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Given integer k ≥ 0, evaluate
∑k

j=0 2k−j
(
k+j
j

)
.

A poorly formulated question. As some students pointed out, what does ‘evaluate’
mean? Anyway, as part of a discovery process, we compute the sum for a few small
values of k with hopes of seeing a pattern. We use abbreviation sk for the sum in the
original question. Recall that

(
n
m

)
= n!/(m!(n−m)!) whenever 0 ≤ m ≤ n, and

(
n
m

)
= 0

whenever 0 ≤ n < m.

s0 = 20
(
0
0

)
= 1

s1 = 21
(
1
0

)
+ 20

(
2
1

)
= 2 + 2 = 4 = 22

s2 = 22
(
2
0

)
+ 21

(
3
1

)
+ 20

(
4
2

)
= 4 + 6 + 6 = 16 = 42 = 24

s3 = 23
(
3
0

)
+ 22

(
4
1

)
+ 21

(
5
2

)
+ 20

(
6
3

)
= 8 + 16 + 20 + 20 = 64 = 43 = 26

A pattern, suggesting that sk = 4k = 22k for all k ≥ 0. This ‘conjecture’ is likely a
contribution towards the solution.

We suppose some familiarity with Pascal’s Triangle and its correspondence with bi-
nomial coefficients. Motivated by illustrations farther below, we display the following
top part of the Triangle:

1 0 0 0
1 1 0 0 0

1 2 1 0 0
1 3 3 1 0 0

1 4 6 4 1 0
1 5 10 10 5 1 0

1 6 15 20 15 6 1

Each coefficient equals a binomial coefficient. For example, 5 =
(
5
1

)
=
(
5
4

)
and 20 =

(
6
3

)
.

We have the usual equations
(
n
0

)
= 1 and

(
n+1
k+1

)
=
(
n
k

)
+
(

n
k+1

)
, for all n, k ≥ 0. The 0’s

to the right represent that
(
n
m

)
= 0 whenever 0 ≤ n < m.

Consider case k = 3. Let us rewrite s3 = 23 ∗ 1 + 22 ∗ 4 + 21 ∗ 10 + 20 ∗ 20 = 26 where
list 1, 4, 10, 20 is a downward row in the Triangle picture. We know that the sum of each
row of the Triangle is a power of 2, for example 1 + 6 + 15 + 20 + 15 + 6 + 1 = 26. In this
case we have 23 ∗ 1 + 22 ∗ 4 + 21 ∗ 10 = 2 ∗ (1 + 6 + 15). It would suffice to prove such
an equation in general, where the left hand side is sk, but with the last term removed.
That is, it suffices prove (we divide both sides by 2)∑k−1

j=0 2k−j−1
(
k+j
j

)
=
∑k−1

j=0

(
2k
j

)
if k ≥ 1

This equation itself is a further step towards a solution.

In a first attempt of a proof of the equation (by induction on k) we ran into trouble,
which may have had something to do with 2k being even. So we decided to consider
something more general below.

Define fn
m =

∑m
j=0

(
n
j

)
for all n,m ≥ 0. Recall that

(
n
j

)
counts the number of subsets

of size j of a set of size n. So fn
m counts the number of subsets of size at most m of a

set of size n. So fn
0 = 1 because of the empty subset, and fn

m = 2n if m ≥ n because we
count all subsets. Recall that in the end we are only interested in rewriting f2k

k−1 as∑k−1
j=0 2k−j−1

(
k+j
j

)
= f2k

k−1

1



for k ≥ 4 (we already checked the final equation for k = 0, 1, 2, 3)
Let us try to write fn+1

m in terms of fn
m, since such an equation may be helpful in

proofs by induction on n. If m = 0, then fn+1
m = 1. Suppose m ≥ 1. Consider a

subset S ⊆ {1, 2, 3, 4, . . . , n}. If size |S| ≤ m − 1, then we can extend S to a subset of
{1, 2, 3, 4, . . . , n, n + 1} of size at most m in exactly two ways, either add n + 1 to S or
don’t. So 2fn

m−1 ≤ fn+1
m . If |S| = m, then we count only S itself in fn+1

m . Bigger sets
than S don’t count. So

fn+1
m = 2fn

m−1 +
(
n
m

)
if m ≥ 1

If m ≥ 2 and n ≥ 1, then fn
m−1 = 2fn−1

m−2 +
(
n−1
m−1

)
. Substitute:

fn+1
m = 22fn−1

m−2 + 21
(
n−1
m−1

)
+
(
n
m

)
if m ≥ 2 and n ≥ 1

Repeat.

fn+1
m = 23fn−2

m−3 + 22
(
n−2
m−2

)
+ 21

(
n−1
m−1

)
+
(
n
m

)
if m ≥ 3 and n ≥ 2

We can repeat this p many times as long as m ≥ p and n ≥ p− 1:

fn+1
m = 2pfn−p+1

m−p +
∑p

j=1 2p−j
(
n−p+j
m−p+j

)
if m ≥ p and n ≥ p− 1

We may suppose that k ≥ 1. Set n = 2k − 1 and m = p = k − 1. So

f2k
k−1 = 2k−1fk+1

0 +
∑k−1

j=1 2k−1−j
(
k+j
j

)
Since fk+1

0 = 1 =
(
k+0
0

)
, we thus have

f2k
k−1 =

∑k−1
j=0 2k−1−j

(
k+j
j

)
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