an angle.

[3] Fraleigh, J. B. A First Course in Abstract Algebra. 7th ed. Pearson,
Upper Saddle River, NJ, 2003.

[4] Kaplansky, I. Fields and Rings, 2nd ed. University of Chicago Press,
Chicago, 1972.

[5] Klein, F. Famous Problems of Elementary Geometry. Chelsea, New
York, 1955.

[6] Martin, G. Geometric Constructions. Springer, New York, 1998.
[7] H. Pollard and H. G. Diamond. Theory of Algebraic Numbers,

Dover, Mineola, NY, 2010.
[8] Walker, E. A. Introduction to Abstract Algebra. Random House,

New York, 1987. This work contains a proof showing that every
field has an algebraic closure.



296 CHAPTER 21. FIELDS



22

Finite Fields

Finite fields appear in many applications of algebra, including coding
theory and cryptography. We already know one finite field, Zp, where p
is prime. In this chapter we will show that a unique finite field of order
pn exists for every prime p, where n is a positive integer. Finite fields are
also called Galois fields in honor of Évariste Galois, who was one of the
first mathematicians to investigate them.

22.1 Structure of a Finite Field
Recall that a field F has characteristic p if p is the smallest positive integer
such that for every nonzero element α in F , we have pα = 0. If no such
integer exists, then F has characteristic 0. From Theorem 16.19, p. 204
we know that p must be prime. Suppose that F is a finite field with n
elements. Then nα = 0 for all α in F . Consequently, the characteristic of
F must be p, where p is a prime dividing n. This discussion is summarized
in the following proposition.
Proposition 22.1 If F is a finite field, then the characteristic of F is p,
where p is prime.

Throughout this chapter we will assume that p is a prime number
unless otherwise stated.
Proposition 22.2 If F is a finite field of characteristic p, then the order
of F is pn for some n ∈ N.
Proof. Let ϕ : Z → F be the ring homomorphism defined by ϕ(n) = n·1.
Since the characteristic of F is p, the kernel of ϕ must be pZ and the image
of ϕ must be a subfield of F isomorphic to Zp. We will denote this subfield
by K. Since F is a finite field, it must be a finite extension of K and,
therefore, an algebraic extension of K. Suppose that [F : K] = n is the
dimension of F , where F is a K vector space. There must exist elements
α1, . . . , αn ∈ F such that any element α in F can be written uniquely in
the form

α = a1α1 + · · ·+ anαn,

where the ai’s are in K. Since there are p elements in K, there are pn
possible linear combinations of the αi’s. Therefore, the order of F must
be pn. ■

297
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Lemma 22.3 Freshman’s Dream. Let p be prime and D be an integral
domain of characteristic p. Then

ap
n

+ bp
n

= (a+ b)p
n

for all positive integers n.
Proof. We will prove this lemma using mathematical induction on n.
We can use the binomial formula (see Chapter 2, p. 19, Example 2.4, p. 20)
to verify the case for n = 1; that is,

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k.

If 0 < k < p, then (
p

k

)
=

p!

k!(p− k)!

must be divisible by p, since p cannot divide k!(p − k)!. Note that D is
an integral domain of characteristic p, so all but the first and last terms
in the sum must be zero. Therefore, (a+ b)p = ap + bp.

Now suppose that the result holds for all k, where 1 ≤ k ≤ n. By the
induction hypothesis,

(a+b)p
n+1

= ((a+b)p)p
n

= (ap+bp)p
n

= (ap)p
n

+(bp)p
n

= ap
n+1

+bp
n+1

.

Therefore, the lemma is true for n+ 1 and the proof is complete. ■
Let F be a field. A polynomial f(x) ∈ F [x] of degree n is separable

if it has n distinct roots in the splitting field of f(x); that is, f(x) is
separable when it factors into distinct linear factors over the splitting
field of f . An extension E of F is a separable extension of F if every
element in E is the root of a separable polynomial in F [x].

Example 22.4 The polynomial x2−2 is separable over Q since it factors
as (x−

√
2 )(x+

√
2 ). In fact, Q(

√
2 ) is a separable extension of Q. Let

α = a+ b
√
2 be any element in Q(

√
2 ). If b = 0, then α is a root of x−a.

If b 6= 0, then α is the root of the separable polynomial

x2 − 2ax+ a2 − 2b2 = (x− (a+ b
√
2 ))(x− (a− b

√
2 )).

□
Fortunately, we have an easy test to determine the separability of any

polynomial. Let
f(x) = a0 + a1x+ · · ·+ anx

n

be any polynomial in F [x]. Define the derivative of f(x) to be

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1.

Lemma 22.5 Let F be a field and f(x) ∈ F [x]. Then f(x) is separable
if and only if f(x) and f ′(x) are relatively prime.
Proof. Let f(x) be separable. Then f(x) factors over some extension
field of F as f(x) = (x−α1)(x−α2) · · · (x−αn), where αi 6= αj for i 6= j.
Taking the derivative of f(x), we see that

f ′(x) = (x− α2) · · · (x− αn)

+ (x− α1)(x− α3) · · · (x− αn)

+ · · ·+ (x− α1) · · · (x− αn−1).
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Hence, f(x) and f ′(x) can have no common factors.
To prove the converse, we will show that the contrapositive of the

statement is true. Suppose that f(x) = (x − α)kg(x), where k > 1.
Differentiating, we have

f ′(x) = k(x− α)k−1g(x) + (x− α)kg′(x).

Therefore, f(x) and f ′(x) have a common factor. ■
Theorem 22.6 For every prime p and every positive integer n, there
exists a finite field F with pn elements. Furthermore, any field of order
pn is isomorphic to the splitting field of xpn − x over Zp.
Proof. Let f(x) = xp

n −x and let F be the splitting field of f(x). Then
by Lemma 22.5, p. 296, f(x) has pn distinct zeros in F , since f ′(x) =
pnxp

n−1 − 1 = −1 is relatively prime to f(x). We claim that the roots
of f(x) form a subfield of F . Certainly 0 and 1 are zeros of f(x). If α
and β are zeros of f(x), then α + β and αβ are also zeros of f(x), since
αp

n

+ βp
n

= (α+ β)p
n and αpnβpn = (αβ)p

n . We also need to show that
the additive inverse and the multiplicative inverse of each root of f(x)
are roots of f(x). For any zero α of f(x), we know that −α is also a zero
of f(x), since

f(−α) = (−α)p
n

− (−α) = −αp
n

+ α = −(αp
n

− α) = 0,

provided p is odd. If p = 2, then

f(−α) = (−α)2
n

− (−α) = α+ α = 0.

If α 6= 0, then (α−1)p
n

= (αp
n

)−1 = α−1. Since the zeros of f(x) form a
subfield of F and f(x) splits in this subfield, the subfield must be all of
F .

Let E be any other field of order pn. To show that E is isomorphic
to F , we must show that every element in E is a root of f(x). Certainly
0 is a root of f(x). Let α be a nonzero element of E. The order of the
multiplicative group of nonzero elements of E is pn− 1; hence, αpn−1 = 1
or αpn − α = 0. Since E contains pn elements, E must be a splitting
field of f(x); however, by Corollary 21.36, p. 286, the splitting field of any
polynomial is unique up to isomorphism. ■

The unique finite field with pn elements is called the Galois field of
order pn. We will denote this field by GF(pn).

Theorem 22.7 Every subfield of the Galois field GF(pn) has pm elements,
where m divides n. Conversely, if m | n for m > 0, then there exists a
unique subfield of GF(pn) isomorphic to GF(pm).
Proof. Let F be a subfield of E = GF(pn). Then F must be a field
extension of K that contains pm elements, where K is isomorphic to Zp.
Then m | n, since [E : K] = [E : F ][F : K].

To prove the converse, suppose thatm | n for somem > 0. Then pm−1
divides pn − 1. Consequently, xpm−1 − 1 divides xpn−1 − 1. Therefore,
xp

m − x must divide xpn − x, and every zero of xpm − x is also a zero of
xp

n −x. Thus, GF(pn) contains, as a subfield, a splitting field of xpm −x,
which must be isomorphic to GF(pm). ■

Example 22.8 The lattice of subfields of GF(p24) is given in Figure 22.9,
p. 298. □
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GF(p24)

GF(p8) GF(p12)

GF(p4) GF(p6)

GF(p2) GF(p3)

GF(p)

Figure 22.9 Subfields of GF(p24)
With each field F we have a multiplicative group of nonzero elements

of F which we will denote by F ∗. The multiplicative group of any finite
field is cyclic. This result follows from the more general result that we
will prove in the next theorem.
Theorem 22.10 If G is a finite subgroup of F ∗, the multiplicative group
of nonzero elements of a field F , then G is cyclic.
Proof. Let G be a finite subgroup of F ∗ of order n. By the Fundamental
Theorem of Finite Abelian Groups (Theorem 13.4, p. 166),

G ∼= Zpe11 × · · · × Zpekk ,

where n = pe11 · · · pekk and the p1, . . . , pk are (not necessarily distinct)
primes. Let m be the least common multiple of pe11 , . . . , p

ek
k . Then G

contains an element of order m. Since every α in G satisfies xr − 1 for
some r dividing m, α must also be a root of xm − 1. Since xm − 1 has at
most m roots in F , n ≤ m. On the other hand, we know that m ≤ |G|;
therefore, m = n. Thus, G contains an element of order n and must be
cyclic. ■
Corollary 22.11 The multiplicative group of all nonzero elements of a
finite field is cyclic.
Corollary 22.12 Every finite extension E of a finite field F is a simple
extension of F .
Proof. Let α be a generator for the cyclic group E∗ of nonzero elements
of E. Then E = F (α). ■

Example 22.13 The finite field GF(24) is isomorphic to the field Z2/〈1+
x+ x4〉. Therefore, the elements of GF(24) can be taken to be

{a0 + a1α+ a2α
2 + a3α

3 : ai ∈ Z2 and 1 + α+ α4 = 0}.

Remembering that 1 + α + α4 = 0, we add and multiply elements of
GF(24) exactly as we add and multiply polynomials. The multiplicative
group of GF(24) is isomorphic to Z15 with generator α:

α1 = α α6 = α2 + α3 α11 = α+ α2 + α3

α2 = α2 α7 = 1 + α+ α3 α12 = 1 + α+ α2 + α3

α3 = α3 α8 = 1 + α2 α13 = 1 + α2 + α3

α4 = 1 + α α9 = α+ α3 α14 = 1 + α3
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α5 = α+ α2 α10 = 1 + α+ α2 α15 = 1.

□

22.2 Polynomial Codes
With knowledge of polynomial rings and finite fields, it is now possible
to derive more sophisticated codes than those of Chapter 8, p. 97. First
let us recall that an (n, k)-block code consists of a one-to-one encoding
function E : Zk2 → Zn2 and a decoding function D : Zn2 → Zk2 . The code
is error-correcting if D is onto. A code is a linear code if it is the null
space of a matrix H ∈ Mk×n(Z2).

We are interested in a class of codes known as cyclic codes. Let ϕ :
Zk2 → Zn2 be a binary (n, k)-block code. Then ϕ is a cyclic code if for every
codeword (a1, a2, . . . , an), the cyclically shifted n-tuple (an, a1, a2, . . . , an−1)
is also a codeword. Cyclic codes are particularly easy to implement on a
computer using shift registers [2, 3].

Example 22.14 Consider the (6, 3)-linear codes generated by the two
matrices

G1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1


and G2 =



1 0 0

1 1 0

1 1 1

1 1 1

0 1 1

0 0 1


.

Messages in the first code are encoded as follows:

(000) 7→ (000000) (100) 7→ (100100)

(001) 7→ (001001) (101) 7→ (101101)

(010) 7→ (010010) (110) 7→ (110110)

(011) 7→ (011011) (111) 7→ (111111).

It is easy to see that the codewords form a cyclic code. In the second
code, 3-tuples are encoded in the following manner:

(000) 7→ (000000) (100) 7→ (111100)

(001) 7→ (001111) (101) 7→ (110011)

(010) 7→ (011110) (110) 7→ (100010)

(011) 7→ (010001) (111) 7→ (101101).

This code cannot be cyclic, since (101101) is a codeword but (011011) is
not a codeword. □

Polynomial Codes
We would like to find an easy method of obtaining cyclic linear codes. To
accomplish this, we can use our knowledge of finite fields and polynomial
rings over Z2. Any binary n-tuple can be interpreted as a polynomial in
Z2[x]. Stated another way, the n-tuple (a0, a1, . . . , an−1) corresponds to
the polynomial

f(x) = a0 + a1x+ · · ·+ an−1x
n−1,
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where the degree of f(x) is at most n− 1. For example, the polynomial
corresponding to the 5-tuple (10011) is

1 + 0x+ 0x2 + 1x3 + 1x4 = 1 + x3 + x4.

Conversely, with any polynomial f(x) ∈ Z2[x] with deg f(x) < n we can
associate a binary n-tuple. The polynomial x + x2 + x4 corresponds to
the 5-tuple (01101).

Let us fix a nonconstant polynomial g(x) in Z2[x] of degree n−k. We
can define an (n, k)-code C in the following manner. If (a0, . . . , ak−1) is
a k-tuple to be encoded, then f(x) = a0 + a1x + · · · + ak−1x

k−1 is the
corresponding polynomial in Z2[x]. To encode f(x), we multiply by g(x).
The codewords in C are all those polynomials in Z2[x] of degree less than
n that are divisible by g(x). Codes obtained in this manner are called
polynomial codes.

Example 22.15 If we let g(x) = 1+x3, we can define a (6, 3)-code C as
follows. To encode a 3-tuple (a0, a1, a2), we multiply the corresponding
polynomial f(x) = a0 + a1x + a2x

2 by 1 + x3. We are defining a map
ϕ : Z3

2 → Z6
2 by ϕ : f(x) 7→ g(x)f(x). It is easy to check that this map is

a group homomorphism. In fact, if we regard Zn2 as a vector space over
Z2, ϕ is a linear transformation of vector spaces (see Exercise 20.5.15,
p. 271, Chapter 20, p. 265). Let us compute the kernel of ϕ. Observe that
ϕ(a0, a1, a2) = (000000) exactly when

0 + 0x+ 0x2 + 0x3 + 0x4 + 0x5 = (1 + x3)(a0 + a1x+ a2x
2)

= a0 + a1x+ a2x
2 + a0x

3 + a1x
4 + a2x

5.

Since the polynomials over a field form an integral domain, a0+a1x+a2x2
must be the zero polynomial. Therefore, kerϕ = {(000)} and ϕ is one-to-
one.

To calculate a generator matrix for C, we merely need to examine the
way the polynomials 1, x, and x2 are encoded:

(1 + x3) · 1 = 1 + x3

(1 + x3)x = x+ x4

(1 + x3)x2 = x2 + x5.

We obtain the code corresponding to the generator matrix G1 in Exam-
ple 22.14, p. 299. The parity-check matrix for this code is

H =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

 .

Since the smallest weight of any nonzero codeword is 2, this code has the
ability to detect all single errors. □

Rings of polynomials have a great deal of structure; therefore, our
immediate goal is to establish a link between polynomial codes and ring
theory. Recall that xn − 1 = (x− 1)(xn−1 + · · ·+ x+1). The factor ring

Rn = Z2[x]/〈xn − 1〉

can be considered to be the ring of polynomials of the form

f(t) = a0 + a1t+ · · ·+ an−1t
n−1
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that satisfy the condition tn = 1. It is an easy exercise to show that Zn2
and Rn are isomorphic as vector spaces. We will often identify elements
in Zn2 with elements in Z[x]/〈xn − 1〉. In this manner we can interpret a
linear code as a subset of Z[x]/〈xn − 1〉.

The additional ring structure on polynomial codes is very powerful in
describing cyclic codes. A cyclic shift of an n-tuple can be described by
polynomial multiplication. If f(t) = a0 + a1t + · · · + an−1t

n−1 is a code
polynomial in Rn, then

tf(t) = an−1 + a0t+ · · ·+ an−2t
n−1

is the cyclically shifted word obtained from multiplying f(t) by t. The
following theorem gives a beautiful classification of cyclic codes in terms
of the ideals of Rn.
Theorem 22.16 A linear code C in Zn2 is cyclic if and only if it is an
ideal in Rn = Z[x]/〈xn − 1〉.
Proof. Let C be a linear cyclic code and suppose that f(t) is in C.
Then tf(t) must also be in C. Consequently, tkf(t) is in C for all
k ∈ N. Since C is a linear code, any linear combination of the code-
words f(t), tf(t), t2f(t), . . . , tn−1f(t) is also a codeword; therefore, for
every polynomial p(t), p(t)f(t) is in C. Hence, C is an ideal.

Conversely, let C be an ideal in Z2[x]/〈xn + 1〉. Suppose that f(t) =
a0 + a1t+ · · ·+ an−1t

n−1 is a codeword in C. Then tf(t) is a codeword
in C; that is, (a1, . . . , an−1, a0) is in C. ■

Theorem 22.16, p. 301 tells us that knowing the ideals of Rn is equiv-
alent to knowing the linear cyclic codes in Zn2 . Fortunately, the ideals in
Rn are easy to describe. The natural ring homomorphism ϕ : Z2[x] → Rn
defined by ϕ[f(x)] = f(t) is a surjective homomorphism. The kernel of ϕ
is the ideal generated by xn − 1. By Theorem 16.34, p. 207, every ideal
C in Rn is of the form ϕ(I), where I is an ideal in Z2[x] that contains
〈xn − 1〉. By Theorem 17.20, p. 228, we know that every ideal I in Z2[x]
is a principal ideal, since Z2 is a field. Therefore, I = 〈g(x)〉 for some
unique monic polynomial in Z2[x]. Since 〈xn − 1〉 is contained in I, it
must be the case that g(x) divides xn − 1. Consequently, every ideal C
in Rn is of the form

C = 〈g(t)〉 = {f(t)g(t) : f(t) ∈ Rn and g(x) | (xn − 1) in Z2[x]}.

The unique monic polynomial of the smallest degree that generates C is
called the minimal generator polynomial of C.

Example 22.17 If we factor x7−1 into irreducible components, we have

x7 − 1 = (1 + x)(1 + x+ x3)(1 + x2 + x3).

We see that g(t) = (1 + t + t3) generates an ideal C in R7. This code is
a (7, 4)-block code. As in Example 22.15, p. 300, it is easy to calculate
a generator matrix by examining what g(t) does to the polynomials 1, t,
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t2, and t3. A generator matrix for C is

G =



1 0 0 0

1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1


.

□
In general, we can determine a generator matrix for an (n, k)-code

C by the manner in which the elements tk are encoded. Let xn − 1 =
g(x)h(x) in Z2[x]. If g(x) = g0 + g1x + · · · + gn−kx

n−k and h(x) =
h0 + h1x+ · · ·+ hkx

k, then the n× k matrix

G =



g0 0 · · · 0

g1 g0 · · · 0
...

... . . . ...
gn−k gn−k−1 · · · g0
0 gn−k · · · g1
...

... . . . ...
0 0 · · · gn−k


is a generator matrix for the code C with generator polynomial g(t). The
parity-check matrix for C is the (n− k)× n matrix

H =


0 · · · 0 0 hk · · · h0
0 · · · 0 hk · · · h0 0

· · · · · · · · · · · · · · · · · · · · ·
hk · · · h0 0 0 · · · 0

 .

We will leave the details of the proof of the following proposition as an
exercise.
Proposition 22.18 Let C = 〈g(t)〉 be a cyclic code in Rn and suppose
that xn − 1 = g(x)h(x). Then G and H are generator and parity-check
matrices for C, respectively. Furthermore, HG = 0.
Example 22.19 In Example 22.17, p. 301,

x7 − 1 = g(x)h(x) = (1 + x+ x3)(1 + x+ x2 + x4).

Therefore, a parity-check matrix for this code is

H =

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 1 1 1 0 0

 .

□
To determine the error-detecting and error-correcting capabilities of a

cyclic code, we need to know something about determinants. If α1, . . . , αn
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are elements in a field F , then the n× n matrix
1 1 · · · 1

α1 α2 · · · αn
α2
1 α2

2 · · · α2
n

...
... . . . ...

αn−1
1 αn−1

2 · · · αn−1
n


is called the Vandermonde matrix. The determinant of this matrix is
called the Vandermonde determinant. We will need the following lemma
in our investigation of cyclic codes.
Lemma 22.20 Let α1, . . . , αn be elements in a field F with n ≥ 2. Then

det


1 1 · · · 1

α1 α2 · · · αn
α2
1 α2

2 · · · α2
n

...
... . . . ...

αn−1
1 αn−1

2 · · · αn−1
n

 =
∏

1≤j<i≤n

(αi − αj).

In particular, if the αi’s are distinct, then the determinant is nonzero.
Proof. We will induct on n. If n = 2, then the determinant is α2 − α1.
Let us assume the result for n−1 and consider the polynomial p(x) defined
by

p(x) = det


1 1 · · · 1 1

α1 α2 · · · αn−1 x

α2
1 α2

2 · · · α2
n−1 x2

...
... . . . ...

...
αn−1
1 αn−1

2 · · · αn−1
n−1 xn−1

 .

Expanding this determinant by cofactors on the last column, we see that
p(x) is a polynomial of at most degree n− 1. Moreover, the roots of p(x)
are α1, . . . , αn−1, since the substitution of any one of these elements in
the last column will produce a column identical to the last column in the
matrix. Remember that the determinant of a matrix is zero if it has two
identical columns. Therefore,

p(x) = (x− α1)(x− α2) · · · (x− αn−1)β,

where

β = (−1)n+n det


1 1 · · · 1

α1 α2 · · · αn−1

α2
1 α2

2 · · · α2
n−1

...
... . . . ...

αn−2
1 αn−2

2 · · · αn−2
n−1

 .

By our induction hypothesis,

β = (−1)n+n
∏

1≤j<i≤n−1

(αi − αj).

If we let x = αn, the result now follows immediately. ■
The following theorem gives us an estimate on the error detection and

correction capabilities for a particular generator polynomial.
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Theorem 22.21 Let C = 〈g(t)〉 be a cyclic code in Rn and suppose that
ω is a primitive nth root of unity over Z2. If s consecutive powers of ω
are roots of g(x), then the minimum distance of C is at least s+ 1.
Proof. Suppose that

g(ωr) = g(ωr+1) = · · · = g(ωr+s−1) = 0.

Let f(x) be some polynomial in C with s or fewer nonzero coefficients.
We can assume that

f(x) = ai0x
i0 + ai1x

i1 + · · ·+ ais−1x
is−1

be some polynomial in C. It will suffice to show that all of the ai’s must
be 0. Since

g(ωr) = g(ωr+1) = · · · = g(ωr+s−1) = 0

and g(x) divides f(x),

f(ωr) = f(ωr+1) = · · · = f(ωr+s−1) = 0.

Equivalently, we have the following system of equations:

ai0(ω
r)i0 + ai1(ω

r)i1 + · · ·+ ais−1
(ωr)is−1 = 0

ai0(ω
r+1)i0 + ai1(ω

r+1)i2 + · · ·+ ais−1(ω
r+1)is−1 = 0

...
ai0(ω

r+s−1)i0 + ai1(ω
r+s−1)i1 + · · ·+ ais−1(ω

r+s−1)is−1 = 0.

Therefore, (ai0 , ai1 , . . . , ais−1
) is a solution to the homogeneous system of

linear equations

(ωi0)rx0 + (ωi1)rx1 + · · ·+ (ωis−1)rxn−1 = 0

(ωi0)r+1x0 + (ωi1)r+1x1 + · · ·+ (ωis−1)r+1xn−1 = 0

...
(ωi0)r+s−1x0 + (ωi1)r+s−1x1 + · · ·+ (ωis−1)r+s−1xn−1 = 0.

However, this system has a unique solution, since the determinant of the
matrix 

(ωi0)r (ωi1)r · · · (ωis−1)r

(ωi0)r+1 (ωi1)r+1 · · · (ωis−1)r+1

...
... . . . ...

(ωi0)r+s−1 (ωi1)r+s−1 · · · (ωis−1)r+s−1


can be shown to be nonzero using Lemma 22.20, p. 303 and the basic
properties of determinants (Exercise). Therefore, this solution must be
ai0 = ai1 = · · · = ais−1 = 0. ■

BCH Codes
Some of the most important codes, discovered independently by A. Hoc-
quenghem in 1959 and by R. C. Bose and D. V. Ray-Chaudhuri in 1960,
are bch codes. The European and transatlantic communication systems
both use bch codes. Information words to be encoded are of length
231, and a polynomial of degree 24 is used to generate the code. Since
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231+24 = 255 = 28−1, we are dealing with a (255, 231)-block code. This
bch code will detect six errors and has a failure rate of 1 in 16 million.
One advantage of bch codes is that efficient error correction algorithms
exist for them.

The idea behind bch codes is to choose a generator polynomial of
smallest degree that has the largest error detection and error correction
capabilities. Let d = 2r+1 for some r ≥ 0. Suppose that ω is a primitive
nth root of unity over Z2, and let mi(x) be the minimal polynomial over
Z2 of ωi. If

g(x) = lcm[m1(x),m2(x), . . . ,m2r(x)],
then the cyclic code 〈g(t)〉 in Rn is called the bch code of length n and
distance d. By Theorem 22.21, p. 304, the minimum distance of C is at
least d.
Theorem 22.22 Let C = 〈g(t)〉 be a cyclic code in Rn. The following
statements are equivalent.

1. The code C is a bch code whose minimum distance is at least d.

2. A code polynomial f(t) is in C if and only if f(ωi) = 0 for 1 ≤ i < d.

3. The matrix

H =


1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω(n−1)(2)

1 ω3 ω6 · · · ω(n−1)(3)

...
...

... . . . ...
1 ω2r ω4r · · · ω(n−1)(2r)


is a parity-check matrix for C.

Proof. (1) ⇒ (2). If f(t) is in C, then g(x) | f(x) in Z2[x]. Hence,
for i = 1, . . . , 2r, f(ωi) = 0 since g(ωi) = 0. Conversely, suppose that
f(ωi) = 0 for 1 ≤ i ≤ d. Then f(x) is divisible by each mi(x), since mi(x)
is the minimal polynomial of ωi. Therefore, g(x) | f(x) by the definition
of g(x). Consequently, f(x) is a codeword.

(2) ⇒ (3). Let f(t) = a0 + a1t + · · · + an−1vt
n−1 be in Rn. The

corresponding n-tuple in Zn2 is x = (a0a1 · · · an−1)
t. By (2),

Hx =


a0 + a1ω + · · ·+ an−1ω

n−1

a0 + a1ω
2 + · · ·+ an−1(ω

2)n−1

...
a0 + a1ω

2r + · · ·+ an−1(ω
2r)n−1

 =


f(ω)

f(ω2)
...

f(ω2r)

 = 0

exactly when f(t) is in C. Thus, H is a parity-check matrix for C.
(3) ⇒ (1). By (3), a code polynomial f(t) = a0+a1t+ · · ·+an−1t

n−1

is in C exactly when f(ωi) = 0 for i = 1, . . . , 2r. The smallest such
polynomial is g(t) = lcm[m1(t), . . . ,m2r(t)]. Therefore, C = 〈g(t)〉. ■

Example 22.23 It is easy to verify that x15−1 ∈ Z2[x] has a factorization

x15−1 = (x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1),

where each of the factors is an irreducible polynomial. Let ω be a root of
1 + x+ x4. The Galois field GF(24) is

{a0 + a1ω + a2ω
2 + a3ω

3 : ai ∈ Z2 and 1 + ω + ω4 = 0}.
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By Example 22.8, p. 297, ω is a primitive 15th root of unity. The minimal
polynomial of ω is m1(x) = 1 + x + x4. It is easy to see that ω2 and
ω4 are also roots of m1(x). The minimal polynomial of ω3 is m2(x) =
1 + x+ x2 + x3 + x4. Therefore,

g(x) = m1(x)m2(x) = 1 + x4 + x6 + x7 + x8

has roots ω, ω2, ω3, ω4. Since both m1(x) and m2(x) divide x15 − 1,
the bch code is a (15, 7)-code. If x15 − 1 = g(x)h(x), then h(x) =
1 + x4 + x6 + x7; therefore, a parity-check matrix for this code is

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

0 0 0 0 0 1 1 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0


.

□

Sage. Finite fields are important in a variety of applied disciplines, such
as cryptography and coding theory (see introductions to these topics in
other chapters). Sage has excellent support for finite fields allowing for a
wide variety of computations.

22.3 Reading Questions
1. When is a field extension separable?
2. What are the possible orders for subfields of a finite field?
3. What is the structure of the non-zero elements of a finite field?
4. Provide a characterization of finite fields using the concept of a split-

ting field.
5. Why is a theorem in this chapter titled “The Freshman’s Dream?”

22.4 Exercises
1. Calculate each of the following.

(a) [GF(36) : GF(33)]

(b) [GF(128) : GF(16)]

(c) [GF(625) : GF(25)]

(d) [GF(p12) : GF(p2)]
2. Calculate [GF(pm) : GF(pn)], where n | m.
3. What is the lattice of subfields for GF(p30)?
4. Let α be a zero of x3 + x2 + 1 over Z2. Construct a finite field of

order 8. Show that x3 + x2 + 1 splits in Z2(α).
5. Construct a finite field of order 27.
6. Prove or disprove: Q∗ is cyclic.
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7. Factor each of the following polynomials in Z2[x].
(a) x5 − 1

(b) x6+x5+x4+x3+x2+x+1

(c) x9 − 1

(d) x4 + x3 + x2 + x+ 1

8. Prove or disprove: Z2[x]/〈x3 + x+ 1〉 ∼= Z2[x]/〈x3 + x2 + 1〉.
9. Determine the number of cyclic codes of length n for n = 6, 7, 8, 10.
10. Prove that the ideal 〈t+ 1〉 in Rn is the code in Zn2 consisting of all

words of even parity.
11. Construct all bch codes of

(a) length 7. (b) length 15.
12. Prove or disprove: There exists a finite field that is algebraically

closed.
13. Let p be prime. Prove that the field of rational functions Zp(x) is

an infinite field of characteristic p.
14. Let D be an integral domain of characteristic p. Prove that (a −

b)p
n

= ap
n − bp

n for all a, b ∈ D.
15. Show that every element in a finite field can be written as the sum

of two squares.
16. Let E and F be subfields of a finite field K. If E is isomorphic to

F , show that E = F .
17. Let F ⊂ E ⊂ K be fields. If K is a separable extension of F , show

that K is also separable extension of E.
18. Let E be an extension of a finite field F , where F has q elements.

Let α ∈ E be algebraic over F of degree n. Prove that F (α) has qn
elements.

19. Show that every finite extension of a finite field F is simple; that is,
if E is a finite extension of a finite field F , prove that there exists
an α ∈ E such that E = F (α).

20. Show that for every n there exists an irreducible polynomial of degree
n in Zp[x].

21. Prove that the Frobenius map Φ : GF(pn) → GF(pn) given by Φ :
α 7→ αp is an automorphism of order n.

22. Show that every element in GF(pn) can be written in the form ap

for some unique a ∈ GF(pn).
23. Let E and F be subfields of GF(pn). If |E| = pr and |F | = ps, what

is the order of E ∩ F?
24. Wilson’s Theorem. Let p be prime. Prove that (p − 1)! ≡ −1

(mod p).
25. If g(t) is the minimal generator polynomial for a cyclic code C in

Rn, prove that the constant term of g(x) is 1.
26. Often it is conceivable that a burst of errors might occur during

transmission, as in the case of a power surge. Such a momentary
burst of interference might alter several consecutive bits in a code-
word. Cyclic codes permit the detection of such error bursts. Let
C be an (n, k)-cyclic code. Prove that any error burst up to n − k
digits can be detected.

27. Prove that the rings Rn and Zn2 are isomorphic as vector spaces.
28. Let C be a code in Rn that is generated by g(t). If 〈f(t)〉 is another

code in Rn, show that 〈g(t)〉 ⊂ 〈f(t)〉 if and only if f(x) divides g(x)
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in Z2[x].
29. Let C = 〈g(t)〉 be a cyclic code in Rn and suppose that xn − 1 =

g(x)h(x), where g(x) = g0 + g1x+ · · ·+ gn−kx
n−k and h(x) = h0 +

h1x+ · · ·+ hkx
k. Define G to be the n× k matrix

G =



g0 0 · · · 0

g1 g0 · · · 0
...

... . . . ...
gn−k gn−k−1 · · · g0
0 gn−k · · · g1
...

... . . . ...
0 0 · · · gn−k


and H to be the (n− k)× n matrix

H =


0 · · · 0 0 hk · · · h0
0 · · · 0 hk · · · h0 0

· · · · · · · · · · · · · · · · · · · · ·
hk · · · h0 0 0 · · · 0

 .

(a) Prove that G is a generator matrix for C.

(b) Prove that H is a parity-check matrix for C.

(c) Show that HG = 0.

22.5 Additional Exercises: Error Correction
for BCH Codes

bch codes have very attractive error correction algorithms. Let C be a
bch code in Rn, and suppose that a code polynomial c(t) = c0 + c1t +
· · · + cn−1t

n−1 is transmitted. Let w(t) = w0 + w1t + · · ·wn−1t
n−1 be

the polynomial in Rn that is received. If errors have occurred in bits
a1, . . . , ak, then w(t) = c(t) + e(t), where e(t) = ta1 + ta2 + · · · + tak is
the error polynomial. The decoder must determine the integers ai and
then recover c(t) from w(t) by flipping the aith bit. From w(t) we can
compute w(ωi) = si for i = 1, . . . , 2r, where ω is a primitive nth root of
unity over Z2. We say the syndrome of w(t) is s1, . . . , s2r.

1. Show that w(t) is a code polynomial if and only if si = 0 for all i.
2. Show that

si = w(ωi) = e(ωi) = ωia1 + ωia2 + · · ·+ ωiak

for i = 1, . . . , 2r. The error-locator polynomial is defined to be

s(x) = (x+ ωa1)(x+ ωa2) · · · (x+ ωak).
3. Recall the (15, 7)-block bch code in Example 22.19, p. 302. By The-

orem 8.13, p. 104, this code is capable of correcting two errors. Sup-
pose that these errors occur in bits a1 and a2. The error-locator
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polynomial is s(x) = (x+ ωa1)(x+ ωa2). Show that

s(x) = x2 + s1x+

(
s21 +

s3
s1

)
.

4. Let w(t) = 1 + t2 + t4 + t5 + t7 + t12 + t13. Determine what the
originally transmitted code polynomial was.
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Galois Theory

A classic problem of algebra is to find the solutions of a polynomial equa-
tion. The solution to the quadratic equation was known in antiquity.
Italian mathematicians found general solutions to the general cubic and
quartic equations in the sixteenth century; however, attempts to solve
the general fifth-degree, or quintic, polynomial were repulsed for the
next three hundred years. Certainly, equations such as x5 − 1 = 0 or
x6 − x3 − 6 = 0 could be solved, but no solution like the quadratic for-
mula was found for the general quintic,

ax5 + bx4 + cx3 + dx2 + ex+ f = 0.

Finally, at the beginning of the nineteenth century, Ruffini and Abel
both found quintics that could not be solved with any formula. It was
Galois, however, who provided the full explanation by showing which
polynomials could and could not be solved by formulas. He discovered
the connection between groups and field extensions. Galois theory demon-
strates the strong interdependence of group and field theory, and has had
far-reaching implications beyond its original purpose.

In this chapter we will prove the Fundamental Theorem of Galois
Theory. This result will be used to establish the insolvability of the
quintic and to prove the Fundamental Theorem of Algebra.

23.1 Field Automorphisms
Our first task is to establish a link between group theory and field theory
by examining automorphisms of fields.
Proposition 23.1 The set of all automorphisms of a field F is a group
under composition of functions.
Proof. If σ and τ are automorphisms of F , then so are στ and σ−1. The
identity is certainly an automorphism; hence, the set of all automorphisms
of a field F is indeed a group. ■
Proposition 23.2 Let E be a field extension of F . Then the set of all
automorphisms of E that fix F elementwise is a group; that is, the set
of all automorphisms σ : E → E such that σ(α) = α for all α ∈ F is a
group.
Proof. We need only show that the set of automorphisms of E that
fix F elementwise is a subgroup of the group of all automorphisms of

313
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E. Let σ and τ be two automorphisms of E such that σ(α) = α and
τ(α) = α for all α ∈ F . Then στ(α) = σ(α) = α and σ−1(α) = α.
Since the identity fixes every element of E, the set of automorphisms of
E that leave elements of F fixed is a subgroup of the entire group of
automorphisms of E. ■

Let E be a field extension of F . We will denote the full group of
automorphisms of E by Aut(E). We define the Galois group of E over
F to be the group of automorphisms of E that fix F elementwise; that
is,

G(E/F ) = {σ ∈ Aut(E) : σ(α) = α for all α ∈ F}.
If f(x) is a polynomial in F [x] and E is the splitting field of f(x) over F ,
then we define the Galois group of f(x) to be G(E/F ).

Example 23.3 Complex conjugation, defined by σ : a + bi 7→ a − bi, is
an automorphism of the complex numbers. Since

σ(a) = σ(a+ 0i) = a− 0i = a,

the automorphism defined by complex conjugation must be in G(C/R).
□

Example 23.4 Consider the fields Q ⊂ Q(
√
5 ) ⊂ Q(

√
3,
√
5 ). Then for

a, b ∈ Q(
√
5 ),

σ(a+ b
√
3 ) = a− b

√
3

is an automorphism of Q(
√
3,
√
5 ) leaving Q(

√
5 ) fixed. Similarly,

τ(a+ b
√
5 ) = a− b

√
5

is an automorphism of Q(
√
3,
√
5 ) leaving Q(

√
3 ) fixed. The automor-

phism µ = στ moves both
√
3 and

√
5. It will soon be clear that

{id, σ, τ, µ} is the Galois group of Q(
√
3,
√
5 ) over Q. The following table

shows that this group is isomorphic to Z2 × Z2.

id σ τ µ

id id σ τ µ

σ σ id µ τ

τ τ µ id σ

µ µ τ σ id

We may also regard the field Q(
√
3,
√
5 ) as a vector space over Q that has

basis {1,
√
3,
√
5,
√
15 }. It is no coincidence that |G(Q(

√
3,
√
5 )/Q)| =

[Q(
√
3,
√
5 ) : Q)] = 4. □

Proposition 23.5 Let E be a field extension of F and f(x) be a polyno-
mial in F [x]. Then any automorphism in G(E/F ) defines a permutation
of the roots of f(x) that lie in E.
Proof. Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and suppose that α ∈ E is a zero of f(x). Then for σ ∈ G(E/F ),

0 = σ(0)

= σ(f(α))

= σ(a0 + a1α+ a2α
2 + · · ·+ anα

n)

= a0 + a1σ(α) + a2[σ(α)]
2 + · · ·+ an[σ(α)]

n;
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therefore, σ(α) is also a zero of f(x). ■
Let E be an algebraic extension of a field F . Two elements α, β ∈ E

are conjugate over F if they have the same minimal polynomial. For
example, in the field Q(

√
2 ) the elements

√
2 and −

√
2 are conjugate

over Q since they are both roots of the irreducible polynomial x2 − 2.
A converse of the last proposition exists. The proof follows directly

from Lemma 21.32, p. 284.
Proposition 23.6 If α and β are conjugate over F , there exists an
isomorphism σ : F (α) → F (β) such that σ is the identity when restricted
to F .
Theorem 23.7 Let f(x) be a polynomial in F [x] and suppose that E is
the splitting field for f(x) over F . If f(x) has no repeated roots, then

|G(E/F )| = [E : F ].
Proof. We will use mathematical induction on [E : F ]. If [E : F ] = 1,
then E = F and there is nothing to show. If [E : F ] > 1, let f(x) =
p(x)q(x), where p(x) is irreducible of degree d. We may assume that d > 1;
otherwise, f(x) splits over F and [E : F ] = 1. Let α be a root of p(x). If
ϕ : F (α) → E is any injective homomorphism, then ϕ(α) = β is a root
of p(x), and ϕ : F (α) → F (β) is a field automorphism. Since f(x) has
no repeated roots, p(x) has exactly d roots β ∈ E. By Proposition 23.5,
p. 312, there are exactly d isomorphisms ϕ : F (α) → F (βi) that fix F ,
one for each root β1, . . . , βd of p(x) (see Figure 23.8, p. 313).

E
ψ−−−−→ Ey y

F (α)
ϕ−−−−→ F (β)y y

F
identity−−−−−→ F

Figure 23.8
Since E is a splitting field of f(x) over F , it is also a splitting field

over F (α). Similarly, E is a splitting field of f(x) over F (β). Since [E :
F (α)] = [E : F ]/d, induction shows that each of the d isomorphisms ϕ has
exactly [E : F ]/d extensions, ψ : E → E, and we have constructed [E : F ]
isomorphisms that fix F . Finally, suppose that σ is any automorphism
fixing F . Then σ restricted to F (α) is ϕ for some ϕ : F (α) → F (β). ■
Corollary 23.9 Let F be a finite field with a finite extension E such that
[E : F ] = k. Then G(E/F ) is cyclic of order k.
Proof. Let p be the characteristic of E and F and assume that the
orders of E and F are pm and pn, respectively. Then nk = m. We can
also assume that E is the splitting field of xpm − x over a subfield of
order p. Therefore, E must also be the splitting field of xpm − x over F .
Applying Theorem 23.7, p. 313, we find that |G(E/F )| = k.

To prove that G(E/F ) is cyclic, we must find a generator for G(E/F ).
Let σ : E → E be defined by σ(α) = αp

n . We claim that σ is the element
in G(E/F ) that we are seeking. We first need to show that σ is in Aut(E).
If α and β are in E,

σ(α+ β) = (α+ β)p
n

= αp
n

+ βp
n

= σ(α) + σ(β)
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by Lemma 22.3, p. 296. Also, it is easy to show that σ(αβ) = σ(α)σ(β).
Since σ is a nonzero homomorphism of fields, it must be injective. It
must also be onto, since E is a finite field. We know that σ must be in
G(E/F ), since F is the splitting field of xpn − x over the base field of
order p. This means that σ leaves every element in F fixed. Finally, we
must show that the order of σ is k. By Theorem 23.7, p. 313, we know
that

σk(α) = αp
nk

= αp
m

= α

is the identity of G(E/F ). However, σr cannot be the identity for 1 ≤
r < k; otherwise, xpnr − x would have pm roots, which is impossible. ■

Example 23.10 We can now confirm that the Galois group of Q(
√
3,
√
5 )

over Q in Example 23.4, p. 312 is indeed isomorphic to Z2×Z2. Certainly
the group H = {id, σ, τ, µ} is a subgroup of G(Q(

√
3,
√
5 )/Q); however,

H must be all of G(Q(
√
3,
√
5 )/Q), since

|H| = [Q(
√
3,
√
5 ) : Q] = |G(Q(

√
3,
√
5 )/Q)| = 4.

□
Example 23.11 Let us compute the Galois group of

f(x) = x4 + x3 + x2 + x+ 1

over Q. We know that f(x) is irreducible by Exercise 17.5.20, p. 232 in
Chapter 17, p. 219. Furthermore, since (x− 1)f(x) = x5 − 1, we can use
DeMoivre’s Theorem to determine that the roots of f(x) are ωi, where
i = 1, . . . , 4 and

ω = cos(2π/5) + i sin(2π/5).

Hence, the splitting field of f(x) must be Q(ω). We can define automor-
phisms σi of Q(ω) by σi(ω) = ωi for i = 1, . . . , 4. It is easy to check that
these are indeed distinct automorphisms in G(Q(ω)/Q). Since

[Q(ω) : Q] = |G(Q(ω)/Q)| = 4,

the σi’s must be all of G(Q(ω)/Q). Therefore, G(Q(ω)/Q) ∼= Z4 since ω
is a generator for the Galois group. □

Separable Extensions
Many of the results that we have just proven depend on the fact that a
polynomial f(x) in F [x] has no repeated roots in its splitting field. It
is evident that we need to know exactly when a polynomial factors into
distinct linear factors in its splitting field. Let E be the splitting field of
a polynomial f(x) in F [x]. Suppose that f(x) factors over E as

f(x) = (x− α1)
n1(x− α2)

n2 · · · (x− αr)
nr =

r∏
i=1

(x− αi)
ni .

We define the multiplicity of a root αi of f(x) to be ni. A root with
multiplicity 1 is called a simple root. Recall that a polynomial f(x) ∈
F [x] of degree n is separable if it has n distinct roots in its splitting field
E. Equivalently, f(x) is separable if it factors into distinct linear factors
over E[x]. An extension E of F is a separable extension of F if every
element in E is the root of a separable polynomial in F [x]. Also recall
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that f(x) is separable if and only if gcd(f(x), f ′(x)) = 1 (Lemma 22.5,
p. 296).

Proposition 23.12 Let f(x) be an irreducible polynomial over F . If the
characteristic of F is 0, then f(x) is separable. If the characteristic of F
is p and f(x) 6= g(xp) for some g(x) in F [x], then f(x) is also separable.
Proof. First assume that charF = 0. Since deg f ′(x) < deg f(x) and
f(x) is irreducible, the only way gcd(f(x), f ′(x)) 6= 1 is if f ′(x) is the zero
polynomial; however, this is impossible in a field of characteristic zero. If
charF = p, then f ′(x) can be the zero polynomial if every coefficient of
f ′(x) is a multiple of p. This can happen only if we have a polynomial of
the form f(x) = a0 + a1x

p + a2x
2p + · · ·+ anx

np. ■
Certainly extensions of a field F of the form F (α) are some of the

easiest to study and understand. Given a field extension E of F , the
obvious question to ask is when it is possible to find an element α ∈ E
such that E = F (α). In this case, α is called a primitive element. We
already know that primitive elements exist for certain extensions. For
example,

Q(
√
3,
√
5 ) = Q(

√
3 +

√
5 )

and
Q(

3
√
5,
√
5 i) = Q(

6
√
5 i).

Corollary 22.12, p. 298 tells us that there exists a primitive element for
any finite extension of a finite field. The next theorem tells us that we
can often find a primitive element.
Theorem 23.13 Primitive Element Theorem. Let E be a finite
separable extension of a field F . Then there exists an α ∈ E such that
E = F (α).
Proof. We already know that there is no problem if F is a finite field.
Suppose that E is a finite extension of an infinite field. We will prove
the result for F (α, β). The general case easily follows when we use math-
ematical induction. Let f(x) and g(x) be the minimal polynomials of α
and β, respectively. Let K be the field in which both f(x) and g(x) split.
Suppose that f(x) has zeros α = α1, . . . , αn in K and g(x) has zeros
β = β1, . . . , βm in K. All of these zeros have multiplicity 1, since E is
separable over F . Since F is infinite, we can find an a in F such that

a 6= αi − α

β − βj

for all i and j with j 6= 1. Therefore, a(β−βj) 6= αi−α. Let γ = α+ aβ.
Then

γ = α+ aβ 6= αi + aβj ;

hence, γ − aβj 6= αi for all i, j with j 6= 1. Define h(x) ∈ F (γ)[x] by
h(x) = f(γ − ax). Then h(β) = f(α) = 0. However, h(βj) 6= 0 for j 6= 1.
Hence, h(x) and g(x) have a single common factor in F (γ)[x]; that is, the
minimal polynomial of β over F (γ) must be linear, since β is the only
zero common to both g(x) and h(x). So β ∈ F (γ) and α = γ − aβ is in
F (γ). Hence, F (α, β) = F (γ). ■
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23.2 The Fundamental Theorem
The goal of this section is to prove the Fundamental Theorem of Galois
Theory. This theorem explains the connection between the subgroups of
G(E/F ) and the intermediate fields between E and F .

Proposition 23.14 Let {σi : i ∈ I} be a collection of automorphisms of
a field F . Then

F{σi} = {a ∈ F : σi(a) = a for all σi}

is a subfield of F .
Proof. Let σi(a) = a and σi(b) = b. Then

σi(a± b) = σi(a)± σi(b) = a± b

and
σi(ab) = σi(a)σi(b) = ab.

If a 6= 0, then σi(a−1) = [σi(a)]
−1 = a−1. Finally, σi(0) = 0 and σi(1) = 1

since σi is an automorphism. ■
Corollary 23.15 Let F be a field and let G be a subgroup of Aut(F ).
Then

FG = {α ∈ F : σ(α) = α for all σ ∈ G}

is a subfield of F .
The subfield F{σi} of F is called the fixed field of {σi}. The field fixed

by a subgroup G of Aut(F ) will be denoted by FG.

Example 23.16 Let σ : Q(
√
3,
√
5 ) → Q(

√
3,
√
5 ) be the automorphism

that maps
√
3 to −

√
3. Then Q(

√
5 ) is the subfield of Q(

√
3,
√
5 ) left

fixed by σ. □
Proposition 23.17 Let E be a splitting field over F of a separable poly-
nomial. Then EG(E/F ) = F .
Proof. Let G = G(E/F ). Clearly, F ⊂ EG ⊂ E. Also, E must be a
splitting field of EG and G(E/F ) = G(E/EG). By Theorem 23.7, p. 313,

|G| = [E : EG] = [E : F ].

Therefore, [EG : F ] = 1. Consequently, EG = F . ■
A large number of mathematicians first learned Galois theory from

Emil Artin’s monograph on the subject [1]. The very clever proof of the
following lemma is due to Artin.
Lemma 23.18 Let G be a finite group of automorphisms of E and let
F = EG. Then [E : F ] ≤ |G|.
Proof. Let |G| = n. We must show that any set of n + 1 elements
α1, . . . , αn+1 in E is linearly dependent over F ; that is, we need to find
elements ai ∈ F , not all zero, such that

a1α1 + a2α2 + · · ·+ an+1αn+1 = 0.

Suppose that σ1 = id, σ2, . . . , σn are the automorphisms in G. The ho-
mogeneous system of linear equations

σ1(α1)x1 + σ1(α2)x2 + · · ·+ σ1(αn+1)xn+1 = 0

σ2(α1)x1 + σ2(α2)x2 + · · ·+ σ2(αn+1)xn+1 = 0
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...
σn(α1)x1 + σn(α2)x2 + · · ·+ σn(αn+1)xn+1 = 0

has more unknowns than equations. From linear algebra we know that
this system has a nontrivial solution, say xi = ai for i = 1, 2, . . . , n + 1.
Since σ1 is the identity, the first equation translates to

a1α1 + a2α2 + · · ·+ an+1αn+1 = 0.

The problem is that some of the ai’s may be in E but not in F . We must
show that this is impossible.

Suppose that at least one of the ai’s is in E but not in F . By rear-
ranging the αi’s we may assume that a1 is nonzero. Since any nonzero
multiple of a solution is also a solution, we can also assume that a1 = 1.
Of all possible solutions fitting this description, we choose the one with the
smallest number of nonzero terms. Again, by rearranging α2, . . . , αn+1 if
necessary, we can assume that a2 is in E but not in F . Since F is the
subfield of E that is fixed elementwise by G, there exists a σi in G such
that σi(a2) 6= a2. Applying σi to each equation in the system, we end
up with the same homogeneous system, since G is a group. Therefore,
x1 = σi(a1) = 1, x2 = σi(a2), . . ., xn+1 = σi(an+1) is also a solution of
the original system. We know that a linear combination of two solutions
of a homogeneous system is also a solution; consequently,

x1 = 1− 1 = 0

x2 = a2 − σi(a2)

...
xn+1 = an+1 − σi(an+1)

must be another solution of the system. This is a nontrivial solution
because σi(a2) 6= a2, and has fewer nonzero entries than our original
solution. This is a contradiction, since the number of nonzero solutions
to our original solution was assumed to be minimal. We can therefore
conclude that a1, . . . , an+1 ∈ F . ■

Let E be an algebraic extension of F . If every irreducible polynomial
in F [x] with a root in E has all of its roots in E, then E is called a normal
extension of F ; that is, every irreducible polynomial in F [x] containing
a root in E is the product of linear factors in E[x].

Theorem 23.19 Let E be a field extension of F . Then the following
statements are equivalent.

1. E is a finite, normal, separable extension of F .

2. E is a splitting field over F of a separable polynomial.

3. F = EG for some finite group G of automorphisms of E.
Proof. (1) ⇒ (2). Let E be a finite, normal, separable extension of
F . By the Primitive Element Theorem, we can find an α in E such that
E = F (α). Let f(x) be the minimal polynomial of α over F . The field
E must contain all of the roots of f(x) since it is a normal extension F ;
hence, E is a splitting field for f(x).

(2) ⇒ (3). Let E be the splitting field over F of a separable polynomial.
By Proposition 23.17, p. 316, EG(E/F ) = F . Since |G(E/F )| = [E : F ],



320 CHAPTER 23. GALOIS THEORY

this is a finite group.
(3) ⇒ (1). Let F = EG for some finite group of automorphisms G

of E. Since [E : F ] ≤ |G|, E is a finite extension of F . To show that
E is a finite, normal extension of F , let f(x) ∈ F [x] be an irreducible
monic polynomial that has a root α in E. We must show that f(x) is
the product of distinct linear factors in E[x]. By Proposition 23.5, p. 312,
automorphisms in G permute the roots of f(x) lying in E. Hence, if we
let G act on α, we can obtain distinct roots α1 = α, α2, . . . , αn in E.
Let g(x) =

∏n
i=1(x − αi). Then g(x) is separable over F and g(α) = 0.

Any automorphism σ in G permutes the factors of g(x) since it permutes
these roots; hence, when σ acts on g(x), it must fix the coefficients of g(x).
Therefore, the coefficients of g(x) must be in F . Since deg g(x) ≤ deg f(x)
and f(x) is the minimal polynomial of α, f(x) = g(x). ■
Corollary 23.20 Let K be a field extension of F such that F = KG for
some finite group of automorphisms G of K. Then G = G(K/F ).
Proof. Since F = KG, G is a subgroup of G(K/F ). Hence,

[K : F ] ≤ |G| ≤ |G(K/F )| = [K : F ].

It follows that G = G(K/F ), since they must have the same order. ■
Before we determine the exact correspondence between field exten-

sions and automorphisms of fields, let us return to a familiar example.
Example 23.21 In Example 23.4, p. 312 we examined the automor-
phisms of Q(

√
3,
√
5 ) fixing Q. Figure 23.22, p. 318 compares the lattice

of field extensions of Q with the lattice of subgroups of G(Q(
√
3,
√
5 )/Q).

The Fundamental Theorem of Galois Theory tells us what the relation-
ship is between the two lattices. □

{id, σ, τ, µ}

{id, σ} {id, τ} {id, µ}

{id}

Q(
√
3,
√
5 )

Q(
√
3 ) Q(

√
5 ) Q(

√
15 )

Q

Figure 23.22 G(Q(
√
3,
√
5 )/Q)

We are now ready to state and prove the Fundamental Theorem of
Galois Theory.
Theorem 23.23 Fundamental Theorem of Galois Theory. Let F
be a finite field or a field of characteristic zero. If E is a finite normal
extension of F with Galois group G(E/F ), then the following statements
are true.

1. The map K 7→ G(E/K) is a bijection of subfields K of E containing
F with the subgroups of G(E/F ).

2. If F ⊂ K ⊂ E, then

[E : K] = |G(E/K)| and [K : F ] = [G(E/F ) : G(E/K)].

3. F ⊂ K ⊂ L ⊂ E if and only if {id} ⊂ G(E/L) ⊂ G(E/K) ⊂
G(E/F ).
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4. K is a normal extension of F if and only if G(E/K) is a normal
subgroup of G(E/F ). In this case

G(K/F ) ∼= G(E/F )/G(E/K).
Proof. (1) Suppose that G(E/K) = G(E/L) = G. Both K and L are
fixed fields of G; hence, K = L and the map defined by K 7→ G(E/K) is
one-to-one. To show that the map is onto, let G be a subgroup of G(E/F )
and K be the field fixed by G. Then F ⊂ K ⊂ E; consequently, E is a
normal extension of K. Thus, G(E/K) = G and the map K 7→ G(E/K)
is a bijection.

(2) By Theorem Theorem 23.7, p. 313, |G(E/K)| = [E : K]; therefore,

|G(E/F )| = [G(E/F ) : G(E/K)] · |G(E/K)| = [E : F ] = [E : K][K : F ].

Thus, [K : F ] = [G(E/F ) : G(E/K)].
Statement (3) is illustrated in Figure 23.24, p. 320. We leave the proof

of this property as an exercise.
(4) This part takes a little more work. Let K be a normal extension

of F . If σ is in G(E/F ) and τ is in G(E/K), we need to show that σ−1τσ
is in G(E/K); that is, we need to show that σ−1τσ(α) = α for all α ∈ K.
Suppose that f(x) is the minimal polynomial of α over F . Then σ(α) is
also a root of f(x) lying in K, since K is a normal extension of F . Hence,
τ(σ(α)) = σ(α) or σ−1τσ(α) = α.

Conversely, let G(E/K) be a normal subgroup of G(E/F ). We need
to show that F = KG(K/F ). Let τ ∈ G(E/K). For all σ ∈ G(E/F ) there
exists a τ ∈ G(E/K) such that τσ = στ . Consequently, for all α ∈ K

τ(σ(α)) = σ(τ(α)) = σ(α);

hence, σ(α) must be in the fixed field of G(E/K). Let σ be the restriction
of σ to K. Then σ is an automorphism of K fixing F , since σ(α) ∈ K
for all α ∈ K; hence, σ ∈ G(K/F ). Next, we will show that the fixed
field of G(K/F ) is F . Let β be an element in K that is fixed by all
automorphisms in G(K/F ). In particular, σ(β) = β for all σ ∈ G(E/F ).
Therefore, β belongs to the fixed field F of G(E/F ).

Finally, we must show that when K is a normal extension of F ,

G(K/F ) ∼= G(E/F )/G(E/K).

For σ ∈ G(E/F ), let σK be the automorphism of K obtained by re-
stricting σ to K. Since K is a normal extension, the argument in the
preceding paragraph shows that σK ∈ G(K/F ). Consequently, we have
a map ϕ : G(E/F ) → G(K/F ) defined by σ 7→ σK . This map is a group
homomorphism since

ϕ(στ) = (στ)K = σKτK = ϕ(σ)ϕ(τ).

The kernel of ϕ is G(E/K). By (2),

|G(E/F )|/|G(E/K)| = [K : F ] = |G(K/F )|.

Hence, the image of ϕ is G(K/F ) and ϕ is onto. Applying the First
Isomorphism Theorem, we have

G(K/F ) ∼= G(E/F )/G(E/K).

■
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E −−−−→ {id}x y
L −−−−→ G(E/L)x y
K −−−−→ G(E/K)x y
F −−−−→ G(E/F )

Figure 23.24 Subgroups of G(E/F ) and subfields of E

Example 23.25 In this example we will illustrate the Fundamental The-
orem of Galois Theory by determining the lattice of subgroups of the
Galois group of f(x) = x4 − 2. We will compare this lattice to the lattice
of field extensions of Q that are contained in the splitting field of x4 − 2.
The splitting field of f(x) is Q( 4

√
2, i). To see this, notice that f(x) fac-

tors as (x2+
√
2 )(x2−

√
2 ); hence, the roots of f(x) are ± 4

√
2 and ± 4

√
2 i.

We first adjoin the root 4
√
2 to Q and then adjoin the root i of x2 + 1 to

Q( 4
√
2 ). The splitting field of f(x) is then Q( 4

√
2 )(i) = Q( 4

√
2, i).

Since [Q( 4
√
2 ) : Q] = 4 and i is not in Q( 4

√
2 ), it must be the case that

[Q( 4
√
2, i) : Q( 4

√
2 )] = 2. Hence, [Q( 4

√
2, i) : Q] = 8. The set

{1, 4
√
2, (

4
√
2 )2, (

4
√
2 )3, i, i

4
√
2, i(

4
√
2 )2, i(

4
√
2 )3}

is a basis of Q( 4
√
2, i) over Q. The lattice of field extensions of Q contained

in Q( 4
√
2, i) is illustrated in Figure 23.26, p. 321(a).

The Galois group G of f(x) must be of order 8. Let σ be the automor-
phism defined by σ( 4

√
2 ) = i 4

√
2 and σ(i) = i, and τ be the automorphism

defined by complex conjugation; that is, τ(i) = −i. Then G has an ele-
ment of order 4 and an element of order 2. It is easy to verify by direct
computation that the elements of G are {id, σ, σ2, σ3, τ, στ, σ2τ, σ3τ} and
that the relations τ2 = id, σ4 = id, and τστ = σ−1 are satisfied; hence,
G must be isomorphic to D4. The lattice of subgroups of G is illustrated
in Figure 23.26, p. 321(b). □
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Q( 4
√
2, i)

Q( 4
√
2 ) Q( 4

√
2 i) Q(

√
2, i) Q((1 + i) 4

√
2 ) Q((1− i) 4

√
2 )

Q(
√
2 ) Q(i) Q(

√
2 i)

Q (a)

D4

{id, σ2, τ, σ2τ} {id, σ, σ2, σ3} {id, σ2, στ, σ3τ}

{id, τ} {id, σ2τ} {id, σ2} {id, στ} {id, σ3τ}

{id} (b)

Figure 23.26 Galois group of x4 − 2

Historical Note
Solutions for the cubic and quartic equations were discovered in the 1500s.
Attempts to find solutions for the quintic equations puzzled some of his-
tory’s best mathematicians. In 1798, P. Ruffini submitted a paper that
claimed no such solution could be found; however, the paper was not well
received. In 1826, Niels Henrik Abel (1802–1829) finally offered the first
correct proof that quintics are not always solvable by radicals.
Abel inspired the work of Évariste Galois. Born in 1811, Galois began to
display extraordinary mathematical talent at the age of 14. He applied for
entrance to the École Polytechnique several times; however, he had great
difficulty meeting the formal entrance requirements, and the examiners
failed to recognize his mathematical genius. He was finally accepted at
the École Normale in 1829.
Galois worked to develop a theory of solvability for polynomials. In 1829,
at the age of 17, Galois presented two papers on the solution of algebraic
equations to the Académie des Sciences de Paris. These papers were sent
to Cauchy, who subsequently lost them. A third paper was submitted
to Fourier, who died before he could read the paper. Another paper was
presented, but was not published until 1846.
Galois’ democratic sympathies led him into the Revolution of 1830. He
was expelled from school and sent to prison for his part in the turmoil.
After his release in 1832, he was drawn into a duel possibly over a love
affair. Certain that he would be killed, he spent the evening before his
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death outlining his work and his basic ideas for research in a long letter
to his friend Chevalier. He was indeed dead the next day, at the age of
20.

23.3 Applications

Solvability by Radicals
Throughout this section we shall assume that all fields have characteristic
zero to ensure that irreducible polynomials do not have multiple roots.
The immediate goal of this section is to determine when the roots of a
polynomial f(x) can be computed with a finite number of operations on
the coefficients of f(x). The allowable operations are addition, subtrac-
tion, multiplication, division, and the extraction of nth roots. Certainly
the solution to the quadratic equation, ax2 + bx+ c = 0, illustrates this
process:

x =
−b±

√
b2 − 4ac

2a
.

The only one of these operations that might demand a larger field is the
taking of nth roots. We are led to the following definition.

An extension field E of a field F is an extension by radicals if there
exists a chain of subfields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = E

such for i = 1, 2, . . . , r, we have Fi = Fi−1(αi) and αni
i ∈ Fi−1 for some

positive integer ni. A polynomial f(x) is solvable by radicals over F if
the splitting field K of f(x) over F is contained in an extension of F by
radicals. Our goal is to arrive at criteria that will tell us whether or not
a polynomial f(x) is solvable by radicals by examining the Galois group
f(x).

The easiest polynomial to solve by radicals is one of the form xn − a.
As we discussed in Chapter 4, p. 49, the roots of xn−1 are called the nth
roots of unity. These roots are a finite subgroup of the splitting field of
xn − 1. By Corollary 22.11, p. 298, the nth roots of unity form a cyclic
group. Any generator of this group is called a primitive nth root of unity.

Example 23.27 The polynomial xn − 1 is solvable by radicals over Q.
The roots of this polynomial are 1, ω, ω2, . . . , ωn−1, where

ω = cos
(
2π

n

)
+ i sin

(
2π

n

)
.

The splitting field of xn − 1 over Q is Q(ω). □
We shall prove that a polynomial is solvable by radicals if its Galois

group is solvable. Recall that a subnormal series of a group G is a finite
sequence of subgroups

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e},

where Hi is normal in Hi+1. A group G is solvable if it has a subnormal
series {Hi} such that all of the factor groups Hi+1/Hi are abelian. For
example, if we examine the series {id} ⊂ A3 ⊂ S3, we see that S3 is
solvable. On the other hand, S5 is not solvable, by Theorem 10.11, p. 138.
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Lemma 23.28 Let F be a field of characteristic zero and E be the splitting
field of xn − a over F with a ∈ F . Then G(E/F ) is a solvable group.
Proof. The roots of xn − a are n

√
a, ω n

√
a, . . . , ωn−1 n

√
a, where ω is a

primitive nth root of unity. Suppose that F contains all of its nth roots
of unity. If ζ is one of the roots of xn − a, then distinct roots of xn − a
are ζ, ωζ, . . . , ωn−1ζ, and E = F (ζ). Since G(E/F ) permutes the roots
xn − a, the elements in G(E/F ) must be determined by their action on
these roots. Let σ and τ be in G(E/F ) and suppose that σ(ζ) = ωiζ and
τ(ζ) = ωjζ. If F contains the roots of unity, then

στ(ζ) = σ(ωjζ) = ωjσ(ζ) = ωi+jζ = ωiτ(ζ) = τ(ωiζ) = τσ(ζ).

Therefore, στ = τσ and G(E/F ) is abelian, and G(E/F ) must be solv-
able.

Now suppose that F does not contain a primitive nth root of unity.
Let ω be a generator of the cyclic group of the nth roots of unity. Let
α be a zero of xn − a. Since α and ωα are both in the splitting field of
xn − a, ω = (ωα)/α is also in E. Let K = F (ω). Then F ⊂ K ⊂ E.
Since K is the splitting field of xn − 1, K is a normal extension of F .
Therefore, any automorphism σ in G(F (ω)/F ) is determined by σ(ω). It
must be the case that σ(ω) = ωi for some integer i since all of the zeros
of xn − 1 are powers of ω. If τ(ω) = ωj is in G(F (ω)/F ), then

στ(ω) = σ(ωj) = [σ(ω)]j = ωij = [τ(ω)]i = τ(ωi) = τσ(ω).

Therefore, G(F (ω)/F ) is abelian. By the Fundamental Theorem of Galois
Theory the series

{id} ⊂ G(E/F (ω)) ⊂ G(E/F )

is a normal series. By our previous argument, G(E/F (ω)) is abelian.
Since

G(E/F )/G(E/F (ω)) ∼= G(F (ω)/F )

is also abelian, G(E/F ) is solvable. ■
Lemma 23.29 Let F be a field of characteristic zero and let

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = E

a radical extension of F . Then there exists a normal radical extension

F = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K

such that K that contains E and Ki is a normal extension of Ki−1.
Proof. Since E is a radical extension of F , there exists a chain of
subfields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = E

such for i = 1, 2, . . . , r, we have Fi = Fi−1(αi) and αni
i ∈ Fi−1 for some

positive integer ni. We will build a normal radical extension of F ,

F = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K

such that K ⊇ E. Define K1 for be the splitting field of xn1 − αn1
1 .

The roots of this polynomial are α1, α1ω, α1ω
2, . . . , α1ω

n1−1, where ω is
a primitive n1th root of unity. If F contains all of its n1 roots of unity,
then K1 = F (α1). On the other hand, suppose that F does not contain
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a primitive n1th root of unity. If β is a root of xn1 − αn1
1 , then all of the

roots of xn1 −αn1
1 must be β, ωβ, . . . , ωn1−1, where ω is a primitive n1th

root of unity. In this case, K1 = F (ωβ). Thus, K1 is a normal radical
extension of F containing F1. Continuing in this manner, we obtain

F = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K

such that Ki is a normal extension of Ki−1 and Ki ⊇ Fi for i = 1, 2, . . . , r.
■

We will now prove the main theorem about solvability by radicals.

Theorem 23.30 Let f(x) be in F [x], where charF = 0. If f(x) is
solvable by radicals, then the Galois group of f(x) over F is solvable.
Proof. Since f(x) is solvable by radicals there exists an extension E
of F by radicals F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E. By Lemma 23.29,
p. 323, we can assume that E is a splitting field f(x) and Fi is normal
over Fi−1. By the Fundamental Theorem of Galois Theory, G(E/Fi) is
a normal subgroup of G(E/Fi−1). Therefore, we have a subnormal series
of subgroups of G(E/F ):

{id} ⊂ G(E/Fn−1) ⊂ · · · ⊂ G(E/F1) ⊂ G(E/F ).

Again by the Fundamental Theorem of Galois Theory, we know that

G(E/Fi−1)/G(E/Fi) ∼= G(Fi/Fi−1).

By Lemma 23.28, p. 323, G(Fi/Fi−1) is solvable; hence, G(E/F ) is also
solvable. ■

The converse of Theorem 23.30, p. 324 is also true. For a proof, see
any of the references at the end of this chapter.

Insolvability of the Quintic
We are now in a position to find a fifth-degree polynomial that is not
solvable by radicals. We merely need to find a polynomial whose Galois
group is S5. We begin by proving a lemma.
Lemma 23.31 If p is prime, then any subgroup of Sp that contains a
transposition and a cycle of length p must be all of Sp.
Proof. Let G be a subgroup of Sp that contains a transposition σ and τ
a cycle of length p. We may assume that σ = (1 2). The order of τ is p and
τn must be a cycle of length p for 1 ≤ n < p. Therefore, we may assume
that µ = τn = (1, 2, i3, . . . , ip) for some n, where 1 ≤ n < p (see Exer-
cise 5.4.13, p. 75 in Chapter 5, p. 63). Noting that (1 2)(1, 2, i3, . . . , ip) =
(2, i3, . . . , ip) and (2, i3, . . . , ip)

k(1 2)(2, i3, . . . , ip)
−k = (1 ik), we can ob-

tain all the transpositions of the form (1n) for 1 ≤ n < p. However, these
transpositions generate all transpositions in Sp, since (1 j)(1 i)(1 j) = (i j).
The transpositions generate Sp. ■
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f(x) =x5 −6x3 −27x−3

Figure 23.32 The graph of f(x) = x5 − 6x3 − 27x− 3

Example 23.33 We will show that f(x) = x5 − 6x3 − 27x− 3 ∈ Q[x] is
not solvable. We claim that the Galois group of f(x) over Q is S5. By
Eisenstein’s Criterion, f(x) is irreducible and, therefore, must be separa-
ble. The derivative of f(x) is f ′(x) = 5x4 − 18x2 − 27; hence, setting
f ′(x) = 0 and solving, we find that the only real roots of f ′(x) are

x = ±

√
6
√
6 + 9

5
.

Therefore, f(x) can have at most one maximum and one minimum. It is
easy to show that f(x) changes sign between −3 and −2, between −2 and
0, and once again between 0 and 4 (Figure 23.32, p. 325). Therefore, f(x)
has exactly three distinct real roots. The remaining two roots of f(x)
must be complex conjugates. Let K be the splitting field of f(x). Since
f(x) has five distinct roots in K and every automorphism of K fixing Q
is determined by the way it permutes the roots of f(x), we know that
G(K/Q) is a subgroup of S5. Since f is irreducible, there is an element
in σ ∈ G(K/Q) such that σ(a) = b for two roots a and b of f(x). The
automorphism of C that takes a+ bi 7→ a− bi leaves the real roots fixed
and interchanges the complex roots; consequently, G(K/Q) contains a
transposition. If α is one of the real roots of f(x), then [Q(α) : Q] = 5
by Exercise 21.5.28, p. 293. Since Q(α) is a subfield of K, it must be
the case that [K : Q] is divisible by 5. Since [K : Q] = |G(K/Q)| and
G(K/Q) ⊂ S5, we know that G(K/Q) contains a cycle of length 5. By
Lemma 23.31, p. 324, S5 is generated by a transposition and an element of
order 5; therefore, G(K/Q) must be all of S5. By Theorem 10.11, p. 138,
S5 is not solvable. Consequently, f(x) cannot be solved by radicals. □
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The Fundamental Theorem of Algebra
It seems fitting that the last theorem that we will state and prove is
the Fundamental Theorem of Algebra. This theorem was first proven
by Gauss in his doctoral thesis. Prior to Gauss’s proof, mathematicians
suspected that there might exist polynomials over the real and complex
numbers having no solutions. The Fundamental Theorem of Algebra
states that every polynomial over the complex numbers factors into dis-
tinct linear factors.
Theorem 23.34 Fundamental Theorem of Algebra. The field of
complex numbers is algebraically closed; that is, every polynomial in C[x]
has a root in C.
Proof. Suppose that E is a proper finite field extension of the complex
numbers. Since any finite extension of a field of characteristic zero is a
simple extension, there exists an α ∈ E such that E = C(α) with α the
root of an irreducible polynomial f(x) in C[x]. The splitting field L of
f(x) is a finite normal separable extension of C that contains E. We must
show that it is impossible for L to be a proper extension of C.

Suppose that L is a proper extension of C. Since L is the splitting
field of f(x) = (x2 + 1) over R, L is a finite normal separable extension
of R. Let K be the fixed field of a Sylow 2-subgroup G of G(L/R). Then
L ⊃ K ⊃ R and |G(L/K)| = [L : K]. Since [L : R] = [L : K][K : R], we
know that [K : R] must be odd. Consequently, K = R(β) with β having
a minimal polynomial f(x) of odd degree. Therefore, K = R.

We now know that G(L/R) must be a 2-group. It follows that G(L/C)
is a 2-group. We have assumed that L 6= C; therefore, |G(L/C)| ≥ 2.
By the first Sylow Theorem and the Fundamental Theorem of Galois
Theory, there exists a subgroup G of G(L/C) of index 2 and a field E
fixed elementwise by G. Then [E : C] = 2 and there exists an element
γ ∈ E with minimal polynomial x2 + bx + c in C[x]. This polynomial
has roots (−b±

√
b2 − 4c )/2 that are in C, since b2 − 4c is in C. This is

impossible; hence, L = C. ■
Although our proof was strictly algebraic, we were forced to rely on

results from calculus. It is necessary to assume the completeness axiom
from analysis to show that every polynomial of odd degree has a real root
and that every positive real number has a square root. It seems that there
is no possible way to avoid this difficulty and formulate a purely algebraic
argument. It is somewhat amazing that there are several elegant proofs
of the Fundamental Theorem of Algebra that use complex analysis. It is
also interesting to note that we can obtain a proof of such an important
theorem from two very different fields of mathematics.

Sage. Fields, field extensions, roots of polynomials, and group theory
— Sage has it all, and so it is possible to carefully study very complicated
examples from Galois Theory with Sage.

23.4 Reading Questions
1. What is the Galois group of a field extension?
2. When are two elements of a field extension conjugate? (In other

words, what is the definition?)
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3. Summarize the nature and importance of the Fundamental Theorem
of Galois Theory. Capture the essence of the result without getting
bogged down in too many details.

4. Why are “solvable” groups so named? Paraphrasing the relevant
theorem would be a good answer.

5. Argue the following statement, both pro and con. Which side wins
the debate?

Everything we have done in this entire course has been
in preparation for this chapter.

23.5 Exercises
1. Compute each of the following Galois groups. Which of these field

extensions are normal field extensions? If the extension is not nor-
mal, find a normal extension of Q in which the extension field is
contained.

(a) G(Q(
√
30 )/Q)

(b) G(Q(
4
√
5 )/Q)

(c) G(Q(
√
2,
√
3,
√
5 )/Q)

(d) G(Q(
√
2,

3
√
2, i)/Q)

(e) G(Q(
√
6, i)/Q)

2. Determine the separability of each of the following polynomials.
(a) x3 + 2x2 − x− 2 over Q

(b) x4 + 2x2 + 1 over Q

(c) x4 + x2 + 1 over Z3

(d) x3 + x2 + 1 over Z2

3. Give the order and describe a generator of the Galois group of
GF(729) over GF(9).

4. Determine the Galois groups of each of the following polynomials
in Q[x]; hence, determine the solvability by radicals of each of the
polynomials.

(a) x5 − 12x2 + 2

(b) x5 − 4x4 + 2x+ 2

(c) x3 − 5

(d) x4 − x2 − 6

(e) x5 + 1

(f) (x2 − 2)(x2 + 2)

(g) x8 − 1

(h) x8 + 1

(i) x4 − 3x2 − 10

5. Find a primitive element in the splitting field of each of the following
polynomials in Q[x].

(a) x4 − 1

(b) x4 − 8x2 + 15

(c) x4 − 2x2 − 15

(d) x3 − 2

6. Prove that the Galois group of an irreducible quadratic polynomial
is isomorphic to Z2.

7. Prove that the Galois group of an irreducible cubic polynomial is
isomorphic to S3 or Z3.

8. Let F ⊂ K ⊂ E be fields. If E is a normal extension of F , show
that E must also be a normal extension of K.

9. Let G be the Galois group of a polynomial of degree n. Prove that
|G| divides n!.

10. Let F ⊂ E. If f(x) is solvable over F , show that f(x) is also solvable
over E.
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11. Construct a polynomial f(x) in Q[x] of degree 7 that is not solvable
by radicals.

12. Let p be prime. Prove that there exists a polynomial f(x) ∈ Q[x]
of degree p with Galois group isomorphic to Sp. Conclude that for
each prime p with p ≥ 5 there exists a polynomial of degree p that
is not solvable by radicals.

13. Let p be a prime and Zp(t) be the field of rational functions over Zp.
Prove that f(x) = xp − t is an irreducible polynomial in Zp(t)[x].
Show that f(x) is not separable.

14. Let E be an extension field of F . Suppose that K and L are two
intermediate fields. If there exists an element σ ∈ G(E/F ) such
that σ(K) = L, then K and L are said to be conjugate fields. Prove
that K and L are conjugate if and only if G(E/K) and G(E/L) are
conjugate subgroups of G(E/F ).

15. Let σ ∈ Aut(R). If a is a positive real number, show that σ(a) > 0.
16. Let K be the splitting field of x3+x2+1 ∈ Z2[x]. Prove or disprove

that K is an extension by radicals.
17. Let F be a field such that char(F ) 6= 2. Prove that the splitting field

of f(x) = ax2 + bx+ c is F (
√
α ), where α = b2 − 4ac.

18. Prove or disprove: Two different subgroups of a Galois group will
have different fixed fields.

19. Let K be the splitting field of a polynomial over F . If E is a field
extension of F contained in K and [E : F ] = 2, then E is the
splitting field of some polynomial in F [x].

20. We know that the cyclotomic polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q for every prime p. Let ω be a zero of Φp(x),
and consider the field Q(ω).

(a) Show that ω, ω2, . . . , ωp−1 are distinct zeros of Φp(x), and con-
clude that they are all the zeros of Φp(x).

(b) Show that G(Q(ω)/Q) is abelian of order p− 1.

(c) Show that the fixed field of G(Q(ω)/Q) is Q.
21. Let F be a finite field or a field of characteristic zero. Let E be

a finite normal extension of F with Galois group G(E/F ). Prove
that F ⊂ K ⊂ L ⊂ E if and only if {id} ⊂ G(E/L) ⊂ G(E/K) ⊂
G(E/F ).

22. Let F be a field of characteristic zero and let f(x) ∈ F [x] be a
separable polynomial of degree n. If E is the splitting field of f(x),
let α1, . . . , αn be the roots of f(x) in E. Let ∆ =

∏
i<j(αi − αj).

We define the discriminant of f(x) to be ∆2.
(a) If f(x) = x2 + bx+ c, show that ∆2 = b2 − 4c.

(b) If f(x) = x3 + px+ q, show that ∆2 = −4p3 − 27q2.

(c) Prove that ∆2 is in F .

(d) If σ ∈ G(E/F ) is a transposition of two roots of f(x), show
that σ(∆) = −∆.
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(e) If σ ∈ G(E/F ) is an even permutation of the roots of f(x),
show that σ(∆) = ∆.

(f) Prove that G(E/F ) is isomorphic to a subgroup of An if and
only if ∆ ∈ F .

(g) Determine the Galois groups of x3 + 2x− 4 and x3 + x− 3.

23.6 References and Suggested Readings
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GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation,

Inc. <www.fsf.org>
Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual,
textbook, or other functional and useful document “free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS. This License applies
to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.
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A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the sub-
ject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the gen-
eral public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used
for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses follow-
ing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of
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such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning
of this License.

2. VERBATIM COPYING. You may copy and distribute the Doc-
ument in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or
copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified
Version of the Document under the conditions of sections 2 and 3 above,
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provided that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and pub-
lisher of the Modified Version as given on the Title Page. If there is
no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.
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M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties —
for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrange-
ments made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Docu-
ment with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the orig-
inal documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled “His-
tory” in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collec-
tion consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various
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documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of
the documents in all other respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A com-
pilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION. Translation is considered a kind of modifica-
tion, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires spe-
cial permission from their copyright holders, but you may include transla-
tions of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this Li-
cense, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Ded-
ications”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or dis-
tribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is
void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, unless
and until the copyright holder explicitly and finally terminates your li-
cense, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of viola-
tion of this License (for any work) from that copyright holder, and you
cure the violation prior to 30 days after your receipt of the notice.
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Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Soft-
ware Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See www.gnu.org/copyleft.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this Li-
cense “or any later version” applies to it, you have the option of following
the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by
the Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING. “Massive Multiauthor Collaboration Site” (or
“MMC Site”) means any World Wide Web server that publishes copy-
rightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such
a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the
MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike
3.0 license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in part
into the MMC, (1) had no cover texts or invariant sections, and (2) were
thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in
the site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents.
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

http://www.gnu.org/copyleft/
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or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with… Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.
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Hints and Answers to Selected Exercises

1 · Preliminaries
1.4 · Exercises
1.4.1.
Hint. (a) A ∩B = {2}; (b) B ∩ C = {5}.
1.4.2.
Hint. (a)A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)};
(d) A×D = ∅.
1.4.6.
Hint. Observe that x ∈ A ∪ B if and only if x ∈ A or x ∈ B. Equiv-
alently, x ∈ B or x ∈ A, which is the same as x ∈ B ∪ A. Therefore,
A ∪B = B ∪A.
1.4.10.
Hint. (A ∩ B) ∪ (A \ B) ∪ (B \ A) = (A ∩ B) ∪ (A ∩ B′) ∪ (B ∩ A′) =
[A ∩ (B ∪B′)] ∪ (B ∩A′) = A ∪ (B ∩A′) = (A ∪B) ∩ (A ∪A′) = A ∪B.
1.4.14.
Hint. A \ (B ∪ C) = A ∩ (B ∪ C)′ = (A ∩ A) ∩ (B′ ∩ C ′) = (A ∩B′) ∩
(A ∩ C ′) = (A \B) ∩ (A \ C).
1.4.17.
Hint. (a) Not a map since f(2/3) is undefined; (b) this is a map; (c)
not a map, since f(1/2) = 3/4 but f(2/4) = 3/8; (d) this is a map.
1.4.18.
Hint. (a) f is one-to-one but not onto. f(R) = {x ∈ R : x > 0}. (c) f
is neither one-to-one nor onto. f(R) = {x : −1 ≤ x ≤ 1}.
1.4.20.
Hint. (a) f(n) = n+ 1.
1.4.22.
Hint. (a) Let x, y ∈ A. Then g(f(x)) = (g◦f)(x) = (g◦f)(y) = g(f(y)).
Thus, f(x) = f(y) and x = y, so g ◦ f is one-to-one. (b) Let c ∈ C, then
c = (g ◦ f)(x) = g(f(x)) for some x ∈ A. Since f(x) ∈ B, g is onto.
1.4.23.
Hint. f−1(x) = (x+ 1)/(x− 1).

341



342APPENDIX B. HINTS AND ANSWERS TO SELECTED EXERCISES

1.4.24.
Hint. (a) Let y ∈ f(A1 ∪ A2). Then there exists an x ∈ A1 ∪ A2 such
that f(x) = y. Hence, y ∈ f(A1) or f(A2). Therefore, y ∈ f(A1)∪ f(A2).
Consequently, f(A1 ∪ A2) ⊂ f(A1) ∪ f(A2). Conversely, if y ∈ f(A1) ∪
f(A2), then y ∈ f(A1) or f(A2). Hence, there exists an x in A1 or A2

such that f(x) = y. Thus, there exists an x ∈ A1∪A2 such that f(x) = y.
Therefore, f(A1)∪ f(A2) ⊂ f(A1∪A2), and f(A1∪A2) = f(A1)∪ f(A2).
1.4.25.
Hint. (a) The relation fails to be symmetric. (b) The relation is not
reflexive, since 0 is not equivalent to itself. (c) The relation is not transi-
tive.
1.4.28.
Hint. Let X = N ∪ {

√
2 } and define x ∼ y if x+ y ∈ N.

2 · The Integers
2.4 · Exercises
2.4.1.
Hint. The base case, S(1) : [1(1 + 1)(2(1) + 1)]/6 = 1 = 12 is true.
Assume that S(k) : 12+22+ · · ·+k2 = [k(k+1)(2k+1)]/6 is true. Then

12 + 22 + · · ·+ k2 + (k + 1)2 = [k(k + 1)(2k + 1)]/6 + (k + 1)2

= [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6,

and so S(k + 1) is true. Thus, S(n) is true for all positive integers n.
2.4.3.
Hint. The base case, S(4) : 4! = 24 > 16 = 24 is true. Assume S(k) :
k! > 2k is true. Then (k + 1)! = k!(k + 1) > 2k · 2 = 2k+1, so S(k + 1) is
true. Thus, S(n) is true for all positive integers n.
2.4.8.
Hint. Follow the proof in Example 2.4, p. 20.
2.4.11.
Hint. The base case, S(0) : (1+x)0− 1 = 0 ≥ 0 = 0 ·x is true. Assume
S(k) : (1 + x)k − 1 ≥ kx is true. Then

(1 + x)k+1 − 1 = (1 + x)(1 + x)k − 1

= (1 + x)k + x(1 + x)k − 1

≥ kx+ x(1 + x)k

≥ kx+ x

= (k + 1)x,

so S(k + 1) is true. Therefore, S(n) is true for all positive integers n.

2.4.17. Fibonacci Numbers.
Hint. For (a) and (b) use mathematical induction. (c) Show that f1 = 1,
f2 = 1, and fn+2 = fn+1+fn. (e) Use part (b) and Exercise 2.4.16, p. 27.
2.4.19.
Hint. Use the Fundamental Theorem of Arithmetic.
2.4.23.
Hint. Use the Principle of Well-Ordering and the division algorithm.
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2.4.27.
Hint. Since gcd(a, b) = 1, there exist integers r and s such that ar+bs =
1. Thus, acr + bcs = c.
2.4.29.
Hint. Every prime must be of the form 2, 3, 6n+1, or 6n+5. Suppose
there are only finitely many primes of the form 6k + 5.

3 · Groups
3.5 · Exercises
3.5.1.
Hint. (a) 3 + 7Z = {. . . ,−4, 3, 10, . . .}; (c) 18 + 26Z; (e) 5 + 6Z.
3.5.2.
Hint. (a) Not a group; (c) a group.
3.5.6.
Hint.

· 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

3.5.8.
Hint. Pick two matrices. Almost any pair will work.
3.5.15.
Hint. There is a nonabelian group containing six elements.
3.5.16.
Hint. Look at the symmetry group of an equilateral triangle or a square.
3.5.17.
Hint. The are five different groups of order 8.
3.5.18.
Hint. Let

σ =

(
1 2 · · · n

a1 a2 · · · an

)
be in Sn. All of the ais must be distinct. There are n ways to choose a1,
n− 1 ways to choose a2, . . ., 2 ways to choose an−1, and only one way to
choose an. Therefore, we can form σ in n(n− 1) · · · 2 · 1 = n! ways.
3.5.25.
Hint.

(aba−1)n = (aba−1)(aba−1) · · · (aba−1)

= ab(aa−1)b(aa−1)b · · · b(aa−1)ba−1

= abna−1.

3.5.31.
Hint. Since abab = (ab)2 = e = a2b2 = aabb, we know that ba = ab.
3.5.35.
Hint. H1 = {id}, H2 = {id, ρ1, ρ2}, H3 = {id, µ1}, H4 = {id, µ2},
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H5 = {id, µ3}, S3.

3.5.41.
Hint. The identity of G is 1 = 1 + 0

√
2. Since (a + b

√
2 )(c + d

√
2 ) =

(ac + 2bd) + (ad + bc)
√
2, G is closed under multiplication. Finally, (a +

b
√
2 )−1 = a/(a2 − 2b2)− b

√
2/(a2 − 2b2).

3.5.46.
Hint. Look at S3.
3.5.49.
Hint. ba = a4b = a3ab = ab

4 · Cyclic Groups
4.5 · Exercises
4.5.1.
Hint. (a) False; (c) false; (e) true.

4.5.2.
Hint. (a) 12; (c) infinite; (e) 10.

4.5.3.
Hint. (a) 7Z = {. . . ,−7, 0, 7, 14, . . .}; (b) {0, 3, 6, 9, 12, 15, 18, 21}; (c)
{0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}; (g) {1, 3, 7, 9}; (j) {1,−1, i,−i}.

4.5.4.
Hint. (a) (

1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
0 −1

1 0

)
,

(
0 1

−1 0

)
.

(c)(
1 0

0 1

)
,

(
1 −1

1 0

)
,

(
−1 1

−1 0

)
,

(
0 1

−1 1

)
,

(
0 −1

1 −1

)
,

(
−1 0

0 −1

)
.

4.5.10.
Hint. (a) 0; (b) 1,−1.

4.5.11.
Hint. 1, 2, 3, 4, 6, 8, 12, 24.
4.5.15.
Hint. (a) −3 + 3i; (c) 43− 18i; (e) i

4.5.16.
Hint. (a)

√
3 + i; (c) −3.

4.5.17.
Hint. (a)

√
2 cis(7π/4); (c) 2

√
2 cis(π/4); (e) 3 cis(3π/2).

4.5.18.
Hint. (a) (1− i)/2; (c) 16(i−

√
3 ); (e) −1/4.

4.5.22.
Hint. (a) 292; (c) 1523.
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4.5.27.
Hint. |〈g〉 ∩ 〈h〉| = 1.

4.5.31.
Hint. The identity element in any group has finite order. Let g, h ∈ G
have orders m and n, respectively. Since (g−1)m = e and (gh)mn = e,
the elements of finite order in G form a subgroup of G.
4.5.37.
Hint. If g is an element distinct from the identity in G, g must generate
G; otherwise, 〈g〉 is a nontrivial proper subgroup of G.

5 · Permutation Groups
5.4 · Exercises
5.4.1.
Hint. (a) (1 2 4 5 3); (c) (1 3)(2 5).

5.4.2.
Hint. (a) (1 3 5)(2 4); (c) (1 4)(2 3); (e) (1 3 2 4); (g) (1 3 4)(2 5); (n)
(1 7 3 5 2).

5.4.3.
Hint. (a) (1 6)(1 5)(1 3)(1 4); (c) (1 6)(1 4)(1 2).

5.4.4.
Hint. (a1, a2, . . . , an)

−1 = (a1, an, an−1, . . . , a2)

5.4.5.
Hint. (a) {(1 3), (1 3)(2 4), (1 3 2), (1 3 4), (1 3 2 4), (1 3 4 2)} is not a sub-
group.
5.4.8.
Hint. (1 2 3 4 5)(6 7 8).

5.4.11.
Hint. Permutations of the form

(1), (a1, a2)(a3, a4), (a1, a2, a3), (a1, a2, a3, a4, a5)

are possible for A5.
5.4.17.
Hint. Calculate (1 2 3)(1 2) and (1 2)(1 2 3).

5.4.25.
Hint. Consider the cases (a, b)(b, c) and (a, b)(c, d).

5.4.29.
Hint. Show that the center of Dn consists of the identity if n is odd
and consists of the identity and a 180◦ rotation if n is even.
5.4.30.
Hint. For (a), show that στσ−1(σ(ai)) = σ(ai+1).

6 · Cosets and Lagrange’s Theorem
6.5 · Exercises
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6.5.1.
Hint. The order of g and the order h must both divide the order of G.
6.5.2.
Hint. The possible orders must divide 60.
6.5.3.
Hint. This is true for every proper nontrivial subgroup.
6.5.4.
Hint. False.
6.5.5.
Hint. (a) 〈8〉, 1 + 〈8〉, 2 + 〈8〉, 3 + 〈8〉, 4 + 〈8〉, 5 + 〈8〉, 6 + 〈8〉, and
7 + 〈8〉; (c) 3Z, 1 + 3Z, and 2 + 3Z.

6.5.7.
Hint. 4ϕ(15) ≡ 48 ≡ 1 (mod 15).

6.5.12.
Hint. Let g1 ∈ gH. Show that g1 ∈ Hg and thus gH ⊂ Hg.
6.5.19.
Hint. Show that g(H ∩K) = gH ∩ gK.

6.5.22.
Hint. If gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n) (Exercise 2.4.26, p. 28
in Chapter 2, p. 19).

7 · Introduction to Cryptography
7.4 · Exercises
7.4.1.
Hint. LAORYHAPDWK

7.4.3.
Hint. Hint: V = E, E = X (also used for spaces and punctuation), K =
R.
7.4.4.
Hint. 26!− 1

7.4.7.
Hint. (a) 2791; (c) 11213525032442.

7.4.9.
Hint. (a) 31 (c) 14.

7.4.10.
Hint. (a) n = 11 · 41; (c) n = 8779 · 4327.

8 · Algebraic Coding Theory
8.6 · Exercises
8.6.2.
Hint. This cannot be a group code since (0000) /∈ C.

8.6.3.
Hint. (a) 2; (c) 2.
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8.6.4.
Hint. (a) 3; (c) 4.
8.6.6.
Hint. (a) dmin = 2; (c) dmin = 1.

8.6.7.
Hint.

(a) (00000), (00101), (10011), (10110)

G =


0 1

0 0

1 0

0 1

1 1


(b) (000000), (010111), (101101), (111010)

G =



1 0

0 1

1 0

1 1

0 1

1 1


8.6.9.
Hint. Multiple errors occur in one of the received words.
8.6.11.
Hint. (a) A canonical parity-check matrix with standard generator ma-
trix

G =


1

1

0

0

1

 .

(c) A canonical parity-check matrix with standard generator matrix

G =


1 0

0 1

1 1

1 0

 .

8.6.12.
Hint. (a) All possible syndromes occur.
8.6.15.
Hint. (a) C, (10000)+C, (01000)+C, (00100)+C, (00010)+C, (11000)+
C, (01100)+C, (01010)+C. A decoding table does not exist for C since
this is only a single error-detecting code.
8.6.19.
Hint. Let x ∈ C have odd weight and define a map from the set of odd
codewords to the set of even codewords by y 7→ x + y. Show that this
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map is a bijection.
8.6.23.
Hint. For 20 information positions, at least 6 check bits are needed to
ensure an error-correcting code.

9 · Isomorphisms
9.4 · Exercises
9.4.1.
Hint. Every infinite cyclic group is isomorphic to Z by Theorem 9.7,
p. 123.
9.4.2.
Hint. Define ϕ : C∗ → GL2(R) by

ϕ(a+ bi) =

(
a b

−b a

)
.

9.4.3.
Hint. False.
9.4.6.
Hint. Define a map from Zn into the nth roots of unity by k 7→ cis(2kπ/n).

9.4.8.
Hint. Assume that Q is cyclic and try to find a generator.
9.4.11.
Hint. There are two nonabelian and three abelian groups that are not
isomorphic.
9.4.16.
Hint. (a) 12; (c) 5.

9.4.19.
Hint. Draw the picture.
9.4.20.
Hint. True.
9.4.25.
Hint. True.
9.4.27.
Hint. Let a be a generator for G. If ϕ : G → H is an isomorphism,
show that ϕ(a) is a generator for H.

9.4.38.
Hint. Any automorphism of Z6 must send 1 to another generator of Z6.
9.4.45.
Hint. To show that ϕ is one-to-one, let g1 = h1k1 and g2 = h2k2 and
consider ϕ(g1) = ϕ(g2).

10 · Normal Subgroups and Factor Groups
10.4 · Exercises
10.4.1.
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Hint. (a)
A4 (1 2)A4

A4 A4 (1 2)A4

(1 2)A4 (1 2)A4 A4

(c) D4 is not normal in S4.

10.4.8.
Hint. If a ∈ G is a generator for G, then aH is a generator for G/H.

10.4.11.
Hint. For any g ∈ G, show that the map ig : G → G defined by
ig : x 7→ gxg−1 is an isomorphism of G with itself. Then consider ig(H).

10.4.12.
Hint. Suppose that 〈g〉 is normal in G and let y be an arbitrary element
of G. If x ∈ C(g), we must show that yxy−1 is also in C(g). Show that
(yxy−1)g = g(yxy−1).

10.4.14.
Hint. (a) Let g ∈ G and h ∈ G′. If h = aba−1b−1, then

ghg−1 = gaba−1b−1g−1

= (gag−1)(gbg−1)(ga−1g−1)(gb−1g−1)

= (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1.

We also need to show that if h = h1 · · ·hn with hi = aibia
−1
i b−1

i , then
ghg−1 is a product of elements of the same type. However, ghg−1 =
gh1 · · ·hng−1 = (gh1g

−1)(gh2g
−1) · · · (ghng−1).

11 · Homomorphisms
11.4 · Exercises
11.4.2.
Hint. (a) is a homomorphism with kernel {1}; (c) is not a homomor-
phism.
11.4.4.
Hint. Since ϕ(m + n) = 7(m + n) = 7m + 7n = ϕ(m) + ϕ(n), ϕ is a
homomorphism.
11.4.5.
Hint. For any homomorphism ϕ : Z24 → Z18, the kernel of ϕ must be
a subgroup of Z24 and the image of ϕ must be a subgroup of Z18. Now
use the fact that a generator must map to a generator.
11.4.9.
Hint. Let a, b ∈ G. Then ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba) = ϕ(b)ϕ(a).

11.4.17.
Hint. Find a counterexample.

12 · Matrix Groups and Symmetry
12.4 · Exercises
12.4.1.
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Hint.
1

2

[
‖x + y‖2 + ‖x‖2 − ‖y‖2

]
=

1

2

[
〈x+ y, x+ y〉 − ‖x‖2 − ‖y‖2

]
=

1

2

[
‖x‖2 + 2〈x, y〉+ ‖y‖2 − ‖x‖2 − ‖y‖2

]
= 〈x, y〉.

12.4.3.
Hint. (a) is in SO(2); (c) is not in O(3).
12.4.5.
Hint. (a) 〈x, y〉 = 〈y, x〉.
12.4.7.
Hint. Use the unimodular matrix(

5 2

2 1

)
.

12.4.10.
Hint. Show that the kernel of the map det : O(n) → R∗ is SO(n).
12.4.13.
Hint. True.
12.4.17.
Hint. p6m

13 · The Structure of Groups
13.4 · Exercises
13.4.1.
Hint. There are three possible groups.
13.4.4.
Hint. (a) {0} ⊂ 〈6〉 ⊂ 〈3〉 ⊂ Z12; (e) {(1)}×{0} ⊂ {(1), (1 2 3), (1 3 2)}×
{0} ⊂ S3 × {0} ⊂ S3 × 〈2〉 ⊂ S3 × Z4.
13.4.7.
Hint. Use the Fundamental Theorem of Finitely Generated Abelian
Groups.
13.4.12.
Hint. If N and G/N are solvable, then they have solvable series

N = Nn ⊃ Nn−1 ⊃ · · · ⊃ N1 ⊃ N0 = {e}
G/N = Gn/N ⊃ Gn−1/N ⊃ · · ·G1/N ⊃ G0/N = {N}.

13.4.16.
Hint. Use the fact that Dn has a cyclic subgroup of index 2.
13.4.21.
Hint. G/G′ is abelian.

14 · Group Actions
14.5 · Exercises
14.5.1.
Hint. Example 14.1, p. 175: 0, R2 \ {0}. Example 14.2, p. 175: X =
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{1, 2, 3, 4}.
14.5.2.
Hint. (a) X(1) = {1, 2, 3}, X(1 2) = {3}, X(1 3) = {2}, X(2 3) = {1},
X(1 2 3) = X(1 3 2) = ∅. G1 = {(1), (2 3)}, G2 = {(1), (1 3)}, G3 =
{(1), (1 2)}.
14.5.3.
Hint. (a) O1 = O2 = O3 = {1, 2, 3}.
14.5.6.
Hint. The conjugacy classes for S4 are

O(1) = {(1)},
O(12) = {(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)},
O(1 2)(3 4) = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

O(123) = {(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)},
O(1234) = {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}.

The class equation is 1 + 3 + 6 + 6 + 8 = 24.
14.5.8.
Hint. (34 + 31 + 32 + 31 + 32 + 32 + 33 + 33)/8 = 21.
14.5.11.
Hint. The group of rigid motions of the cube can be described by the
allowable permutations of the six faces and is isomorphic to S4. There
are the identity cycle, 6 permutations with the structure (abcd) that cor-
respond to the quarter turns, 3 permutations with the structure (ab)(cd)
that correspond to the half turns, 6 permutations with the structure
(ab)(cd)(ef) that correspond to rotating the cube about the centers of
opposite edges, and 8 permutations with the structure (abc)(def) that
correspond to rotating the cube about opposite vertices.
14.5.15.
Hint. (1 · 26 + 3 · 24 + 4 · 23 + 2 · 22 + 2 · 21)/12 = 13.
14.5.17.
Hint. (1 · 28 + 3 · 26 + 2 · 24)/6 = 80.
14.5.22.
Hint. Use the fact that x ∈ gC(a)g−1 if and only if g−1xg ∈ C(a).

15 · The Sylow Theorems
15.4 · Exercises
15.4.1.
Hint. If |G| = 18 = 2 · 32, then the order of a Sylow 2-subgroup is 2,
and the order of a Sylow 3-subgroup is 9.
15.4.2.
Hint. The four Sylow 3-subgroups of S4 are P1 = {(1), (1 2 3), (1 3 2)},
P2 = {(1), (1 2 4), (1 4 2)}, P3 = {(1), (1 3 4), (1 4 3)}, P4 = {(1), (2 3 4), (2 4 3)}.
15.4.5.
Hint. Since |G| = 96 = 25 · 3, G has either one or three Sylow 2-
subgroups by the Third Sylow Theorem. If there is only one subgroup,
we are done. If there are three Sylow 2-subgroups, let H and K be two of
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them. Therefore, |H ∩K| ≥ 16; otherwise, HK would have (32 · 32)/8 =
128 elements, which is impossible. Thus, H ∩K is normal in both H and
K since it has index 2 in both groups.
15.4.8.
Hint. Show that G has a normal Sylow p-subgroup of order p2 and a
normal Sylow q-subgroup of order q2.
15.4.10.
Hint. False.
15.4.17.
Hint. If G is abelian, then G is cyclic, since |G| = 3 · 5 · 17. Now look
at Example 15.14, p. 193.
15.4.23.
Hint. Define a mapping between the right cosets of N(H) in G and the
conjugates of H in G by N(H)g 7→ g−1Hg. Prove that this map is a
bijection.
15.4.26.
Hint. Let aG′, bG′ ∈ G/G′. Then (aG′)(bG′) = abG′ = ab(b−1a−1ba)G′ =
(abb−1a−1)baG′ = baG′.

16 · Rings
16.7 · Exercises
16.7.1.
Hint. (a) 7Z is a ring but not a field; (c) Q(

√
2 ) is a field; (f) R is not

a ring.
16.7.3.
Hint. (a) {1, 3, 7, 9}; (c) {1, 2, 3, 4, 5, 6}; (e){(

1 0

0 1

)
,

(
1 1

0 1

)
,

(
1 0

1 1

)
,

(
0 1

1 0

)
,

(
1 1

1 0

)
,

(
0 1

1 1

)
,

}
.

16.7.4.
Hint. (a) {0}, {0, 9}, {0, 6, 12}, {0, 3, 6, 9, 12, 15}, {0, 2, 4, 6, 8, 10, 12, 14, 16};
(c) there are no nontrivial ideals.

16.7.7.
Hint. Assume there is an isomorphism ϕ : C → R with ϕ(i) = a.

16.7.8.
Hint. False. Assume there is an isomorphism ϕ : Q(

√
2 ) → Q(

√
3 )

such that ϕ(
√
2 ) = a.

16.7.13.
Hint. (a) x ≡ 17 (mod 55); (c) x ≡ 214 (mod 2772).

16.7.16.
Hint. If I 6= {0}, show that 1 ∈ I.

16.7.18.
Hint. (a) ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba) = ϕ(b)ϕ(a).

16.7.26.
Hint. Let a ∈ R with a 6= 0. Then the principal ideal generated by a is
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R. Thus, there exists a b ∈ R such that ab = 1.
16.7.28.
Hint. Compute (a+ b)2 and (−ab)2.

16.7.33.
Hint. Let a/b, c/d ∈ Z(p). Then a/b + c/d = (ad + bc)/bd and (a/b) ·
(c/d) = (ac)/(bd) are both in Z(p), since gcd(bd, p) = 1.

16.7.37.
Hint. Suppose that x2 = x and x 6= 0. Since R is an integral domain,
x = 1. To find a nontrivial idempotent, look in M2(R).

17 · Polynomials
17.5 · Exercises
17.5.2.
Hint. (a) 9x2 + 2x+ 5; (b) 8x4 + 7x3 + 2x2 + 7x.

17.5.3.
Hint. (a) 5x3 +6x2 − 3x+4 = (5x2 +2x+1)(x− 2)+ 6; (c) 4x5 −x3 +
x2 + 4 = (4x2 + 4)(x3 + 3) + 4x2 + 2.

17.5.5.
Hint. (a) No zeros in Z12; (c) 3, 4.

17.5.7.
Hint. Look at (2x+ 1).

17.5.8.
Hint. (a) Reducible; (c) irreducible.

17.5.10.
Hint. One factorization is x2 + x+ 8 = (x+ 2)(x+ 9).

17.5.13.
Hint. The integers Z do not form a field.
17.5.14.
Hint. False.
17.5.16.
Hint. Let ϕ : R → S be an isomorphism. Define ϕ : R[x] → S[x] by
ϕ(a0 + a1x+ · · ·+ anx

n) = ϕ(a0) + ϕ(a1)x+ · · ·+ ϕ(an)x
n.

17.5.20. Cyclotomic Polynomials.
Hint. The polynomial

Φn(x) =
xn − 1

x− 1
= xn−1 + xn−2 + · · ·+ x+ 1

is called the cyclotomic polynomial. Show that Φp(x) is irreducible over
Q for any prime p.
17.5.26.
Hint. Find a nontrivial proper ideal in F [x].

18 · Integral Domains
18.4 · Exercises
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18.4.1.
Hint. Note that z−1 = 1/(a + b

√
3 i) = (a − b

√
3 i)/(a2 + 3b2) is in

Z[
√
3 i] if and only if a2 + 3b2 = 1. The only integer solutions to the

equation are a = ±1, b = 0.
18.4.2.
Hint. (a) 5 = −i(1 + 2i)(2 + i); (c) 6 + 8i = −i(1 + i)2(2 + i)2.

18.4.4.
Hint. True.
18.4.9.
Hint. Let z = a + bi and w = c + di 6= 0 be in Z[i]. Prove that
z/w ∈ Q(i).

18.4.15.
Hint. Let a = ub with u a unit. Then ν(b) ≤ ν(ub) ≤ ν(a). Similarly,
ν(a) ≤ ν(b).

18.4.16.
Hint. Show that 21 can be factored in two different ways.

19 · Lattices and Boolean Algebras
19.5 · Exercises
19.5.2.
Hint.

30

10 15

2 5 3

1

19.5.4.
Hint. What are the atoms of B?
19.5.5.
Hint. False.
19.5.6.
Hint. (a) (a ∨ b ∨ a′) ∧ a

a′

b

a

a

(c) a ∨ (a ∧ b)
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a

a b

19.5.8.
Hint. Not equivalent.
19.5.10.
Hint. (a) a′ ∧ [(a ∧ b′) ∨ b] = a ∧ (a ∨ b).
19.5.14.
Hint. Let I, J be ideals in R. We need to show that I + J = {r + s :
r ∈ I and s ∈ J} is the smallest ideal in R containing both I and J . If
r1, r2 ∈ I and s1, s2 ∈ J , then (r1 + s1) + (r2 + s2) = (r1 + r2) + (s1 + s2)
is in I + J . For a ∈ R, a(r1 + s1) = ar1 + as1 ∈ I + J ; hence, I + J is an
ideal in R.
19.5.18.
Hint. (a) No.
19.5.20.
Hint. (⇒). a = b⇒ (a∧ b′)∨ (a′ ∧ b) = (a∧ a′)∨ (a′ ∧ a) = O∨O = O.
(⇐). (a ∧ b′) ∨ (a′ ∧ b) = O ⇒ a ∨ b = (a ∨ a) ∨ b = a ∨ (a ∨ b) =
a ∨ [I ∧ (a ∨ b)] = a ∨ [(a ∨ a′) ∧ (a ∨ b)] = [a ∨ (a ∧ b′)] ∨ [a ∨ (a′ ∧ b)] =
a ∨ [(a ∧ b′) ∨ (a′ ∧ b)] = a ∨ 0 = a. A symmetric argument shows that
a ∨ b = b.

20 · Vector Spaces
20.5 · Exercises
20.5.3.
Hint. Q(

√
2,
√
3 ) has basis {1,

√
2,
√
3,
√
6 } over Q.

20.5.5.
Hint. The set {1, x, x2, . . . , xn−1} is a basis for Pn.
20.5.7.
Hint. (a) Subspace of dimension 2 with basis {(1, 0,−3), (0, 1, 2)}; (d)
not a subspace
20.5.10.
Hint. Since 0 = α0 = α(−v + v) = α(−v) + αv, it follows that −αv =
α(−v).
20.5.12.
Hint. Let v0 = 0, v1, . . . , vn ∈ V and α0 6= 0, α1, . . . , αn ∈ F . Then
α0v0 + · · ·+ αnvn = 0.
20.5.15. Linear Transformations.
Hint. (a) Let u, v ∈ ker(T ) and α ∈ F . Then

T (u+ v) = T (u) + T (v) = 0

T (αv) = αT (v) = α0 = 0.

Hence, u+ v, αv ∈ ker(T ), and ker(T ) is a subspace of V .
(c) The statement that T (u) = T (v) is equivalent to T (u − v) =

T (u)− T (v) = 0, which is true if and only if u− v = 0 or u = v.
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20.5.17. Direct Sums.
Hint. (a) Let u, u′ ∈ U and v, v′ ∈ V . Then

(u+ v) + (u′ + v′) = (u+ u′) + (v + v′) ∈ U + V

α(u+ v) = αu+ αv ∈ U + V .

21 · Fields
21.5 · Exercises
21.5.1.
Hint. (a) x4 − (2/3)x2 − 62/9; (c) x4 − 2x2 + 25.

21.5.2.
Hint. (a) {1,

√
2,
√
3,
√
6 }; (c) {1, i,

√
2,
√
2 i}; (e) {1, 21/6, 21/3, 21/2, 22/3, 25/6}.

21.5.3.
Hint. (a) Q(

√
3,
√
7 ).

21.5.5.
Hint. Use the fact that the elements of Z2[x]/〈x3 + x + 1〉 are 0, 1, α,
1 + α, α2, 1 + α2, α+ α2, 1 + α+ α2 and the fact that α3 + α+ 1 = 0.
21.5.8.
Hint. False.
21.5.14.
Hint. Suppose that E is algebraic over F and K is algebraic over E.
Let α ∈ K. It suffices to show that α is algebraic over some finite ex-
tension of F . Since α is algebraic over E, it must be the zero of some
polynomial p(x) = β0 + β1x + · · · + βnx

n in E[x]. Hence α is algebraic
over F (β0, . . . , βn).

21.5.22.
Hint. Since {1,

√
3,
√
7,
√
21 } is a basis for Q(

√
3,
√
7 ) over Q, Q(

√
3,
√
7 ) ⊃

Q(
√
3 +

√
7 ). Since [Q(

√
3,
√
7 ) : Q] = 4, [Q(

√
3 +

√
7 ) : Q] = 2

or 4. Since the degree of the minimal polynomial of
√
3 +

√
7 is 4,

Q(
√
3,
√
7 ) = Q(

√
3 +

√
7 ).

21.5.27.
Hint. Let β ∈ F (α) not in F . Then β = p(α)/q(α), where p and q are
polynomials in α with q(α) 6= 0 and coefficients in F . If β is algebraic
over F , then there exists a polynomial f(x) ∈ F [x] such that f(β) = 0.
Let f(x) = a0 + a1x+ · · ·+ anx

n. Then

0 = f(β) = f

(
p(α)

q(α)

)
= a0 + a1

(
p(α)

q(α)

)
+ · · ·+ an

(
p(α)

q(α)

)n
.

Now multiply both sides by q(α)n to show that there is a polynomial in
F [x] that has α as a zero.

21.5.28.
Hint. See the comments following Theorem 21.13, p. 279.

22 · Finite Fields
22.4 · Exercises
22.4.1.
Hint. Make sure that you have a field extension.
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22.4.4.
Hint. There are eight elements in Z2(α). Exhibit two more zeros of
x3 + x2 + 1 other than α in these eight elements.
22.4.5.
Hint. Find an irreducible polynomial p(x) in Z3[x] of degree 3 and show
that Z3[x]/〈p(x)〉 has 27 elements.

22.4.7.
Hint. (a) x5 − 1 = (x + 1)(x4 + x3 + x2 + x + 1); (c) x9 − 1 = (x +
1)(x2 + x+ 1)(x6 + x3 + 1).

22.4.8.
Hint. True.
22.4.11.
Hint. (a) Use the fact that x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

22.4.12.
Hint. False.
22.4.17.
Hint. If p(x) ∈ F [x], then p(x) ∈ E[x].

22.4.18.
Hint. Since α is algebraic over F of degree n, we can write any element
β ∈ F (α) uniquely as β = a0 + a1α+ · · ·+ an−1α

n−1 with ai ∈ F . There
are qn possible n-tuples (a0, a1, . . . , an−1).

22.4.24. Wilson’s Theorem.
Hint. Factor xp−1 − 1 over Zp.

23 · Galois Theory
23.5 · Exercises
23.5.1.
Hint. (a) Z2; (c) Z2 × Z2 × Z2.
23.5.2.
Hint. (a) Separable over Q since x3+2x2−x−2 = (x−1)(x+1)(x+2);
(c) not separable over Z3 since x4 + x2 + 1 = (x+ 1)2(x+ 2)2.
23.5.3.
Hint. If

[GF(729) : GF(9)] = [GF(729) : GF(3)]/[GF(9) : GF(3)] = 6/2 = 3,

then G(GF(729)/GF(9)) ∼= Z3. A generator for G(GF(729)/GF(9)) is σ,
where σ36(α) = α36 = α729 for α ∈ GF(729).

23.5.4.
Hint. (a) S5; (c) S3; (g) see Example 23.11, p. 314.
23.5.5.
Hint. (a) Q(i)

23.5.7.
Hint. Let E be the splitting field of a cubic polynomial in F [x]. Show
that [E : F ] is less than or equal to 6 and is divisible by 3. Since G(E/F )
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is a subgroup of S3 whose order is divisible by 3, conclude that this group
must be isomorphic to Z3 or S3.
23.5.9.
Hint. G is a subgroup of Sn.
23.5.16.
Hint. True.
23.5.20.
Hint.

(a) Clearly ω, ω2, . . . , ωp−1 are distinct since ω 6= 1 or 0. To show that
ωi is a zero of Φp, calculate Φp(ω

i).

(b) The conjugates of ω are ω, ω2, . . . , ωp−1. Define a map ϕi : Q(ω) →
Q(ωi) by

ϕi(a0 + a1ω + · · ·+ ap−2ω
p−2) = a0 + a1ω

i + · · ·+ cp−2(ω
i)p−2,

where ai ∈ Q. Prove that ϕi is an isomorphism of fields. Show that
ϕ2 generates G(Q(ω)/Q).

(c) Show that {ω, ω2, . . . , ωp−1} is a basis for Q(ω) over Q, and consider
which linear combinations of ω, ω2, . . . , ωp−1 are left fixed by all
elements of G(Q(ω)/Q).



C

Notation

The following table defines the notation used in this book. Page numbers
or references refer to the first appearance of each symbol.

Symbol Description Page

a ∈ A a is in the set A 3
N the natural numbers 4
Z the integers 4
Q the rational numbers 4
R the real numbers 4
C the complex numbers 4
A ⊂ B A is a subset of B 4
∅ the empty set 4
A ∪B the union of sets A and B 4
A ∩B the intersection of sets A and B 4
A′ complement of the set A 5
A \B difference between sets A and B 5
A×B Cartesian product of sets A and B 6
An A× · · · ×A (n times) 7
id identity mapping 10
f−1 inverse of the function f 10
a ≡ b (mod n) a is congruent to b modulo n 13
n! n factorial 20(
n
k

)
binomial coefficient n!/(k!(n− k)!) 20

a | b a divides b 22
gcd(a, b) greatest common divisor of a and b 22
P(X) power set of X 27
lcm(m,n) the least common multiple of m and n 28
Zn the integers modulo n 31
U(n) group of units in Zn 37
Mn(R) the n× n matrices with entries in R 37
detA the determinant of A 37
GLn(R) the general linear group 37
Q8 the group of quaternions 38
C∗ the multiplicative group of complex num-

bers
38

(Continued on next page)
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Symbol Description Page

|G| the order of a group 38
R∗ the multiplicative group of real numbers 40
Q∗ the multiplicative group of rational numbers 40
SLn(R) the special linear group 40
Z(G) the center of a group 45
〈a〉 cyclic group generated by a 49
|a| the order of an element a 50
cis θ cos θ + i sin θ 54
T the circle group 55
Sn the symmetric group on n letters 63
(a1, a2, . . . , ak) cycle of length k 65
An the alternating group on n letters 69
Dn the dihedral group 70
[G : H] index of a subgroup H in a group G 80
LH the set of left cosets of a subgroup H in a

group G
81

RH the set of right cosets of a subgroup H in a
group G

81

a ∤ b a does not divide b 83
d(x, y) Hamming distance between x and y 102
dmin the minimum distance of a code 102
w(x) the weight of x 102
Mm×n(Z2) the set of m×n matrices with entries in Z2 106
Null(H) null space of a matrix H 106
δij Kronecker delta 110
G ∼= H G is isomorphic to a group H 121
Aut(G) automorphism group of a group G 131
ig ig(x) = gxg−1 131
Inn(G) inner automorphism group of a group G 131
ρg right regular representation 131
G/N factor group of G mod N 134
G′ commutator subgroup of G 140
kerϕ kernel of ϕ 143
(aij) matrix 150
O(n) orthogonal group 152
‖x‖ length of a vector x 152
SO(n) special orthogonal group 155
E(n) Euclidean group 155
Ox orbit of x 176
Xg fixed point set of g 177
Gx isotropy subgroup of x 177
N(H) normalizer of s subgroup H 190
H the ring of quaternions 201
Z[i] the Gaussian integers 203
charR characteristic of a ring R 204
Z(p) ring of integers localized at p 216
deg f(x) degree of a polynomial 220
R[x] ring of polynomials over a ring R 220

(Continued on next page)
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Symbol Description Page

R[x1, x2, . . . , xn] ring of polynomials in n indeterminants 222
ϕα evaluation homomorphism at α 222
Q(x) field of rational functions over Q 240
ν(a) Euclidean valuation of a 244
F (x) field of rational functions in x 248
F (x1, . . . , xn) field of rational functions in x1, . . . , xn 249
a � b a is less than b 251
a ∨ b join of a and b 253
a ∧ b meet of a and b 253
I largest element in a lattice 254
O smallest element in a lattice 254
a′ complement of a in a lattice 255
dimV dimension of a vector space V 269
U ⊕ V direct sum of vector spaces U and V 272
Hom(V,W ) set of all linear transformations from U into

V
272

V ∗ dual of a vector space V 272
F (α1, . . . , αn) smallest field containing F and α1, . . . , αn 277
[E : F ] dimension of a field extension of E over F 280
GF(pn) Galois field of order pn 297
F ∗ multiplicative group of a field F 298
G(E/F ) Galois group of E over F 312
F{σi} field fixed by the automorphism σi 316
FG field fixed by the automorphism group G 316
∆2 discriminant of a polynomial 328
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G-equivalent, 176
G-set, 175
nth root of unity, 55, 324
rsa cryptosystem, 90

Abel, Niels Henrik, 323
Abelian group, 36
Ackermann’s function, 28
Adleman, L., 90
Algebraic closure, 285
Algebraic extension, 279
Algebraic number, 280
Algorithm

division, 223
Euclidean, 24

Ascending chain condition, 242
Associate elements, 240
Atom, 257
Automorphism

inner, 148

Basis of a lattice, 158
Bieberbach, L., 162
Binary operation, 35
Binary symmetric channel, 101
Boole, George, 261
Boolean algebra

atom in a, 257
definition of, 255
finite, 257
isomorphism, 257

Boolean function, 183, 264
Burnside’s Counting Theorem,

180
Burnside, William, 40, 138, 185

Cancellation law
for groups, 39

for integral domains, 203
Cardano, Gerolamo, 230
Carmichael numbers, 96
Cauchy’s Theorem, 189
Cauchy, Augustin-Louis, 69
Cayley table, 36
Cayley’s Theorem, 124
Cayley, Arthur, 125
Centralizer

of a subgroup, 178
Characteristic of a ring, 204
Chinese Remainder Theorem

for integers, 211
Cipher, 87
Ciphertext, 87
Circuit

parallel, 259
series, 259
series-parallel, 260

Class equation, 178
Code

bch, 307
cyclic, 301
group, 104
linear, 107
minimum distance of, 102
polynomial, 302

Commutative diagrams, 144
Commutative rings, 199
Composite integer, 24
Composition series, 170
Congruence modulo n, 13
Conjugacy classes, 178
Conjugate elements, 315
Conjugate, complex, 52
Conjugation, 176
Constructible number, 289
Correspondence Theorem

363
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for groups, 145
for rings, 207

Coset
leader, 114
left, 79
representative, 79
right, 79

Coset decoding, 113
Cryptanalysis, 88
Cryptosystem

rsa, 90
affine, 89
definition of, 87
monoalphabetic, 88
polyalphabetic, 89
private key, 87
public key, 87
single key, 87

Cycle
definition of, 65
disjoint, 65

De Morgan’s laws
for Boolean algebras, 257
for sets, 6

De Morgan, Augustus, 261
Decoding table, 114
Deligne, Pierre, 293
DeMoivre’s Theorem, 54
Derivative, 298
Determinant, Vandermonde,

305
Dickson, L. E., 138
Diffie, W., 90
Direct product of groups

external, 126
internal, 127

Discriminant
of the cubic equation, 234
of the quadratic equation,

233
Division algorithm

for integers, 22
for polynomials, 223

Division ring, 200
Domain

Euclidean, 244
principal ideal, 241
unique factorization, 241

Doubling the cube, 291

Eisenstein’s Criterion, 228
Element

associate, 240

identity, 36
inverse, 36
irreducible, 240
order of, 50
prime, 240
primitive, 317
transcendental, 279

Equivalence class, 12
Equivalence relation, 11
Euclidean algorithm, 24
Euclidean domain, 244
Euclidean group, 155
Euclidean inner product, 152
Euclidean valuation, 244
Euler ϕ-function, 83
Euler, Leonhard, 83, 292
Extension

algebraic, 279
field, 277
finite, 282
normal, 319
radical, 324
separable, 298, 316
simple, 279

External direct product, 126

Faltings, Gerd, 293
Feit, W., 138, 185
Fermat’s factorizationalgorithm,

95
Fermat’s Little Theorem, 83
Fermat, Pierre de, 83, 292
Ferrari, Ludovico, 230
Ferro, Scipione del, 229
Field, 200

algebraically closed, 285
base, 277
extension, 277
fixed, 318
Galois, 299
of fractions, 239
of quotients, 239
splitting, 286

Finitely generated group, 165
Fior, Antonio, 230
First Isomorphism Theorem

for groups, 143
for rings, 207

Fixed point set, 177
Freshman’s Dream, 298
Function

bijective, 8
Boolean, 183, 264
composition of, 8
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definition of, 7
domain of, 7
identity, 10
injective, 8
invertible, 10
one-to-one, 8
onto, 8
range of, 7
surjective, 8
switching, 183, 264

Fundamental Theorem
of Algebra, 285, 328
of Arithmetic, 24
of Finite Abelian Groups,

166
Fundamental Theorem of

Galois Theory, 320

Galois field, 299
Galois group, 314
Galois, Évariste, 39, 323
Gauss’s Lemma, 245
Gauss, Karl Friedrich, 247
Gaussian integers, 203
Generator of a cyclic subgroup,

50
Generators for a group, 165
Glide reflection, 156
Gorenstein, Daniel, 138
Greatest common divisor

of two integers, 22
of two polynomials, 224

Greatest lower bound, 252
Greiss, R., 138
Grothendieck, Alexander, 293
Group

p-group, 166, 189
abelian, 36
action, 175
alternating, 69
center of, 178
circle, 55
commutative, 36
cyclic, 50
definition of, 35
dihedral, 70
Euclidean, 155
factor, 134
finite, 38
finitely generated, 165
Galois, 314
general linear, 37, 151
generators of, 165
homomorphism of, 141

infinite, 38
isomorphic, 121
isomorphism of, 121
nonabelian, 36
noncommutative, 36
of units, 37
order of, 38
orthogonal, 152
permutation, 64
point, 159
quaternion, 38
quotient, 134
simple, 135, 138
solvable, 172
space, 159
special linear, 41, 151
special orthogonal, 155
symmetric, 63
symmetry, 157

Gödel, Kurt, 261

Hamming distance, 102
Hamming, R., 104
Hellman, M., 90
Hilbert, David, 161, 209, 261,

293
Homomorphic image, 141
Homomorphism

canonical, 143, 207
evaluation, 205, 222
kernel of a group, 143
kernel of a ring, 204
natural, 143, 207
of groups, 141
ring, 204

Ideal
definition of, 205
maximal, 208
one-sided, 206
prime, 208
principal, 206
trivial, 205
two-sided, 206

Indeterminate, 219
Index of a subgroup, 80
Induction

first principle of, 20
second principle of, 21

Infimum, 252
Inner product, 106
Integral domain, 200
Internal direct product, 127
International standard book

number, 47
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Irreducible element, 240
Irreducible polynomial, 225
Isometry, 156
Isomorphism

of Boolean algebras, 257
of groups, 121
ring, 204

Join, 253
Jordan, C., 138
Jordan-Hölder Theorem, 171

Kernel
of a group homomorphism,

143
of a ring homomorphism,

204
Key

definition of, 87
private, 87
public, 87
single, 87

Klein, Felix, 40, 149, 209
Kronecker delta, 110, 153
Kronecker, Leopold, 292
Kummer, Ernst, 292

Lagrange’s Theorem, 81
Lagrange, Joseph-Louis, 39, 69,

83
Laplace, Pierre-Simon, 69
Lattice

completed, 255
definition of, 253
distributive, 255

Lattice of points, 158
Lattices, Principle of Duality

for, 253
Least upper bound, 252
Left regular representation, 124
Lie, Sophus, 40, 192
Linear combination, 269
Linear dependence, 270
Linear independence, 270
Linear map, 149
Linear transformation

definition of, 9, 149
Lower bound, 252

Mapping, see Function
Matrix

distance-preserving, 153
generator, 108
inner product-preserving,

153

invertible, 150
length-preserving, 153
nonsingular, 151
null space of, 106
orthogonal, 152
parity-check, 107
similar, 12
unimodular, 159

Matrix, Vandermonde, 305
Maximal ideal, 208
Maximum-likelihood decoding,

100
Meet, 253
Minimal generator polynomial,

303
Minimal polynomial, 280
Minkowski, Hermann, 293
Monic polynomial, 220
Mordell-Weil conjecture, 293
Multiplicity of a root, 316

Noether, A. Emmy, 209
Noether, Max, 209
Normal extension, 319
Normal series of a group, 170
Normal subgroup, 133
Normalizer, 191
Null space

of a matrix, 106

Odd Order Theorem, 195
Orbit, 176
Orthogonal group, 152
Orthogonal matrix, 152
Orthonormal set, 153

Partial order, 251
Partially ordered set, 251
Partitions, 12
Permutation

cycle structure of, 85
definition of, 9, 63
even, 68
odd, 68

Permutation group, 64
Plaintext, 87
Polynomial

code, 302
content of, 245
definition of, 219
degree of, 220
error, 310
error-locator, 310
greatest common divisor of,

224



367

in n indeterminates, 222
irreducible, 225
leading coefficient of, 220
minimal, 280
minimal generator, 303
monic, 220
primitive, 245
root of, 224
separable, 316
zero of, 224

Polynomial separable, 298
Poset

definition of, 251
largest element in, 254
smallest element in, 254

Power set, 251
Prime element, 240
Prime ideal, 208
Prime integer, 24
Primitive nth root of unity, 55,

324
Primitive element, 317
Primitive Element Theorem,

317
Primitive polynomial, 245
Principal ideal, 206
Principal ideal domain (pid),

241
Principal series, 170
Pseudoprime, 95

Quaternions, 38, 201

Resolvent cubic equation, 234
Rigid motion, 34, 156
Ring

characteristic of, 204
commutative, 199
definition of, 199
division, 200
factor, 206
homomorphism, 204
isomorphism, 204
Noetherian, 242
quotient, 206
with identity, 199
with unity, 199

Rivest, R., 90
Ruffini, P., 323
Russell, Bertrand, 261

Scalar product, 267
Second Isomorphism Theorem

for groups, 144
for rings, 207

Shamir, A., 90
Shannon, C., 104
Sieve of Eratosthenes, 28
Simple extension, 279
Simple group, 135
Simple root, 316
Solvability by radicals, 324
Spanning set, 269
Splitting field, 286
Squaring the circle is

impossible, 292
Standard decoding, 113
Subgroup

p-subgroup, 189
centralizer, 178
commutator, 193
cyclic, 50
definition of, 40
index of, 80
isotropy, 177
normal, 133
normalizer of, 191
proper, 40
stabilizer, 177
Sylowp-subgroup, 190
translation, 159
trivial, 40

Subnormal series of a group,
169

Subring, 202
Supremum, 252
Switch

closed, 259
definition of, 259
open, 259

Switching function, 183, 264
Sylow p-subgroup, 190
Sylow, Ludvig, 192
Syndrome of a code, 112, 310

Tartaglia, 230
Third Isomorphism Theorem

for groups, 145
for rings, 207

Thompson, J., 138, 185
Transcendental element, 279
Transcendental number, 280
Transposition, 67
Trisection of an angle, 292

Unique factorization domain
(ufd), 241

Unit, 200, 240
Universal Product Code, 46
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Upper bound, 252

Vandermonde determinant, 305
Vandermonde matrix, 305
Vector space

basis of, 270
definition of, 267
dimension of, 271
subspace of, 268

Weight of a codeword, 102
Weil, André, 293
Well-defined map, 7
Well-ordered set, 21
Whitehead, Alfred North, 261

Zero
multiplicity of, 316
of a polynomial, 224

Zero divisor, 200
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